

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
VEE’11 March 9–11, 2011, Newport Beach, California, USA.
Copyright © 2011 ACM 978-1-4503-0501-3/11/03…$10.00.

Selective Hardware/Software Memory Virtualization

Xiaolin Wang

Dept. of Computer
Science and Technology,

Peking University,
Beijing, China, 100871

wxl@pku.edu.cn

Jiarui Zang

Dept. of Computer
Science and Technology,

Peking University,
Beijing, China, 100871

zjr@pku.edu.cn

Zhenlin Wang

Dept. of Computer Science,
Michigan Technological

University
Houghton, MI 49931, USA

zlwang@mtu.edu

Yingwei Luo

Dept. of Computer
Science and Technology,

Peking University,
Beijing, China, 100871

lyw@pku.edu.cn

Xiaoming Li

Dept. of Computer
Science and Technology,

Peking University,
Beijing, China, 100871

lxm@pku.edu.cn

Abstract

As virtualization becomes a key technique for supporting cloud
computing, much effort has been made to reduce virtualization
overhead, so a virtualized system can match its native perfor-
mance. One major overhead is due to memory or page table virtu-
alization. Conventional virtual machines rely on a shadow
mechanism to manage page tables, where a shadow page table
maintained by the VMM (Virtual Machine Monitor) maps virtual
addresses to machine addresses while a guest maintains its own
virtual to physical page table. This shadow mechanism will result
in expensive VM exits whenever there is a page fault that requires
synchronization between the two page tables. To avoid this cost,
both Intel and AMD provide hardware assists, EPT (extended
page table) and NPT (nested page table), to facilitate address
translation. With the hardware assists, the MMU (Memory Man-
agement Unit) maintains an ordinary guest page table that trans-
lates virtual addresses to guest physical addresses. In addition, the
extended page table as provided by EPT translates from guest
physical addresses to host physical or machine addresses. NPT
works in a similar style. With EPT or NPT, a guest page fault can
be handled by the guest itself without triggering VM exits. How-
ever, the hardware assists do have their disadvantage compared to
the conventional shadow mechanism – the page walk yields more
memory accesses and thus longer latency. Our experimental re-
sults show that neither hardware-assisted paging (HAP) nor sha-
dow paging (SP) can be a definite winner. Despite the fact that in
over half of the cases, there is no noticeable gap between the two
mechanisms, an up to 34% performance gap exists for a few
benchmarks. We propose a dynamic switching mechanism that
monitors TLB misses and guest page faults on the fly, and dynam-
ically switches between the two paging modes. Our experiments
show that this new mechanism can match and, sometimes, even
beat the better performance of HAP and SP.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management – main memory, virtual memory.

General Terms Algorithms, Management, Measurement, Per-
formance, Design, Experimentation, Verification.

Keywords virtual machine; hardware-assisted virtualization;
shadow paging; dynamic switching; hardware assisted paging

1. Introduction

System virtualization has regained its popularity in the recent
decade and has become an indispensable technique for supporting
cloud computing. Virtualization provides server consolidation and
creates an illusion of a real machine for an end user. To make a
virtual machine (VM) acceptable for the end user, it is critical for
it to match the performance of a native system with the same re-
source subscription. However, virtualization brings an additional
layer of abstraction and causes some unavoidable overhead. The
performance of a VM is often much inferior to the underlying
native machine performance. Much effort has been made recently
to reduce virtualization overhead in both software and hardware
sides [1, 4, 11, 13]. This paper focuses on one major overhead
caused by memory or page table virtualization.

Most operating systems (OSes) support virtual memory so an
application can bear a view of the whole address space. The OS
maintains a group of page tables, which map virtual memory ad-
dresses to physical memory addresses for each process. The
hardware memory management unit (MMU) translates virtual
memory addresses to physical memory addresses according to
these page tables. With virtualization, the physical memory is
virtualized and the virtual machine monitor (VMM) needs to sup-
port physical to machine address translation.

In a system with paging enabled, the VMM can realize memo-
ry virtualization on a per-page basis and enforce isolation among
multiple VMs. There exist three address spaces in a virtualized
system: 1) machine address, the address which appears on the
system bus; 2) guest physical address, the pseudo-physical ad-
dress as seen from VMs; and 3) guest virtual address, the conven-
tional linear address that the guest OS presents to its applications.
As illustrated in Figure 1, we denote the mapping from guest
physical address to machine address as p2m, and the mapping
from guest virtual address to guest physical address as v2p.

Figure 1. Machine, physical and virtual address

Since there is an additional layer of address translation in a vir-
tualized system, a common scheme to accelerate this two-layer
address translation is to generate a composition of v2p and p2m,
denoted as v2m, and then load it directly into the hardware Memo-
ry Management Unit (MMU). The VMM controls mapping p2m
and it can retrieve mapping v2p by querying the guest page tables.
As illustrated in Figure 2, all three existing memory virtualization
techniques, para-virtualization, shadow paging-based full virtuali-

zation and hardware-assisted full virtualization, take this ap-
proach. They differ in hardware support and/or the way the VMM
synchronizes v2m and v2p. Note that full virtualization does not
require modification to the guest OS while para-virtualization
does. This paper focuses on a combination of the two full virtuali-
zation techniques.

Figure 2. Comparison of memory virtualization architectures

At the cost of compatibility, para-virtualization can achieve
better performance than full virtualization, as well as reduce the
complexity of the VMM. As shown in Figure 2(a), the VMM
simply replaces the mapping v2p stored in a guest page table with
the composite mapping v2m. To ensure that the guest OS func-
tions properly after the replacement, it requires some modification
to the source code of the guest OS, which leads to the compatibili-
ty issue. For safety, the VMM needs to validate any updates to the
page table by the guest OS. By taking back write permission on
those memory pages used as the page table，the VMM prevents
the guest OS from writing to any guest page table directly. The
guest OS has to invoke hypercalls to the VMM to apply changes
to its page table. XEN provides a representative hypervisor fol-
lowing this design [2].

