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Abstract  

As virtualization becomes a key technique for supporting cloud 
computing, much effort has been made to reduce virtualization 
overhead, so a virtualized system can match its native perfor-
mance. One major overhead is due to memory or page table virtu-
alization. Conventional virtual machines rely on a shadow 
mechanism to manage page tables, where a shadow page table 
maintained by the VMM (Virtual Machine Monitor) maps virtual 
addresses to machine addresses while a guest maintains its own 
virtual to physical page table. This shadow mechanism will result 
in expensive VM exits whenever there is a page fault that requires 
synchronization between the two page tables. To avoid this cost, 
both Intel and AMD provide hardware assists, EPT (extended 
page table) and NPT (nested page table), to facilitate address 
translation. With the hardware assists, the MMU (Memory Man-
agement Unit) maintains an ordinary guest page table that trans-
lates virtual addresses to guest physical addresses. In addition, the 
extended page table as provided by EPT translates from guest 
physical addresses to host physical or machine addresses. NPT 
works in a similar style. With EPT or NPT, a guest page fault can 
be handled by the guest itself without triggering VM exits. How-
ever, the hardware assists do have their disadvantage compared to 
the conventional shadow mechanism – the page walk yields more 
memory accesses and thus longer latency. Our experimental re-
sults show that neither hardware-assisted paging (HAP) nor sha-
dow paging (SP) can be a definite winner. Despite the fact that in 
over half of the cases, there is no noticeable gap between the two 
mechanisms, an up to 34% performance gap exists for a few 
benchmarks. We propose a dynamic switching mechanism that 
monitors TLB misses and guest page faults on the fly, and dynam-
ically switches between the two paging modes. Our experiments 
show that this new mechanism can match and, sometimes, even 
beat the better performance of HAP and SP. 

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management – main memory, virtual memory. 

General Terms Algorithms, Management, Measurement, Per-
formance, Design, Experimentation, Verification. 

Keywords virtual machine; hardware-assisted virtualization; 
shadow paging; dynamic switching; hardware assisted paging 

1. Introduction 

System virtualization has regained its popularity in the recent 
decade and has become an indispensable technique for supporting 
cloud computing. Virtualization provides server consolidation and 
creates an illusion of a real machine for an end user. To make a 
virtual machine (VM) acceptable for the end user, it is critical for 
it to match the performance of a native system with the same re-
source subscription. However, virtualization brings an additional 
layer of abstraction and causes some unavoidable overhead. The 
performance of a VM is often much inferior to the underlying 
native machine performance. Much effort has been made recently 
to reduce virtualization overhead in both software and hardware 
sides [1, 4, 11, 13]. This paper focuses on one major overhead 
caused by memory or page table virtualization. 

Most operating systems (OSes) support virtual memory so an 
application can bear a view of the whole address space. The OS 
maintains a group of page tables, which map virtual memory ad-
dresses to physical memory addresses for each process. The 
hardware memory management unit (MMU) translates virtual 
memory addresses to physical memory addresses according to 
these page tables. With virtualization, the physical memory is 
virtualized and the virtual machine monitor (VMM) needs to sup-
port physical to machine address translation. 

In a system with paging enabled, the VMM can realize memo-
ry virtualization on a per-page basis and enforce isolation among 
multiple VMs. There exist three address spaces in a virtualized 
system: 1) machine address, the address which appears on the 
system bus; 2) guest physical address, the pseudo-physical ad-
dress as seen from VMs; and 3) guest virtual address, the conven-
tional linear address that the guest OS presents to its applications. 
As illustrated in Figure 1, we denote the mapping from guest 
physical address to machine address as p2m, and the mapping 
from guest virtual address to guest physical address as v2p. 

 

 
Figure 1. Machine, physical and virtual address 

Since there is an additional layer of address translation in a vir-
tualized system, a common scheme to accelerate this two-layer 
address translation is to generate a composition of v2p and p2m, 
denoted as v2m, and then load it directly into the hardware Memo-
ry Management Unit (MMU). The VMM controls mapping p2m 
and it can retrieve mapping v2p by querying the guest page tables. 
As illustrated in Figure 2, all three existing memory virtualization 
techniques, para-virtualization, shadow paging-based full virtuali-



 

 

zation and hardware-assisted full virtualization, take this ap-
proach. They differ in hardware support and/or the way the VMM 
synchronizes v2m and v2p. Note that full virtualization does not 
require modification to the guest OS while para-virtualization 
does. This paper focuses on a combination of the two full virtuali-
zation techniques. 
 

 
Figure 2. Comparison of memory virtualization architectures 

At the cost of compatibility, para-virtualization can achieve 
better performance than full virtualization, as well as reduce the 
complexity of the VMM. As shown in Figure 2(a), the VMM 
simply replaces the mapping v2p stored in a guest page table with 
the composite mapping v2m. To ensure that the guest OS func-
tions properly after the replacement, it requires some modification 
to the source code of the guest OS, which leads to the compatibili-
ty issue. For safety, the VMM needs to validate any updates to the 
page table by the guest OS. By taking back write permission on 
those memory pages used as the page table，the VMM prevents 
the guest OS from writing to any guest page table directly. The 
guest OS has to invoke hypercalls to the VMM to apply changes 
to its page table. XEN provides a representative hypervisor fol-
lowing this design [2]. 