A software solution to support full virtualization relies on a
shadow paging (SP) mechanism for address translation, where a
shadow page table maintained by the VMM maps virtual ad-
dresses directly to machine addresses while a guest maintains its
own virtual to physical page table [5]. The VMM links the sha-
dow page table to the MMU so most address translations can be
done effectively. Figure 2(b) illustrates this implementation. The
VMM has to ensure that the content in the shadow page table is
consistent with what in the guest page table. Since the guest OS
does not know the existence of the shadow page table and will
change its guest page table independently, the VMM should per-
form all the synchronization work to make the shadow page table
keep up with the guest page table. Any updates to the shadow
page table need also to be reflected in the guest page table. All
these synchronizations will result in expensive VM exits and con-
text switches. Moreover, the source code structure for the SP me-
chanism is quite complex. VMWare Workstation,VMWare ESX
Server, KVM, and XEN all implement shadow paging [2, 8, 12].

To avoid the synchronization cost in the SP mechanism, both
Intel and AMD provide hardware assists, EPT (extended page

table) and NPT (nested page table), to facilitate hardware-assisted
address translation as illustrated by Figure 2(c) [4, 10]. We call
the paging mechanism using EPT or NPT hardware assisted pag-
ing (HAP). With the hardware assists, the MMU maintains ordi-
nary guest page tables that translate virtual addresses to guest
physical addresses. In addition, the extended page table as pro-
vided by EPT translates from guest physical addresses to host
physical or machine addresses. The function of NPT is similar to
EPT. All evaluation in this paper is based on EPT on an Intel ma-
chine. However, we expect our design to work on an AMD ma-
chine with NPT support. With EPT or NPT, a guest page fault can
be handled by the guest itself without triggering VM exits. How-
ever, the hardware assists do have their disadvantages compared
to the conventional shadow mechanism. With HAP, an address
translation from virtual to host physical needs to go through both
the guest table and the extended table. This page walk yields more
memory accesses and thus longer latency. The problem becomes
more prominent in 64-bit systems compared to 32-bit systems
since the page walk length is doubled in 64-bit systems.

Both HAP and SP have their own advantages and disadvantag-
es. Our experimental results on SPEC CPU2006 [9] in Figures 3
and 4 show that neither HAP nor SP can be a definite winner.
Both figures show the normalized execution time with respect to
HAP. In eight of the twenty-nine benchmarks there is a 3% or
more performance gap between the two mechanisms. Notably, SP
is 34% slower than HAP for gcc. There is a 13%, 15%, and 22%
performance gap, respectively, for mcf, catusADM and tonto.

Figure 3. Normalized execution time (SPEC Int).

Figure 4. Normalized execution time (SPEC FP)

Since neither HAP nor SP performs better all the time, we can
lose performance no matter which one we pick as the default. An
intelligent mechanism should be able to exploit the advantages of

80.00%

90.00%

100.00%

110.00%

120.00%

130.00%

140.00%

HAP

SP

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

120.00%

125.00%

b
w
av
e
s

ga
m
e
ss

m
ilc

ze
u
sm

p

gr
o
m
ac
s

ca
ct
u
sA
D
M

le
sl
ie
3
d

n
am

d

d
e
al
II

so
p
le
x

p
o
vr
ay

ca
lc
u
lix

G
e
m
sF
D
TD

to
n
to

lb
m

w
rf

sp
h
in
x3

HAP

SP

both HAP and SP based on the VM behavior. So we propose a
dynamic switching mechanism that can switch the paging mode
between HAP and SP based on the runtime behavior of the current
applications. We name this mechanism Dynamic Switching Pag-
ing (DSP). DSP relies on online sampling of TLB misses and page
faults to make decisions on paging mode switching. We develop a
set of heuristics to assist the decision making. Our results show
that DSP is able to match or even beat the better performance of
SP and HAP for all benchmarks, either in a 32-bit system or a 64-
bit system. In the meantime, the overhead of DSP is negligible.

The remainder of this paper is structured as follows. In Section
2 we describe the design of DSP. Section 3 details an implementa-
tion of this mechanism based on XEN [2, 14]. Section 4 evaluates
DSP using some industry standard benchmarks and compares it
with HAP and SP. Section 5 discusses related work. We finally
conclude and discuss future work in Section 6.

2. DSP Design

2.1 DSP Functionality

HAP is controlled by the CPU control register. By setting or reset-
ting the corresponding control bit, we can choose whether or not
to use HAP on a machine where HAP is supported. Take Intel’s
EPT as an example. There is a Secondary Processor-Based VM-
execution Control Register in the CPU. Bit 1 of this register, de-
fined as “Enable EPT”, controls EPT. If this bit is set, EPT is
enabled. Otherwise, it is disabled.

To switch to HAP mode, the VMM should prepare a group of
page tables as the extended page tables, which map guest physical
addresses to host machine addresses. In Section 1, we name this
guest physical address to host machine address map the p2m map.
For the extended tables to take effect, the VMM needs to transfer
the root address of the top-level page directory to the hardware
virtual machine control structure (VMCS). For most VMM im-
plementations, the p2m map is fixed. Therefore, the content of
EPT is often fixed as well. When the extended tables are ready,
we can enable EPT by setting the control bit.

To switch to SP mode, we need a shadow page table. Because
the guest page table is available in both SP mode and HAP mode,
the shadow page table can be constructed based on the guest page
table and the p2m map. The switching thus requires reconstruction
of the shadow page table and resetting the EPT control bit.

Since both modes need the p2m map, we keep this map intact
in both modes. When switching from HAP mode to SP mode, we
store the root address of EPT temporarily and restore it to the
designed register in VMCS at the time when switching back. In
SP mode, the shadow page table should be synchronized with the
guest page table, while we do not need a shadow page table in
HAP mode. To facilitate quick switching, one approach is to
maintain a shadow page table in HAP mode so we do not need to
reconstruct it when switching to SP mode. We find that this ap-
proach damages the independence of HAP mode and also results
in high overhead. We instead rebuild a new shadow page table
every time we switch to SP mode. The table is destroyed when
leaving SP mode for HAP mode.

To summarize, when switching from HAP mode to SP mode,
store the root address of the top level page directory of the p2m
map, rebuild the shadow page table, and then disable the “Enable
EPT” control bit in the Secondary Processor-Based VM-execution
Control Register; when switching from SP mode to HAP mode,
destroy the shadow page table, restore the root address of the top
level page directory of the p2m map, and then turn on the “Enable
EPT” control bit in the Secondary Processor-Based VM-execution
Control Register.