A software solution to support full virtualization relies on a 
shadow paging (SP) mechanism for address translation, where a 
shadow page table maintained by the VMM maps virtual ad-
dresses directly to machine addresses while a guest maintains its 
own virtual to physical page table [5]. The VMM links the sha-
dow page table to the MMU so most address translations can be 
done effectively. Figure 2(b) illustrates this implementation. The 
VMM has to ensure that the content in the shadow page table is 
consistent with what in the guest page table. Since the guest OS 
does not know the existence of the shadow page table and will 
change its guest page table independently, the VMM should per-
form all the synchronization work to make the shadow page table 
keep up with the guest page table. Any updates to the shadow 
page table need also to be reflected in the guest page table. All 
these synchronizations will result in expensive VM exits and con-
text switches. Moreover, the source code structure for the SP me-
chanism is quite complex. VMWare Workstation,VMWare ESX 
Server, KVM, and XEN all implement shadow paging [2, 8, 12]. 

To avoid the synchronization cost in the SP mechanism, both 
Intel and AMD provide hardware assists, EPT (extended page 

table) and NPT (nested page table), to facilitate hardware-assisted 
address translation as illustrated by Figure 2(c) [4, 10]. We call 
the paging mechanism using EPT or NPT hardware assisted pag-
ing (HAP). With the hardware assists, the MMU maintains ordi-
nary guest page tables that translate virtual addresses to guest 
physical addresses. In addition, the extended page table as pro-
vided by EPT translates from guest physical addresses to host 
physical or machine addresses. The function of NPT is similar to 
EPT. All evaluation in this paper is based on EPT on an Intel ma-
chine. However, we expect our design to work on an AMD ma-
chine with NPT support. With EPT or NPT, a guest page fault can 
be handled by the guest itself without triggering VM exits. How-
ever, the hardware assists do have their disadvantages compared 
to the conventional shadow mechanism. With HAP, an address 
translation from virtual to host physical needs to go through both 
the guest table and the extended table. This page walk yields more 
memory accesses and thus longer latency. The problem becomes 
more prominent in 64-bit systems compared to 32-bit systems 
since the page walk length is doubled in 64-bit systems. 

Both HAP and SP have their own advantages and disadvantag-
es. Our experimental results on SPEC CPU2006 [9] in Figures 3 
and 4 show that neither HAP nor SP can be a definite winner. 
Both figures show the normalized execution time with respect to 
HAP. In eight of the twenty-nine benchmarks there is a 3% or 
more performance gap between the two mechanisms. Notably, SP 
is 34% slower than HAP for gcc. There is a 13%, 15%, and 22% 
performance gap, respectively, for mcf, catusADM and tonto. 

 

 
Figure 3. Normalized execution time (SPEC Int). 

 
Figure 4. Normalized execution time (SPEC FP) 

Since neither HAP nor SP performs better all the time, we can 
lose performance no matter which one we pick as the default. An 
intelligent mechanism should be able to exploit the advantages of 
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both HAP and SP based on the VM behavior. So we propose a 
dynamic switching mechanism that can switch the paging mode 
between HAP and SP based on the runtime behavior of the current 
applications. We name this mechanism Dynamic Switching Pag-
ing (DSP). DSP relies on online sampling of TLB misses and page 
faults to make decisions on paging mode switching. We develop a 
set of heuristics to assist the decision making. Our results show 
that DSP is able to match or even beat the better performance of 
SP and HAP for all benchmarks, either in a 32-bit system or a 64-
bit system. In the meantime, the overhead of DSP is negligible. 

The remainder of this paper is structured as follows. In Section 
2 we describe the design of DSP. Section 3 details an implementa-
tion of this mechanism based on XEN [2, 14]. Section 4 evaluates 
DSP using some industry standard benchmarks and compares it 
with HAP and SP. Section 5 discusses related work. We finally 
conclude and discuss future work in Section 6. 

2. DSP Design 

2.1 DSP Functionality 

HAP is controlled by the CPU control register. By setting or reset-
ting the corresponding control bit, we can choose whether or not 
to use HAP on a machine where HAP is supported. Take Intel’s 
EPT as an example. There is a Secondary Processor-Based VM-
execution Control Register in the CPU. Bit 1 of this register, de-
fined as “Enable EPT”, controls EPT. If this bit is set, EPT is 
enabled. Otherwise, it is disabled. 

To switch to HAP mode, the VMM should prepare a group of 
page tables as the extended page tables, which map guest physical 
addresses to host machine addresses. In Section 1, we name this 
guest physical address to host machine address map the p2m map. 
For the extended tables to take effect, the VMM needs to transfer 
the root address of the top-level page directory to the hardware 
virtual machine control structure (VMCS). For most VMM im-
plementations, the p2m map is fixed. Therefore, the content of 
EPT is often fixed as well. When the extended tables are ready, 
we can enable EPT by setting the control bit. 

To switch to SP mode, we need a shadow page table. Because 
the guest page table is available in both SP mode and HAP mode, 
the shadow page table can be constructed based on the guest page 
table and the p2m map. The switching thus requires reconstruction 
of the shadow page table and resetting the EPT control bit. 

Since both modes need the p2m map, we keep this map intact 
in both modes. When switching from HAP mode to SP mode, we 
store the root address of EPT temporarily and restore it to the 
designed register in VMCS at the time when switching back. In 
SP mode, the shadow page table should be synchronized with the 
guest page table, while we do not need a shadow page table in 
HAP mode. To facilitate quick switching, one approach is to 
maintain a shadow page table in HAP mode so we do not need to 
reconstruct it when switching to SP mode. We find that this ap-
proach damages the independence of HAP mode and also results 
in high overhead. We instead rebuild a new shadow page table 
every time we switch to SP mode. The table is destroyed when 
leaving SP mode for HAP mode.  