2.2 DSP Tradeoff Analysis

To find out when is a good time to switch between the two paging
modes, we need to understand the advantages and disadvantages
of each mode. HAP mode eliminates the expensive VM exits and
context switches from SP mode when there are needs to synchron-
ize the shadow page table and the guest page table. SP mode
enables quicker address translation because it only needs to walk
through the shadow page table while HAP mode needs to walk
both the guest page table and the p2m map, which doubles the
number of memory accesses. An ideal switching policy would
require predicting the number of VM exits saved by HAP mode
and the number of memory accesses saved by SP mode. With an
estimation of VM exit penalty and memory access latency, one
can design a cost model to determine when to switch between the
two modes. Unfortunately, it is difficult to predict either of the
two metrics. In HAP mode, there is no shadow page table and thus
no VM exits due to shadow-guest synchronization. Although we
can monitor the TLB misses and estimate the number of page
walks, the MMU cache available in both NPT and EPT eliminates
this direct correlation. A TLB miss can hit the MMU cache and
thus does not need to walk the page table. Both NPT and EPT
come with effective MMU translation caches [3, 4]. Nevertheless,
we find that TLB misses are still closely correlated to HAP and
SP performance. Rather than estimate the number of VM exits, we
take the guest OS page fault statistic as a replacement metric. We
observe that HAP mode performs better than SP mode in the ap-
plications with a large number of page faults, such as gcc and
tonto, while HAP performs worse in those applications with a
small number of page faults but intensive memory accessing and a
large number of TLB misses, such as mcf and cactusADM. Based
on the analysis above, DSP switches to HAP mode when we ex-
pect frequent page faults in the next period and to SP mode when
we foresee frequent TLB misses. To fulfill dynamic switching, we
rely on historic TLB miss and page fault information to predict
the future trend and make a switching decision.

2.3 DSP Switching Strategy

Both TLB miss and page fault penalties are hardware and system
dependent. To estimate the trend, in our implementation, we in-
stead measure page fault frequency and TLB miss frequency,
which is the number of page faults and the number of TLB
misses, respectively, per thousand retired instructions. To make a
decision in DSP, we need a pair of system-dependent thresholds
that guard page fault and TLB miss frequencies, respectively. If
neither the page fault frequency nor the TLB miss frequency goes
beyond its threshold, there would be little difference between
HAP and SP mode. DSP should stay in the current mode to avoid
the switching cost. If one metric is beyond the threshold and the
other is low, DSP needs to take action and switch to the other
mode. If both frequencies are high, we need to weigh the relative
penalty of each. We introduce a third metric, P-to-T ratio, as an
estimation of this relative penalty. The P-to-T ratio is the page
fault frequency divided by the TLB miss frequency. A third thre-
shold is used to guard the P-to-T ratio.

We manually take a simple machine learning approach to learn
the thresholds that determine DSP switching. By training the deci-
sion model through the SPEC INT benchmarks on a 32-bit guest,
we obtain a heuristic DSP switching algorithm as follows.

1. If the TLB miss frequency is higher than the TLB miss
upper-bound threshold and the page fault frequency is
lower than 80 percent of the page fault upper-bound
threshold, switch from HAP mode to SP mode or stay in
SP mode.

2. If the page fault frequency is higher than the page fault
upper-bound threshold and the TLB miss frequency is
lower than 80 percent of the TLB miss upper-bound
threshold, switch from SP mode to HAP mode or stay in
HAP mode.

3. If both the TLB miss frequency and the page fault fre-
quency are lower than their lower-bound thresholds, stay
in the current paging mode.

For the remaining cases, we will need to use the P-to-T ratio.
We notice that the P-to-T ratios show a large range of fluctuations
from period to period. We use both a running average of recent P-
to-T ratios, called historic P-to-T ratio, and the P-to-T ratio in the
current monitoring period to help make decision. Below is our
policy where step 4 helps avoid divide by 0 exceptions.

4. If either the historic TLB miss frequency or the current
TLB miss frequency is zero, switch from SP to HAP or
stay in HAP mode.

5. If both the historic average P-to-T ratio and the current
P-to-T ratio are bigger than the P-to-T ratio upper-bound
threshold, the page fault penalty is more significant than
the TLB miss penalty and DSP decides to switch from
SP mode to HAP mode or stay in HAP mode.

6. If both the historic average P-to-T ratio and the current
P-to-T ratio are lower than the P-to-T ratio lower-bound
threshold, the TLB miss penalty is more significant than
the page fault penalty. Now DSP switches from HAP
mode to SP mode or stays in SP mode.

7. If both the historic average P-to-T ratio and the current
P-to-T ratio are between the lower-bound and upper-
bound thresholds, neither is significant and there would
be little difference between the two paging modes. In
this case, the system stays in the current mode.

8. Otherwise, the historic average P-to-T ratio and the cur-
rent P-to-T ratio fit into different threshold intervals. We
cannot decide the trend and the system stays in the cur-
rent mode.

Figure 5 summarizes the eight policies and shows the
workflow of the DSP decision algorithm where the acronyms are
listed below.

 FTLB: Frequency of TLB misses
 FPF: Frequency of Page Faults
 HTLB: Historic TLB miss frequency
 HPT: Historic average P-to-T ratio
 CPT: Current P-to-T ratio
 TLBU: TLB miss Upper-bound threshold
 TLBL: TLB miss Lower-bound threshold
 PFU: Page Fault Upper-bound threshold
 PFL: Page Fault Lower-bound threshold
 PTU: P-to-T ratio Upper-bound threshold
 PTL: P-to-T ratio Lower-bound threshold

Figure 5. DSP decision diagram

3. DSP Implementation on XEN

We have implemented DSP in XEN 3.3.1. Domain 0 operating
system is CentOS 5.4 x86_64 with Linux kernel 2.6.18. Domain
U operating system is CentOS 5.4 x86_32 with Linux kernel
2.6.18.