To summarize, when switching from HAP mode to SP mode, 
store the root address of the top level page directory of the p2m 
map, rebuild the shadow page table, and then disable the “Enable 
EPT” control bit in the Secondary Processor-Based VM-execution 
Control Register; when switching from SP mode to HAP mode, 
destroy the shadow page table, restore the root address of the top 
level page directory of the p2m map, and then turn on the “Enable 
EPT” control bit in the Secondary Processor-Based VM-execution 
Control Register. 

2.2 DSP Tradeoff Analysis 

To find out when is a good time to switch between the two paging 
modes, we need to understand the advantages and disadvantages 
of each mode. HAP mode eliminates the expensive VM exits and 
context switches from SP mode when there are needs to synchron-
ize the shadow page table and the guest page table. SP mode 
enables quicker address translation because it only needs to walk 
through the shadow page table while HAP mode needs to walk 
both the guest page table and the p2m map, which doubles the 
number of memory accesses. An ideal switching policy would 
require predicting the number of VM exits saved by HAP mode 
and the number of memory accesses saved by SP mode. With an 
estimation of VM exit penalty and memory access latency, one 
can design a cost model to determine when to switch between the 
two modes. Unfortunately, it is difficult to predict either of the 
two metrics. In HAP mode, there is no shadow page table and thus 
no VM exits due to shadow-guest synchronization. Although we 
can monitor the TLB misses and estimate the number of page 
walks, the MMU cache available in both NPT and EPT eliminates 
this direct correlation. A TLB miss can hit the MMU cache and 
thus does not need to walk the page table. Both NPT and EPT 
come with effective MMU translation caches [3, 4]. Nevertheless, 
we find that TLB misses are still closely correlated to HAP and 
SP performance. Rather than estimate the number of VM exits, we 
take the guest OS page fault statistic as a replacement metric. We 
observe that HAP mode performs better than SP mode in the ap-
plications with a large number of page faults, such as gcc and 
tonto, while HAP performs worse in those applications with a 
small number of page faults but intensive memory accessing and a 
large number of TLB misses, such as mcf and cactusADM. Based 
on the analysis above, DSP switches to HAP mode when we ex-
pect frequent page faults in the next period and to SP mode when 
we foresee frequent TLB misses. To fulfill dynamic switching, we 
rely on historic TLB miss and page fault information to predict 
the future trend and make a switching decision. 

2.3 DSP Switching Strategy 

Both TLB miss and page fault penalties are hardware and system 
dependent. To estimate the trend, in our implementation, we in-
stead measure page fault frequency and TLB miss frequency, 
which is the number of page faults and the number of TLB 
misses, respectively, per thousand retired instructions. To make a 
decision in DSP, we need a pair of system-dependent thresholds 
that guard page fault and TLB miss frequencies, respectively. If 
neither the page fault frequency nor the TLB miss frequency goes 
beyond its threshold, there would be little difference between 
HAP and SP mode. DSP should stay in the current mode to avoid 
the switching cost. If one metric is beyond the threshold and the 
other is low, DSP needs to take action and switch to the other 
mode. If both frequencies are high, we need to weigh the relative 
penalty of each. We introduce a third metric, P-to-T ratio, as an 
estimation of this relative penalty. The P-to-T ratio is the page 
fault frequency divided by the TLB miss frequency. A third thre-
shold is used to guard the P-to-T ratio. 

We manually take a simple machine learning approach to learn 
the thresholds that determine DSP switching. By training the deci-
sion model through the SPEC INT benchmarks on a 32-bit guest, 
we obtain a heuristic DSP switching algorithm as follows. 

1. If the TLB miss frequency is higher than the TLB miss 
upper-bound threshold and the page fault frequency is 
lower than 80 percent of the page fault upper-bound 
threshold, switch from HAP mode to SP mode or stay in 
SP mode. 



 

 

2. If the page fault frequency is higher than the page fault 
upper-bound threshold and the TLB miss frequency is 
lower than 80 percent of the TLB miss upper-bound 
threshold, switch from SP mode to HAP mode or stay in 
HAP mode. 

3. If both the TLB miss frequency and the page fault fre-
quency are lower than their lower-bound thresholds, stay 
in the current paging mode. 

For the remaining cases, we will need to use the P-to-T ratio. 
We notice that the P-to-T ratios show a large range of fluctuations 
from period to period. We use both a running average of recent P-
to-T ratios, called historic P-to-T ratio, and the P-to-T ratio in the 
current monitoring period to help make decision. Below is our 
policy where step 4 helps avoid divide by 0 exceptions. 

4. If either the historic TLB miss frequency or the current 
TLB miss frequency is zero, switch from SP to HAP or 
stay in HAP mode. 

5. If both the historic average P-to-T ratio and the current 
P-to-T ratio are bigger than the P-to-T ratio upper-bound 
threshold, the page fault penalty is more significant than 
the TLB miss penalty and DSP decides to switch from 
SP mode to HAP mode or stay in HAP mode. 

6. If both the historic average P-to-T ratio and the current 
P-to-T ratio are lower than the P-to-T ratio lower-bound 
threshold, the TLB miss penalty is more significant than 
the page fault penalty. Now DSP switches from HAP 
mode to SP mode or stays in SP mode. 

7. If both the historic average P-to-T ratio and the current 
P-to-T ratio are between the lower-bound and upper-
bound thresholds, neither is significant and there would 
be little difference between the two paging modes. In 
this case, the system stays in the current mode. 

8. Otherwise, the historic average P-to-T ratio and the cur-
rent P-to-T ratio fit into different threshold intervals. We 
cannot decide the trend and the system stays in the cur-
rent mode. 

Figure 5 summarizes the eight policies and shows the 
workflow of the DSP decision algorithm where the acronyms are 
listed below. 

 
 FTLB: Frequency of TLB misses  
 FPF:  Frequency of Page Faults  
 HTLB:  Historic TLB miss frequency 
 HPT:  Historic average P-to-T ratio 
 CPT:  Current P-to-T ratio 
 TLBU:  TLB miss Upper-bound threshold 
 TLBL:  TLB miss Lower-bound threshold 
 PFU:  Page Fault Upper-bound threshold 
 PFL:  Page Fault Lower-bound threshold 
 PTU:   P-to-T ratio Upper-bound threshold 
 PTL:  P-to-T ratio Lower-bound threshold 
 

Figure 5. DSP decision diagram 

3. DSP Implementation on XEN 

We have implemented DSP in XEN 3.3.1. Domain 0 operating 
system is CentOS 5.4 x86_64 with Linux kernel 2.6.18. Domain 
U operating system is CentOS 5.4 x86_32 with Linux kernel 
2.6.18. 

3.1 DSP Design in XEN 

Figure 6 illustrates our implementation of DSP in the XEN sys-
tem. Since most management operations of XEN are integrated in 
the xm tools in Domain0, we add two sub-commands in the xm 
tools, dsp and undsp to enable or disable DSP. 

 

 
Figure 6. DSP implementation on XEN 



 

 

We take advantage of the existing timer in XEN to sample a 
guest OS. In order to count the number of page faults, TLB 
misses, and retired instructions in the recent period of T seconds, 
we start a timer in the xend service process when executing the xm 
dsp command. The timer will invoke the corresponding XEN 
hypercall every T seconds, request the XEN hypervisor to collect 
those statistics and decide whether to change paging mode or not. 

We get the number of TLB misses and retired instructions 
from the processor performance monitor unit (PMU) in the XEN 
hypervisor. To get the number of page faults, we add a kernel 
module in each guest OS of interest. When the guest OS starts up, 
the kernel module will notify the XEN hypervisor of the memory 
address of the variable that records the number of page faults in 
the guest OS. The XEN hypervisor can read the variable directly 
and get the number of page faults efficiently. 

All virtual machines using DSP are organized as a list in the 
hypervisor. Whenever the timer invokes the hypercall, the XEN 
hypervisor will only collect samples for the virtual machines in 
the DSP list. A virtual machine will be removed from the list 
when it is destroyed, or when the command xm undsp is executed. 
If the list becomes empty, the timer in the xend process will be 
terminated. This implementation allows enabling or disabling 
DSP on each virtual machine independently. 

The effectiveness of DSP is greatly dependent on the thre-
sholds of page faults, TLB misses, and P-to-T ratios. The thre-
sholds might be quite different on different hardware platforms. 
Our current approach relies on machine learning and profiling to 
locate appropriate thresholds for a specific machine. All thre-
sholds can be customized by executing the xm dsp command with 
corresponding parameters. Thus, a user or a system administrator 
can choose a set of thresholds that fit his/her hardware platform. 

3.2 Major Interface Functions 

In our implementation, we extend an existing hypercall, 
do_hvm_op, with a new operation, hvmop_dsp. Both the kernel 
module in a guest OS and the DSP timer in the xend service 
process invoke do_hvm_op to interact with the XEN hypervisor. 

The operation, hvmop_dsp, is called on the hvmop_dsp branch 
in the do_hvm_op hypercall. According to the parameters, 
hvmop_dsp will perform the following actions respectively. 

1. Accept the memory address of the page fault event vari-
able (counter) in a guest OS, and translate the memory 
address to the corresponding virtual memory address in 
the VMM. 

2. Enable DSP on the target virtual machine and add it to 
the DSP list. 

3. Retrieve the number of page faults, TLB misses, and re-
tired instructions in the current sampling period, and cal-
culate the corresponding frequencies. Call process_dsp 
to make a decision as to whether to change the paging 
mode according to the strategy introduced in Section 2.3. 

4. Disable DSP on the target virtual machine by calling 
paging_stop_switch, and remove the virtual machine 
from the DSP list; and if the DSP list becomes empty, 
stop the DSP timer in the xend service process. Pag-
ing_stop_switch will also switch the VM back to the 
former paging mode before DSP is enabled. 

Two functions, paging_switchto_hap and paging_switchto_sp, 
are implemented to fulfill paging mode switching. The function 
paging_switchto_hap performs switching from SP mode to HAP 
mode. In order to complete the switching, it destroys the existing 
shadow page table, loads the root address of the p2m map to the 

proper register in VMCS, and modifies the Secondary Processor-
Based VM-execution Control Register to enable EPT. The func-
tion simply returns when the virtual machine is already in HAP 
mode. 