3.1 DSP Design in XEN

Figure 6 illustrates our implementation of DSP in the XEN sys-
tem. Since most management operations of XEN are integrated in
the xm tools in Domain0, we add two sub-commands in the xm
tools, dsp and undsp to enable or disable DSP.

Figure 6. DSP implementation on XEN

We take advantage of the existing timer in XEN to sample a
guest OS. In order to count the number of page faults, TLB
misses, and retired instructions in the recent period of T seconds,
we start a timer in the xend service process when executing the xm
dsp command. The timer will invoke the corresponding XEN
hypercall every T seconds, request the XEN hypervisor to collect
those statistics and decide whether to change paging mode or not.

We get the number of TLB misses and retired instructions
from the processor performance monitor unit (PMU) in the XEN
hypervisor. To get the number of page faults, we add a kernel
module in each guest OS of interest. When the guest OS starts up,
the kernel module will notify the XEN hypervisor of the memory
address of the variable that records the number of page faults in
the guest OS. The XEN hypervisor can read the variable directly
and get the number of page faults efficiently.

All virtual machines using DSP are organized as a list in the
hypervisor. Whenever the timer invokes the hypercall, the XEN
hypervisor will only collect samples for the virtual machines in
the DSP list. A virtual machine will be removed from the list
when it is destroyed, or when the command xm undsp is executed.
If the list becomes empty, the timer in the xend process will be
terminated. This implementation allows enabling or disabling
DSP on each virtual machine independently.

The effectiveness of DSP is greatly dependent on the thre-
sholds of page faults, TLB misses, and P-to-T ratios. The thre-
sholds might be quite different on different hardware platforms.
Our current approach relies on machine learning and profiling to
locate appropriate thresholds for a specific machine. All thre-
sholds can be customized by executing the xm dsp command with
corresponding parameters. Thus, a user or a system administrator
can choose a set of thresholds that fit his/her hardware platform.

3.2 Major Interface Functions

In our implementation, we extend an existing hypercall,
do_hvm_op, with a new operation, hvmop_dsp. Both the kernel
module in a guest OS and the DSP timer in the xend service
process invoke do_hvm_op to interact with the XEN hypervisor.

The operation, hvmop_dsp, is called on the hvmop_dsp branch
in the do_hvm_op hypercall. According to the parameters,
hvmop_dsp will perform the following actions respectively.

1. Accept the memory address of the page fault event vari-
able (counter) in a guest OS, and translate the memory
address to the corresponding virtual memory address in
the VMM.

2. Enable DSP on the target virtual machine and add it to
the DSP list.

3. Retrieve the number of page faults, TLB misses, and re-
tired instructions in the current sampling period, and cal-
culate the corresponding frequencies. Call process_dsp
to make a decision as to whether to change the paging
mode according to the strategy introduced in Section 2.3.

4. Disable DSP on the target virtual machine by calling
paging_stop_switch, and remove the virtual machine
from the DSP list; and if the DSP list becomes empty,
stop the DSP timer in the xend service process. Pag-
ing_stop_switch will also switch the VM back to the
former paging mode before DSP is enabled.

Two functions, paging_switchto_hap and paging_switchto_sp,
are implemented to fulfill paging mode switching. The function
paging_switchto_hap performs switching from SP mode to HAP
mode. In order to complete the switching, it destroys the existing
shadow page table, loads the root address of the p2m map to the

proper register in VMCS, and modifies the Secondary Processor-
Based VM-execution Control Register to enable EPT. The func-
tion simply returns when the virtual machine is already in HAP
mode.

The function, paging_switchto_sp, conducts switching from
HAP mode to SP mode. In order to complete the switching, it
saves the root address of the p2m map, rebuilds shadow page
tables by constructing an initially empty shadow page tables, and
modifies the Secondary Processor-Based VM-execution Control
Register to disable EPT. When SP mode starts, the shadow page
table will be filled by demand during execution. If the virtual
machine is already in SP mode, the function simply returns.

4. Evaluation

In this section, we first run a set of experiments to learn the thre-
sholds for DSP decisions. We then validate the thresholds with a
different set of benchmarks or a different guest OS.

4.1 Experimental Environment

We conduct our experiments on a PC with an Intel i7-860 proces-
sor, 8GB of memory, and a 1TB SATA hard disk. All 4 cores of
the i7-860 processor are enabled while disabling hyperthreading.
The hypervisor we use is XEN 3.3.1. We patch our DSP imple-
mentation onto it.

Domain0 runs a 64-bit Linux OS, CentOS 5.4 x86_64, and is
configured with 3 GB of memory and 2 CPU cores. We install
two guest domains, Dom32 and Dom64, running a 32-bit and a
64-bit OS, respectively. Dom32 runs CentOS 5.4 i863 with 3 GB
of memory and 1 CPU core. Dom64 runs CentOS 5.4 x86_64
with 3GB of memory and 1 CPU core.

We choose SPEC CPU2006, since the 29 benchmarks in the
suite show a variety of memory behavior and DSP is intended to
optimize memory virtualization. A memory and CPU intensive
benchmark is more suitable than an I/O intensive benchmark to
evaluate the effectiveness of DSP.

Table 1. 32-bit VM SPEC INT statistics

PF per 1K inst
* 107

TLB miss per
1K inst

PF*107/TLB
(col. 1/col. 2)

Winner

40 0.5 80 SP

125 0.5 250 HAP

0 < 0.5 0 Draw

> 150000 < 1 > 230000 HAP

10000 2.4 4500 HAP

4700 0.3 15000 Draw

1600 16 100 SP

90000 2.7 50000 HAP

0, sometimes 100 0.02
0, sometimes

40000
Draw

0 or 10000 0.3 0 or 30000 HAP

Sometimes>10000 frequently>10 SP

< 50 > 3.9 < 10 SP

> 150000 < 1 > 230000 HAP

4.2 Threshold Selection

In order to find out proper thresholds, we run SPEC INT2006 on
Dom32 both in SP mode and in HAP mode. We collect the sam-
ple page fault frequency, TLB miss frequency, and historical P-to-
T ratio every five seconds. For each benchmark, we select a typi-
cal sample value that dominates the whole benchmark. Table 1
lists these samples. Based on this table, we generate thresholds
that will result in a correct decision for DSP in most cases. The
final thresholds we pick are listed in Table 2.