The function, paging_switchto_sp, conducts switching from 
HAP mode to SP mode. In order to complete the switching, it 
saves the root address of the p2m map, rebuilds shadow page 
tables by constructing an initially empty shadow page tables, and 
modifies the Secondary Processor-Based VM-execution Control 
Register to disable EPT. When SP mode starts, the shadow page 
table will be filled by demand during execution. If the virtual 
machine is already in SP mode, the function simply returns. 

4. Evaluation 

In this section, we first run a set of experiments to learn the thre-
sholds for DSP decisions. We then validate the thresholds with a 
different set of benchmarks or a different guest OS. 

4.1 Experimental Environment 

We conduct our experiments on a PC with an Intel i7-860 proces-
sor, 8GB of memory, and a 1TB SATA hard disk. All 4 cores of 
the i7-860 processor are enabled while disabling hyperthreading. 
The hypervisor we use is XEN 3.3.1. We patch our DSP imple-
mentation onto it. 

Domain0 runs a 64-bit Linux OS, CentOS 5.4 x86_64, and is 
configured with 3 GB of memory and 2 CPU cores. We install 
two guest domains, Dom32 and Dom64, running a 32-bit and a 
64-bit OS, respectively. Dom32 runs CentOS 5.4 i863 with 3 GB 
of memory and 1 CPU core. Dom64 runs CentOS 5.4 x86_64 
with 3GB of memory and 1 CPU core. 

We choose SPEC CPU2006, since the 29 benchmarks in the 
suite show a variety of memory behavior and DSP is intended to 
optimize memory virtualization. A memory and CPU intensive 
benchmark is more suitable than an I/O intensive benchmark to 
evaluate the effectiveness of DSP. 

 
Table 1. 32-bit VM SPEC INT statistics 

PF per 1K inst  
* 107 

TLB miss per 
1K inst 

PF*107/TLB  
(col. 1/col. 2) 

Winner 

40 0.5 80 SP 

125 0.5 250 HAP 

0 < 0.5 0 Draw 

> 150000 < 1 > 230000 HAP 

10000 2.4 4500 HAP 

4700 0.3 15000 Draw 

1600 16 100 SP 

90000 2.7 50000 HAP 

0, sometimes 100 0.02 
0, sometimes 

40000 
Draw 

0 or 10000 0.3 0 or 30000 HAP 

Sometimes>10000 frequently>10  SP 

< 50 > 3.9 < 10 SP 

> 150000 < 1 > 230000 HAP 

 



 

 

4.2 Threshold Selection 

In order to find out proper thresholds, we run SPEC INT2006 on 
Dom32 both in SP mode and in HAP mode. We collect the sam-
ple page fault frequency, TLB miss frequency, and historical P-to-
T ratio every five seconds. For each benchmark, we select a typi-
cal sample value that dominates the whole benchmark. Table 1 
lists these samples. Based on this table, we generate thresholds 
that will result in a correct decision for DSP in most cases. The 
final thresholds we pick are listed in Table 2. 

For all samples values that can help select between HAP and 
SP, we take their average as the final threshold, expecting it will 
best fit other programs. We pick the most recent three samples to 
calculate the historical average ratios. We observe that the three 
sample points, which denote a 15-second interval, are sufficient to 
smooth a short-term change in a program. Due to the switching 
overhead, it is not worth performing switching when there is a 
short burst of page faults or TLB misses. However, a longer than 
15 second interval may result in longer turnaround time. In other 
words, the system may stay in one mode for too long. 
 

Table 2.  Thresholds for DSP decision 

 Upper-bound Lower-bound 

Page fault threshold 5000x10-7 100 x10-7 

TLB miss threshold 10 0.1 

P-to-T ratio threshold 200 x10-7 150 x10-7 

Interval for recent history 15 seconds (3 sample points) 

 

4.3 Sampling Interval Selection 

Table 3 shows total TLB misses, page faults and execution times 
of mcf and gcc under HAP or SP only. Based on these statistics, 
we can estimate that the overhead of one TLB miss in HAP mode 
compared with SP mode is approximately 4 nanoseconds (roughly 
12 cycles), and the overhead of one page fault in SP mode com-
pared with HAP mode is around 10 microseconds. Based on the 
total execution times of the two benchmarks, switching from HAP 
to SP can save about 100 milliseconds per second on mcf, and 
switching from SP to HAP can save about 300 milliseconds per 
second on gcc. If switching can bring mcf or gcc to the best pag-
ing mode for more than one second, the benefit would overcome 
the overhead. As both mcf and gcc are the best cases that benefit 
most from proper switching, other benchmarks would have to stay 
in the best paging mode for a longer time to overcome the over-
head of paging switching. Based the above analysis, we thus 
choose an interval at the granularity between one and 10 seconds 
in our experiments. 

 
Table 3. Total TLB misses and page faults of mcf and gcc 

 TLB miss page fault exec time

mcf in HAP mode 12539673680 243491 383

mcf in SP mode 12752691972 346439 329

gcc in HAP mode 1082065972 13320141 403

gcc in SP mode 3198642850 13302782 534

 

4.4 Overhead 

Overhead of paging switching falls in two categories. One is the 
overhead of switching from SP mode to HAP mode, and the other 
is the overhead of switching from HAP mode to SP mode. To 
switch from SP to HAP, we simply load the EPT base address. To 
switch from HAP to SP, the shadow page table has to be rebuilt, 
and thus its overhead is larger than switching from SP to HAP. 