For all samples values that can help select between HAP and
SP, we take their average as the final threshold, expecting it will
best fit other programs. We pick the most recent three samples to
calculate the historical average ratios. We observe that the three
sample points, which denote a 15-second interval, are sufficient to
smooth a short-term change in a program. Due to the switching
overhead, it is not worth performing switching when there is a
short burst of page faults or TLB misses. However, a longer than
15 second interval may result in longer turnaround time. In other
words, the system may stay in one mode for too long.

Table 2. Thresholds for DSP decision

 Upper-bound Lower-bound

Page fault threshold 5000x10-7 100 x10-7

TLB miss threshold 10 0.1

P-to-T ratio threshold 200 x10-7 150 x10-7

Interval for recent history 15 seconds (3 sample points)

4.3 Sampling Interval Selection

Table 3 shows total TLB misses, page faults and execution times
of mcf and gcc under HAP or SP only. Based on these statistics,
we can estimate that the overhead of one TLB miss in HAP mode
compared with SP mode is approximately 4 nanoseconds (roughly
12 cycles), and the overhead of one page fault in SP mode com-
pared with HAP mode is around 10 microseconds. Based on the
total execution times of the two benchmarks, switching from HAP
to SP can save about 100 milliseconds per second on mcf, and
switching from SP to HAP can save about 300 milliseconds per
second on gcc. If switching can bring mcf or gcc to the best pag-
ing mode for more than one second, the benefit would overcome
the overhead. As both mcf and gcc are the best cases that benefit
most from proper switching, other benchmarks would have to stay
in the best paging mode for a longer time to overcome the over-
head of paging switching. Based the above analysis, we thus
choose an interval at the granularity between one and 10 seconds
in our experiments.

Table 3. Total TLB misses and page faults of mcf and gcc

 TLB miss page fault exec time

mcf in HAP mode 12539673680 243491 383

mcf in SP mode 12752691972 346439 329

gcc in HAP mode 1082065972 13320141 403

gcc in SP mode 3198642850 13302782 534

4.4 Overhead

Overhead of paging switching falls in two categories. One is the
overhead of switching from SP mode to HAP mode, and the other
is the overhead of switching from HAP mode to SP mode. To
switch from SP to HAP, we simply load the EPT base address. To
switch from HAP to SP, the shadow page table has to be rebuilt,
and thus its overhead is larger than switching from SP to HAP.

In order to measure the overhead of switching from SP to
HAP, we let the VM initially run in HAP mode. For every second,
we invoke a hypercall operation (H-S-H), which will switch the
VM from HAP to SP, and then, before returning back to the VM
from the hypercall, immediately switch back from SP to HAP.
Though the VM has been once in SP mode, but no instruction of
the VM has been executed in SP mode. Therefore the shadow
page table has never been actually used and it remains empty
before switching back to HAP mode. The overhead of H-S-H
would be larger than the overhead of single switching from SP to
HAP.

Similarly, to measure the overhead of switching from HAP to
SP, we let the VM initially run in SP mode. For every second, we
invoke another hypercall operation (S-H-S), which will switch the
VM from SP to HAP, and then switch immediately from HAP
back to SP before returning to the VM. Since the shadow page
table is completely destroyed when switching from SP to HAP,
after switching back from HAP to SP, the shadow page table has
to be rebuilt. The overhead of S-H-S would be larger than the
overhead of switching from HAP to SP.

Table 4. Switching overhead of H-S-H

benchmark
Conf. Interval

HAP
Conf. Interval

H-S-H
#switches

ovhd
(%)

perlbench 487.95 ± 0.40 488.62 ± 0.46 489 0.14
bzip2 859.54 ± 0.05 858.70 ± 0.11 859 -0.10
gcc 402.56 ± 3.37 406.38 ± 4.34 406 0.95
mcf 383.00 ± 1.98 380.23 ± 1.59 380 -0.72
gobmk 636.53 ± 0.23 636.38 ± 0.15 636 -0.02
hmmer 1240.70 ± 0.08 1240.06 ± 0.06 1240 -0.05
sjeng 727.12 ± 0.15 729.74 ± 0.18 730 0.36
libquantum 812.87 ± 0.79 813.00 ± 0.93 813 0.02
h264ref 1045.03 ± 0.35 1045.88 ± 1.01 1046 0.08
omnetpp 379.24 ± 0.29 378.86 ± 0.20 379 -0.10
astar 664.04 ± 0.58 663.30 ± 0.32 663 -0.11
xalancbmk 341.54 ± 0.60 341.46 ± 0.17 341 -0.02
bwaves 773.29 ± 1.55 771.44 ± 1.38 771 -0.24
gamess 1431.17 ± 0.56 1429.26 ± 0.68 1429 -0.13
milc 511.27 ± 0.84 511.02 ± 1.25 511 -0.05
zeusmp 839.16 ± 0.96 838.16 ± 1.29 838 -0.12
gromacs 1050.90 ± 0.85 1049.80 ± 0.62 1050 -0.11
cactusADM 1589.21 ± 3.80 1581.87 ± 3.57 1582 -0.46
leslie3d 891.25 ± 0.39 891.03 ± 0.85 891 -0.03
namd 640.94 ± 0.38 640.07 ± 0.17 640 -0.13
dealII 606.92 ± 0.09 605.67 ± 0.25 606 -0.21
soplex 354.31 ± 0.55 354.27 ± 0.36 364 -0.01
povray 332.41 ± 0.35 333.26 ± 1.25 333 0.26
calculix 1764.04 ± 0.83 1762.44 ± 0.33 1762 -0.09
GemsFDTD 836.53 ± 1.26 834.75 ± 0.83 835 -0.21
tonto 941.64 ± 0.46 940.91 ± 0.46 941 -0.08
lbm 405.74 ± 0.33 405.23 ± 0.50 405 -0.13
wrf 1145.45 ± 0.24 1144.22 ± 0.76 1144 -0.11
sphinx3 708.50 ± 2.13 709.11 ± 1.45 709 0.09

We run each benchmark seven times, respectively, at HAP,
SP, H-S-H, and S-H-S modes. To avoid measurement noise and to
report measurement errors, we pick the top 6 execution times and
calculate the confidence intervals. Columns 2 and 3 in Tables 4
and 5 show the 90% confidence intervals of execution times. The
number of switches (column 4) is from the run with median ex-
ecution time which is roughly equal to the mean execution time
since switching is performed every second. The percentage over-
head (column 5) for H-S-H is measured as (meanH-S-H – meanHAP)
/ meanHAP *100%. The overhead calculation for S-H-S is similar.

As shown in Table 4, the average overheads of H-S-H on most
benchmarks are negative although they are all within one percent.
Benchmark gcc yields the largest overhead which is still less than
1%. We notice that the confidence intervals of HAP and H-S-H
overlap for a majority of benchmarks where the overheads are
shown in grey. So we can conclude that the overhead of H-S-H is
statistically negligible. However, since the overheads are domi-
nantly negative, we suspect H-S-H may have some slightly posi-
tive impact on cache or TLB, which calls for further investigation.

Table 5. Switching overhead of S-H-S

benchmark
Conf. Interval

SP
Conf. Interval

S-H-S
#switch

ovhd
(%)

perlbench 488.29 ± 0.52 494.32 ± 0.58 494 1.23
bzip2 858.05 ± 0.07 861.11 ± 0.19 861 0.36
gcc 534.16 ± 0.19 539.27 ± 0.30 539 0.96
mcf 329.11 ± 0.70 345.03 ± 0.86 345 4.84
gobmk 634.04 ± 0.04 636.94 ± 0.12 637 0.46
hmmer 1237.54 ± 0.10 1240.29 ± 0.08 1240 0.22
sjeng 723.47 ± 0.24 736.44 ± 0.17 736 1.79
libquantum 806.05 ± 0.80 811.21 ± 0.35 811 0.64
h264ref 1043.31 ± 0.68 1046.59 ± 0.61 1047 0.31
omnetpp 371.01 ± 0.25 374.06 ± 0.13 374 0.82
astar 648.26 ± 2.89 649.83 ± 0.12 650 0.24
xalancbmk 336.47 ± 0.19 341.78 ± 0.38 342 1.58
bwaves 790.95 ± 2.60 813.52 ± 3.93 814 2.85
gamess 1427.78 ± 0.50 1430.66 ± 0.83 1430 0.20
milc 547.50 ± 0.91 566.16 ± 1.16 566 3.41
zeusmp 816.55 ± 0.20 836.19 ± 0.83 836 2.40
gromacs 1047.90 ± 0.49 1049.94 ± 0.56 1050 0.19
cactusADM 1343.24 ± 4.64 1370.80 ± 3.14 1371 2.05
leslie3d 900.24 ± 0.39 907.33 ± 0.45 907 0.79
namd 639.34 ± 0.31 640.83 ± 0.22 641 0.23
dealII 614.32 ± 0.55 618.65 ± 0.49 619 0.70
soplex 368.44 ± 0.30 376.07 ± 0.46 376 2.07
povray 332.02 ± 0.11 332.87 ± 0.19 333 0.26
calculix 1790.88 ± 0.67 1799.67 ± 0.69 1800 0.49
GemsFDTD 845.10 ± 0.83 904.73 ± 0.83 905 7.06
tonto 1129.54 ± 0.81 1137.89 ± 1.50 1138 0.74
lbm 404.75 ± 2.11 417.98 ± 0.40 418 3.27
wrf 1181.33 ± 0.18 1198.07 ± 0.66 1198 1.42
sphinx3 701.91 ± 0.91 705.42 ± 1.67 705 0.50

S-H-S causes more noticeable overhead as destroying and res-

toring the shadow page tables definitely cost time. Particularly,
for the benchmarks with large working set and thus likely large
page table, the overhead is more prominent. So it is not a surprise
for GemsFDTD and mcf, the two benchmarks with the largest
working set sizes in SPEC CPU2006, to take the top two spots on
overhead [7]. For all other benchmarks, the overheads are all be-
low 5% and most of them are within 1%.

Note that we report an extreme upper bound on overhead here.
Our actual implementation suggests a 5-second interval and, for
all benchmarks, DSP performs only a couple of dozens of switch-
ing at most. Compared to hundreds of switching in Tables 4 and 5,
the actual overhead would be negligible.

4.5 Validation Using SPEC INT

We apply the thresholds picked in Section 4.2 back to SPEC
INT2006. Figure 7 shows the results where the bars are norma-
lized execution times. The performance of DSP can almost always
reach the better case of HAP and SP. For each individual bench-
mark, the performance difference between DSP and the higher
one of HAP and SP is within 1%. For gcc, the performance of
DSP is 34% better than SP, and for mcf, the performance of DSP
is 13% better than HAP. The “total” bars in Figure 7 show the
normalized total execution time of all integer benchmarks. DSP
shows a slight improvement over both HAP and SP.

Figure 7. SPEC INT on 32-bit VM.

Figure 8 shows the distribution of execution time of each
SPEC CPU2006 benchmark in HAP mode and in SP mode, when
DSP is enabled. We also report the floating pointing benchmarks
here for comparison purpose. The numbers over the bars are the
number of times of paging switching. Note that, for most bench-
marks, one mode dominates the execution time. Often there are no
or only a few switches. As discussed in Section 4.4, the overhead
of switching is very small, thus, the overhead of the DSP mechan-
ism itself is negligible. Once a proper paging mode is selected, the
performance gain comes directly from the mode itself.