In order to measure the overhead of switching from SP to 
HAP, we let the VM initially run in HAP mode. For every second, 
we invoke a hypercall operation (H-S-H), which will switch the 
VM from HAP to SP, and then, before returning back to the VM 
from the hypercall, immediately switch back from SP to HAP. 
Though the VM has been once in SP mode, but no instruction of 
the VM has been executed in SP mode. Therefore the shadow 
page table has never been actually used and it remains empty 
before switching back to HAP mode. The overhead of H-S-H 
would be larger than the overhead of single switching from SP to 
HAP. 

Similarly, to measure the overhead of switching from HAP to 
SP, we let the VM initially run in SP mode. For every second, we 
invoke another hypercall operation (S-H-S), which will switch the 
VM from SP to HAP, and then switch immediately from HAP 
back to SP before returning to the VM. Since the shadow page 
table is completely destroyed when switching from SP to HAP, 
after switching back from HAP to SP, the shadow page table has 
to be rebuilt. The overhead of S-H-S would be larger than the 
overhead of switching from HAP to SP. 

 
Table 4. Switching overhead of H-S-H 

benchmark 
Conf. Interval 

HAP 
Conf. Interval 

H-S-H 
#switches

ovhd 
(%) 

perlbench 487.95 ± 0.40 488.62 ± 0.46 489 0.14
bzip2 859.54 ± 0.05 858.70 ± 0.11 859 -0.10
gcc 402.56 ± 3.37 406.38 ± 4.34 406 0.95
mcf 383.00 ± 1.98 380.23 ± 1.59 380 -0.72
gobmk 636.53 ± 0.23 636.38 ± 0.15 636 -0.02
hmmer 1240.70 ± 0.08 1240.06 ± 0.06 1240 -0.05
sjeng 727.12 ± 0.15 729.74 ± 0.18 730 0.36
libquantum 812.87 ± 0.79 813.00 ± 0.93 813 0.02
h264ref 1045.03 ± 0.35 1045.88 ± 1.01 1046 0.08
omnetpp 379.24 ± 0.29 378.86 ± 0.20 379 -0.10
astar 664.04 ± 0.58 663.30 ± 0.32 663 -0.11
xalancbmk 341.54 ± 0.60 341.46 ± 0.17 341 -0.02
bwaves 773.29 ± 1.55 771.44 ± 1.38 771 -0.24
gamess 1431.17 ± 0.56 1429.26 ± 0.68 1429 -0.13
milc 511.27 ± 0.84 511.02 ± 1.25 511 -0.05
zeusmp 839.16 ± 0.96 838.16 ± 1.29 838 -0.12
gromacs 1050.90 ± 0.85 1049.80 ± 0.62 1050 -0.11
cactusADM 1589.21 ± 3.80 1581.87 ± 3.57 1582 -0.46
leslie3d 891.25 ± 0.39 891.03 ± 0.85 891 -0.03
namd 640.94 ± 0.38 640.07 ± 0.17 640 -0.13
dealII 606.92 ± 0.09 605.67 ± 0.25 606 -0.21
soplex 354.31 ± 0.55 354.27 ± 0.36 364 -0.01
povray 332.41 ± 0.35 333.26 ± 1.25 333 0.26
calculix 1764.04 ± 0.83 1762.44 ± 0.33 1762 -0.09
GemsFDTD 836.53 ± 1.26 834.75 ± 0.83 835 -0.21
tonto 941.64 ± 0.46 940.91 ± 0.46 941 -0.08
lbm 405.74 ± 0.33 405.23 ± 0.50 405 -0.13
wrf 1145.45 ± 0.24 1144.22 ± 0.76 1144 -0.11
sphinx3 708.50 ± 2.13 709.11 ± 1.45 709 0.09

 



 

 

We run each benchmark seven times, respectively, at HAP, 
SP, H-S-H, and S-H-S modes. To avoid measurement noise and to 
report measurement errors, we pick the top 6 execution times and 
calculate the confidence intervals.  Columns 2 and 3 in Tables 4 
and 5 show the 90% confidence intervals of execution times. The 
number of switches (column 4) is from the run with median ex-
ecution time which is roughly equal to the mean execution time 
since switching is performed every second. The percentage over-
head (column 5) for H-S-H is measured as (meanH-S-H – meanHAP) 
/ meanHAP *100%. The overhead calculation for S-H-S is similar. 

As shown in Table 4, the average overheads of H-S-H on most 
benchmarks are negative although they are all within one percent. 
Benchmark gcc yields the largest overhead which is still less than 
1%. We notice that the confidence intervals of HAP and H-S-H 
overlap for a majority of benchmarks where the overheads are 
shown in grey.  So we can conclude that the overhead of H-S-H is 
statistically negligible. However, since the overheads are domi-
nantly negative, we suspect H-S-H may have some slightly posi-
tive impact on cache or TLB, which calls for further investigation. 