Figure 8. Time distribution of each benchmark in different paging

mode (5s interval)

All experimental results in this section so far are based on a 5-
second sampling interval. We further compare the performance of

80.00%

90.00%

100.00%

110.00%

120.00%

130.00%

140.00%

HAP

SP

DSP

0%

20%

40%

60%

80%

100%

120%

p
e
rl
b
e
n
ch

b
zi
p
2

gc
c

m
cf

go
b
m
k

h
m
m
e
r

sj
e
n
g

lib
q
u
an
tu
m

h
2
6
4
re
f

o
m
n
e
tp
p

as
ta
r

xa
la
n
cb
m
k

b
w
av
e
s

ga
m
e
ss

m
ilc

ze
u
sm

p
gr
o
m
ac
s

ca
ct
u
sA
D
M

le
sl
ie
3
d

n
am

d
d
e
al
II

so
p
le
x

p
o
vr
ay

ca
lc
u
lix

G
e
m
sF
D
TD

to
n
to

lb
m

w
rf

sp
h
in
x3

HAP

SP

4 22 0 4 6 0 2 2 0 2 6 2 0 0 0 2 0 2 0 0 0 4 0 0 0 0 2 0 8

DSP under three different intervals, 2 seconds, 5 seconds and 10
seconds. As shown in Figure 9, the differences among 2-second,
5-second and 10-second intervals are not significant. Note that the
number of page faults and TLB misses are measured on a per
thousand instruction basis. They do not vary remarkably for most
benchmarks among these three intervals. Moreover, most SPEC
CPU2006 benchmarks have distinct phases that are longer than 10
seconds, DSP would make the same decision under different timer
intervals.

Figure 9. Effects of length of sample intervals

Figure 10. Time distribution of each benchmark in different pag-

ing mode (2s interval)

Figures 10 and 11 show that the distribution of execution time
and the number of mode switches under the 2-second and 10-
second intervals, respectively. Comparing Figure 8 with Figures
10 and 11, we can see that the distribution is almost the same for
each benchmark except for libquantum, and the number of
switches can slightly vary. For libquantum, DSP spends over a
half of time in HAP mode with the 2-second interval, while only
6% of time with the 5-second or 10-second interval. We observe
that libquantum shows frequent yet short bursts of page faults.
DSP under the 2-second interval switches to HAP when encoun-
tering a burst and switches back to SP in the next interval. While
under the 5-second and 10-second intervals, DSP stays in SP
mode most of time because the bursts are smoothed in a longer
interval.

In general, the 2-second interval typically causes the most
mode switching while the 10-second interval the least. So we
observe some slight performance difference among the three in-
tervals. It is basically a tradeoff between switching overhead and
performance gain due to paging switching. As shown in Figure 9,
bzip2, sjeng, astar and xalancbm perform slightly better under the

2-second interval while gcc and libquantum prefer the 5-second
interval.

Figure 11. Time distribution of each benchmark in different pag-

ing mode (10s interval)

4.6 Validation Using SPEC FP and 64-bit System

This section first validates the same set of thresholds using SPEC
FP2006 in Dom32 with DSP enabled and then using a 64-bit guest
for all SPEC CPU2006 benchmarks.

Figure 12 shows the results for SPEC FP under a 32-bit guest.
Again, DSP always matches the better performance of HAP and
SP. DSP achieves a 2% improvement over SP and HAP for SPEC
FP. It obtains both the 15% performance gain by SP for cactu-
sADM and the 22% gain for tonto by HAP.

Figure 12. SPEC FP on 32-bit VM

Figures 13 and 14 show the results on the 64-bit guest. Al-
though HAP loses it advantage for most benchmarks, DSP is still
able to catch the better performance of the two modes. For the two
benchmarks, gcc and milc, where HAP shows a notable perfor-
mance advantage over SP, DSP is able to keep the system in HAP
mode. For the benchmarks where SP shows significant advantag-
es, DSP switches to SP mode for a majority of time. For cactu-
sADM, DSP indeed shows a slight improvement over SP, which
performs 14% better than HAP. Benchmark wrf cannot be com-
piled on the 64-bit OS and thus is not reported here.

80.00%

90.00%

100.00%

110.00%

120.00%

130.00%

140.00%

HAP

SP

2sDSP

5sDSP

10sDSP

0%

20%

40%

60%

80%

100%

120%

p
e
rl
b
e
n
ch

b
zi
p
2

gc
c

m
cf

go
b
m
k

h
m
m
e
r

sj
e
n
g

lib
q
u
an
tu
m

h
2
6
4
re
f

o
m
n
e
tp
p

as
ta
r

xa
la
n
cb
m
k

b
w
av
e
s

ga
m
e
ss

m
ilc

ze
u
sm

p
gr
o
m
ac
s

ca
ct
u
sA
D
M

le
sl
ie
3
d

n
am

d
d
e
al
II

so
p
le
x

p
o
vr
ay

ca
lc
u
lix

G
e
m
sF
D
TD

to
n
to

lb
m

w
rf

sp
h
in
x3

HAP

SP

4 22 0 4 8 2 2 18 0 2 8 2 0 2 0 2 2 2 0 2 0 4 2 0 0 0 2 0 8

0%

20%

40%

60%

80%

100%

120%

p
e
rl
b
e
n
ch

b
zi
p
2

gc
c

m
cf

go
b
m
k

h
m
m
e
r

sj
e
n
g

lib
q
u
an
tu
m

h
2
6
4
re
f

o
m
n
e
tp
p

as
ta
r

xa
la
n
cb
m
k

b
w
av
e
s

ga
m
e
ss

m
ilc

ze
u
sm

p
gr
o
m
ac
s

ca
ct
u
sA
D
M

le
sl
ie
3
d

n
am

d
d
e
al
II

so
p
le
x

p
o
vr
ay

ca
lc
u
lix

G
e
m
sF
D
TD

to
n
to

lb
m

w
rf

sp
h
in
x3

HAP

SP

2 18 0 1 6 1 2 2 0 1 11 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 8

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

120.00%

125.00%

b
w
av
e
s

ga
m
e
ss

m
ilc

ze
u
sm

p

gr
o
m
ac
s

ca
ct
u
sA
D
M

le
sl
ie
3
d

n
am

d

d
e
al
II

so
p
le
x

p
o
vr
ay

ca
lc
u
lix

G
e
m
sF
D
TD

to
n
to

lb
m

w
rf

sp
h
in
x3

to
ta
l

HAP

SP

DSP

Figure 13. SPEC INT on 64-bit VM

Figure 14. SPEC FP on 64-bit VM

5. Related Work

Keith Adams and Ole Agesen describe an implementation of a
software VMM that employs Binary Translation (BT) for x86
guest execution [1]. Their experimental results show that BT out-
performs traditional shadow paging with a previous generation of
hardware-assisted virtualization available at the point of their
research. They also survey software and hardware opportunities
on virtualization, pointing out the potential problem of page walk
for hardware MMU support such as AMD’s “nested paging” and
Intel’s EPT, and mention several ways to optimize. One solution
proposed by VMware is to reduce the overhead of page walking
by applying only large pages both in Guest OS and in VMM, and
therefore, TLB misses will be reduced dramatically [10, 11].
However, large pages can cause memory pressure and fragments.
Gillespie also provides a comparison between EPT and shadow
paging but offers no design and implementation details [6].