 
Table 5. Switching overhead of S-H-S 

benchmark 
Conf. Interval 

SP 
Conf. Interval 

S-H-S 
#switch

ovhd 
(%) 

perlbench 488.29 ± 0.52 494.32 ± 0.58 494 1.23
bzip2 858.05 ± 0.07 861.11 ± 0.19 861 0.36
gcc 534.16 ± 0.19 539.27 ± 0.30 539 0.96
mcf 329.11 ± 0.70 345.03 ± 0.86 345 4.84
gobmk 634.04 ± 0.04 636.94 ± 0.12 637 0.46
hmmer 1237.54 ± 0.10 1240.29 ± 0.08 1240 0.22
sjeng 723.47 ± 0.24 736.44 ± 0.17 736 1.79
libquantum 806.05 ± 0.80 811.21 ± 0.35 811 0.64
h264ref 1043.31 ± 0.68 1046.59 ± 0.61 1047 0.31
omnetpp 371.01 ± 0.25 374.06 ± 0.13 374 0.82
astar 648.26 ± 2.89 649.83 ± 0.12 650 0.24
xalancbmk 336.47 ± 0.19 341.78 ± 0.38 342 1.58
bwaves 790.95 ± 2.60 813.52 ± 3.93 814 2.85
gamess 1427.78 ± 0.50 1430.66 ± 0.83 1430 0.20
milc 547.50 ± 0.91 566.16 ± 1.16 566 3.41
zeusmp 816.55 ± 0.20 836.19 ± 0.83 836 2.40
gromacs 1047.90 ± 0.49 1049.94 ± 0.56 1050 0.19
cactusADM 1343.24 ± 4.64 1370.80 ± 3.14 1371 2.05
leslie3d 900.24 ± 0.39 907.33 ± 0.45 907 0.79
namd 639.34 ± 0.31 640.83 ± 0.22 641 0.23
dealII 614.32 ± 0.55 618.65 ± 0.49 619 0.70
soplex 368.44 ± 0.30 376.07 ± 0.46 376 2.07
povray 332.02 ± 0.11 332.87 ± 0.19 333 0.26
calculix 1790.88 ± 0.67 1799.67 ± 0.69 1800 0.49
GemsFDTD 845.10 ± 0.83 904.73 ± 0.83 905 7.06
tonto 1129.54 ± 0.81 1137.89 ± 1.50 1138 0.74
lbm 404.75 ± 2.11 417.98 ± 0.40 418 3.27
wrf 1181.33 ± 0.18 1198.07 ± 0.66 1198 1.42
sphinx3 701.91 ± 0.91 705.42 ± 1.67 705 0.50

 
S-H-S causes more noticeable overhead as destroying and res-

toring the shadow page tables definitely cost time. Particularly, 
for the benchmarks with large working set and thus likely large 
page table, the overhead is more prominent. So it is not a surprise 
for GemsFDTD and mcf, the two benchmarks with the largest 
working set sizes in SPEC CPU2006, to take the top two spots on 
overhead [7]. For all other benchmarks, the overheads are all be-
low 5% and most of them are within 1%.  

Note that we report an extreme upper bound on overhead here. 
Our actual implementation suggests a 5-second interval and, for 
all benchmarks, DSP performs only a couple of dozens of switch-
ing at most. Compared to hundreds of switching in Tables 4 and 5, 
the actual overhead would be negligible. 

4.5 Validation Using SPEC INT 

We apply the thresholds picked in Section 4.2 back to SPEC 
INT2006. Figure 7 shows the results where the bars are norma-
lized execution times. The performance of DSP can almost always 
reach the better case of HAP and SP. For each individual bench-
mark, the performance difference between DSP and the higher 
one of HAP and SP is within 1%. For gcc, the performance of 
DSP is 34% better than SP, and for mcf, the performance of DSP 
is 13% better than HAP. The “total” bars in Figure 7 show the 
normalized total execution time of all integer benchmarks. DSP 
shows a slight improvement over both HAP and SP. 

 

 
Figure 7. SPEC INT on 32-bit VM. 

Figure 8 shows the distribution of execution time of each 
SPEC CPU2006 benchmark in HAP mode and in SP mode, when 
DSP is enabled. We also report the floating pointing benchmarks 
here for comparison purpose. The numbers over the bars are the 
number of times of paging switching. Note that, for most bench-
marks, one mode dominates the execution time. Often there are no 
or only a few switches. As discussed in Section 4.4, the overhead 
of switching is very small, thus, the overhead of the DSP mechan-
ism itself is negligible. Once a proper paging mode is selected, the 
performance gain comes directly from the mode itself. 

 

 
Figure 8. Time distribution of each benchmark in different paging 

mode (5s interval) 

All experimental results in this section so far are based on a 5-
second sampling interval. We further compare the performance of 
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DSP under three different intervals, 2 seconds, 5 seconds and 10 
seconds. As shown in Figure 9, the differences among 2-second, 
5-second and 10-second intervals are not significant. Note that the 
number of page faults and TLB misses are measured on a per 
thousand instruction basis. They do not vary remarkably for most 
benchmarks among these three intervals. Moreover, most SPEC 
CPU2006 benchmarks have distinct phases that are longer than 10 
seconds, DSP would make the same decision under different timer 
intervals.  

 

 
Figure 9. Effects of length of sample intervals 

 
Figure 10. Time distribution of each benchmark in different pag-

ing mode (2s interval) 

 

Figures 10 and 11 show that the distribution of execution time 
and the number of mode switches under the 2-second and 10- 
second intervals, respectively. Comparing Figure 8 with Figures 
10 and 11, we can see that the distribution is almost the same for 
each benchmark except for libquantum, and the number of 
switches can slightly vary. For libquantum, DSP spends over a 
half of time in HAP mode with the 2-second interval, while only 
6% of time with the 5-second or 10-second interval. We observe 
that libquantum shows frequent yet short bursts of page faults. 
DSP under the 2-second interval switches to HAP when encoun-
tering a burst and switches back to SP in the next interval. While 
under the 5-second and 10-second intervals, DSP stays in SP 
mode most of time because the bursts are smoothed in a longer 
interval.  

In general, the 2-second interval typically causes the most 
mode switching while the 10-second interval the least. So we 
observe some slight performance difference among the three in-
tervals. It is basically a tradeoff between switching overhead and 
performance gain due to paging switching. As shown in Figure 9, 
bzip2, sjeng, astar and xalancbm perform slightly better under the 

2-second interval while gcc and libquantum prefer the 5-second 
interval. 
 

 
Figure 11. Time distribution of each benchmark in different pag-

ing mode (10s interval) 

4.6 Validation Using SPEC FP and 64-bit System 

This section first validates the same set of thresholds using SPEC 
FP2006 in Dom32 with DSP enabled and then using a 64-bit guest 
for all SPEC CPU2006 benchmarks. 

Figure 12 shows the results for SPEC FP under a 32-bit guest. 
Again, DSP always matches the better performance of HAP and 
SP. DSP achieves a 2% improvement over SP and HAP for SPEC 
FP. It obtains both the 15% performance gain by SP for cactu-
sADM  and the 22% gain for tonto by HAP. 

 

 
Figure 12.  SPEC FP on 32-bit VM 

 

Figures 13 and 14 show the results on the 64-bit guest. Al-
though HAP loses it advantage for most benchmarks, DSP is still 
able to catch the better performance of the two modes. For the two 
benchmarks, gcc and milc, where HAP shows a notable perfor-
mance advantage over SP, DSP is able to keep the system in HAP 
mode. For the benchmarks where SP shows significant advantag-
es, DSP switches to SP mode for a majority of time. For cactu-
sADM, DSP indeed shows a slight improvement over SP, which 
performs 14% better than HAP. Benchmark wrf cannot be com-
piled on the 64-bit OS and thus is not reported here. 
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Figure 13. SPEC INT on 64-bit VM 

 
Figure 14. SPEC FP on 64-bit VM 

5. Related Work 

Keith Adams and Ole Agesen describe an implementation of a 
software VMM that employs Binary Translation (BT) for x86 
guest execution [1]. Their experimental results show that BT out-
performs traditional shadow paging with a previous generation of 
hardware-assisted virtualization available at the point of their 
research. They also survey software and hardware opportunities 
on virtualization, pointing out the potential problem of page walk 
for hardware MMU support such as AMD’s “nested paging” and 
Intel’s EPT, and mention several ways to optimize. One solution 
proposed by VMware is to reduce the overhead of page walking 
by applying only large pages both in Guest OS and in VMM, and 
therefore, TLB misses will be reduced dramatically [10, 11]. 
However, large pages can cause memory pressure and fragments. 
Gillespie also provides a comparison between EPT and shadow 
paging but offers no design and implementation details [6]. 

Ravi Bhargava et al. present an in-depth examination of the 
2D page table walk of AMD’s “nested paging” and options for 
decreasing the page walk penalty [4]. They use the processor’s 
page walk cache to exploit the strong reuse of page entry refer-
ences. By applying large pages with page walk cache, the hyper-
visor can improve the guest performance by 3%-22%. Barr et al. 
later explore the design space of MMU caches [3]. 

Hardware assisted virtualization has become more mature no-
wadays than its initial version. Neither software virtualization nor 
hardware assisted virtualization will win in all cases. Our solution 
is based on two mature techniques, shadow paging mode and 
hardware assisted paging mode, and involves no compatibility 
issue. It can also work orthogonally with large page mode for 
more performance improvement. 

As another attempt, Wang et al. propose Dynamic Memory 
Para-virtualization (DMP) to improve the performance of memo-
ry virtualization in [13]. For a VM in SP mode, DMP instruments 
the VMM to dynamically modify the Guest OS kernel binary 
code, so as to make use of the guest page table to find machine 
addresses. Host machine addresses are filled in the page table 
entries instead of guest physical memory addresses. When the 
guest OS reads or writes these page table entries, the modified 
kernel code is executed to translate host machine addresses back 
to guest physical addresses for the guest to use. DMP can achieve 
close to native performance. However, DMP introduces security 
issues, which prevents it from being applied in a security-sensitive 
public service environment. Our DSP solution brings the benefits 
in performance without any security risks. 

6. Discussion and Conclusion 

To reduce the overhead of memory virtualization, both Intel and 
AMD have provided hardware virtualization support. Unfortu-
nately, hardware assisted virtualization does not always bring 
performance benefit. In this paper, we compare the performance 
of hardware-assisted paging and conventional shadow paging, and 
show that either of them can significantly outperform the other in 
certain benchmarks. We design and implement an effective pag-
ing scheme that dynamically switches between the two page mod-
es and thus exploits the advantages of both. Based on online 
sampling of TLB misses and guest page faults, we emulate a ma-
chine learning process to pick a set of thresholds to help DSP 
make choices in paging modes. We implement this system in the 
open source XEN environment and share our patch with the re-
search community. The code patch is now available at 
http://www.cs.mtu.edu/~zlwang/dsp.tar.gz. We plan to automate 
the threshold selection using support vector machines and com-
pare it with our manual selection results. Our experimental results 
show that HAP is not as effective in the 64-bit system as in the 
32-bit system. It is not a surprise as the 64-bit system doubles the 
levels of the page table and thus the penalty of page walk. It is 
worth a further study in effective hardware support for 64-bit 
systems. 
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