Ravi Bhargava et al. present an in-depth examination of the
2D page table walk of AMD’s “nested paging” and options for
decreasing the page walk penalty [4]. They use the processor’s
page walk cache to exploit the strong reuse of page entry refer-
ences. By applying large pages with page walk cache, the hyper-
visor can improve the guest performance by 3%-22%. Barr et al.
later explore the design space of MMU caches [3].

Hardware assisted virtualization has become more mature no-
wadays than its initial version. Neither software virtualization nor
hardware assisted virtualization will win in all cases. Our solution
is based on two mature techniques, shadow paging mode and
hardware assisted paging mode, and involves no compatibility
issue. It can also work orthogonally with large page mode for
more performance improvement.

As another attempt, Wang et al. propose Dynamic Memory
Para-virtualization (DMP) to improve the performance of memo-
ry virtualization in [13]. For a VM in SP mode, DMP instruments
the VMM to dynamically modify the Guest OS kernel binary
code, so as to make use of the guest page table to find machine
addresses. Host machine addresses are filled in the page table
entries instead of guest physical memory addresses. When the
guest OS reads or writes these page table entries, the modified
kernel code is executed to translate host machine addresses back
to guest physical addresses for the guest to use. DMP can achieve
close to native performance. However, DMP introduces security
issues, which prevents it from being applied in a security-sensitive
public service environment. Our DSP solution brings the benefits
in performance without any security risks.

6. Discussion and Conclusion

To reduce the overhead of memory virtualization, both Intel and
AMD have provided hardware virtualization support. Unfortu-
nately, hardware assisted virtualization does not always bring
performance benefit. In this paper, we compare the performance
of hardware-assisted paging and conventional shadow paging, and
show that either of them can significantly outperform the other in
certain benchmarks. We design and implement an effective pag-
ing scheme that dynamically switches between the two page mod-
es and thus exploits the advantages of both. Based on online
sampling of TLB misses and guest page faults, we emulate a ma-
chine learning process to pick a set of thresholds to help DSP
make choices in paging modes. We implement this system in the
open source XEN environment and share our patch with the re-
search community. The code patch is now available at
http://www.cs.mtu.edu/~zlwang/dsp.tar.gz. We plan to automate
the threshold selection using support vector machines and com-
pare it with our manual selection results. Our experimental results
show that HAP is not as effective in the 64-bit system as in the
32-bit system. It is not a surprise as the 64-bit system doubles the
levels of the page table and thus the penalty of page walk. It is
worth a further study in effective hardware support for 64-bit
systems.

Acknowledgments

This work is supported by the National Grand Fundamental Re-
search 973 Program of China under Grant No. 2007CB310900,
National Science Foundation of China under Grant No.90718028
and No.60873052, National High Technology Research 863 Pro-
gram of China under Grant No.2008AA01Z112, and MOE-Intel
Information Technology Foundation under Grant No.MOE-
INTEL-10-06. Zhenlin Wang is also supported by NSF Career
CCF0643664. We also owe thanks to the anonymous reviewers
and Steve Carr for their valuable comments and suggestions.

References
 [1] K. Adams and O. Agesen. A Comparison of Software and Hardware

Techniques for x86 Virtualization. In ASPLOS '06: Proceeding of In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, 2006 .

[2] P. Barham, B. Dragovic, K. Fraser, et al. Xen and the art of virtuali-
zation. In SOSP '03: Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles. p. 177, 2003.

[3] T. W. Barr, A. L. Cox, and S. Rixner. Translation Caching: Skip,
Don’t Walk the Page Table. In ISCA '10: Proceedings of Interna-
tional Symposium on Computer Architecture, 2010.

[4] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating
Two-Dimensional Page Walks for Virtualized Systems. In ASPLOS

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

HAP

SP

DSP

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

b
w
av
e
s

ga
m
e
ss

m
ilc

ze
u
sm

p

gr
o
m
ac
s

ca
ct
u
sA
D
M

le
sl
ie
3
d

n
am

d

d
e
al
II

so
p
le
x

p
o
vr
ay

ca
lc
u
lix

G
e
m
sF
D
TD

to
n
to

lb
m

sp
h
in
x3

to
ta
l

HAP

SP

DSP

'08: Proceeding of International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, 2008.

[5] S. Devine, E. Bugnion, and M. Rosenblum. Virtualization system
including a virtual machine monitor for a computer with a segmented
architecture. US Patent, 6397242, Oct. 1998.

[6] M. Gillespie. Best Practices for Paravirtualization Enhancements
from Intel® Virtualization Technology: EPT and VT-d. June 1, 2009.
http://software.intel.com/en-us/articles/best-practices-for-
paravirtualization-enhancements-from-intel-virtualization-
technology-ept-and-vt-d/.

[7] D. Gove. CPU2006 working set size. In SIGARCH Comput. Archit.
News, 35(1):90–96, 2007.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin and A. Liguori. kvm: the
Linux virtual machine monitor. In Linux Symposium. Jan, 2007.

[9] SPEC. http://www.spec.org.

[10] VMware. Performance Evaluation of Intel EPT Hardware Assist.
Copyright® VMware. Inc.

[11] VMware. Large Page Performance: ESX Server 3.5 and ESX Server
3i v3.5, Copyright® 2008 VMware. Inc.

[12] C. Waldspurger. Memory resource management in VMware ESX
serve. In OSDI '02: Proceedings of the 5th Symposium on Operating
Systems Design and Implementation. Dec, 2002.

[13] X. Wang, Y. Sun, Y. Luo et al. Dynamic memory paravirtualization
transparent to guest OS. In Science China Information Sciences, Jan-
uary 2010, 53(1): 77-88.

[14] Xen. http://www.xen.org.

