
Automatic Generation of Microarchitecture Simulators�Soner �Onder Rajiv GuptaDepartment of Computer ScienceUniversity of PittsburghPittsburgh PA 15260fsoner,guptag@cs.pitt.eduAbstractIn this paper we describe the UPFAST system thatautomatically generates a cycle level simulator, anassembler and a disassembler from a microarchitec-ture speci�cation written in a domain speci�c languagecalled the Architecture Description Language (ADL).Using the UPFAST system it is easy to retarget a sim-ulator for an existing architecture to a modi�ed archi-tecture since one has to simply modify the input spec-i�cation and the new simulator is generated automat-ically. UPFAST also allows porting of simulators todi�erent platforms with minimal e�ort. We have beenable to develop three simulators ranging from simplepipelined processors to complicated out-of-order issueprocessors over a short period of three months. Whilethe speci�cations of the architectures varied from 5000to 6000 lines of ADL code, the sizes of automaticallygenerated software varied from 20,000 to 30,000 linesof C++ code. The automatically generated simulatorsare less than 2 times slower than hand coded simula-tors for similar architectures.1 IntroductionThe realization of processor architectures in siliconis an expensive endeavor. Thus before a new proces-sor is actually built, extensive simulation studies arecarried out to estimate the expected performance ofthe microarchitecture on a variety of benchmark pro-grams. The evaluation process requires collection ofcycle level statistics. Typically the simulations mustbe carried out for millions of machine cycles so thatgeneral conclusions can be drawn regarding the perfor-mance of the microarchitecture with con�dence. Thusto support the development of new processors, toolsare required to enable rapid development of cycle levelsimulators that are fast enough to carry out extensivesimulation studies.�This work is supported by NSF PYI Award CCR-9157371,NSF grant CCR-9402226, and grants from Intel Corporationand HP Labs to the University of Pittsburgh.

A commonly used approach for developing simu-lators is their hand coding in a general purpose lan-guage such as C. Examples of some popular simula-tors which were developed using this approach includethe SPIM simulator for the MIPS architecture [6], theSimpleScalar simulator [3], and the SuperDLX simu-lator [8]. The hand coding of simulators is a substan-tial task which typically takes between 12 to 24 manmonths. Once developed, such simulators are di�cultto retarget to a modi�ed microarchitecture or an in-struction set architecture without a signi�cant amountof e�ort. Another problem that one encounters is thedi�culty in porting these simulators to di�erent plat-forms. The portability issue arises due to the need forhandling of external system calls that are made by thebenchmarks being run. Solutions that either disallowsuch calls or allow external calls but sacri�ce portabil-ity by allowing the simulator to run only on a speci�cplatform (e.g., SPIM) are undesirable.An alternative to hand coding a simulator is togenerate it automatically from a machine speci�ca-tion written in a domain speci�c language. Automaticgeneration not only signi�cantly shortens the develop-ment cycle, it also allows retargeting since modi�ca-tions in the architecture can be made at the speci�-cation level and the new simulator can then be au-tomatically generated. Although a number of hard-ware description languages [1, 7, 9, 13] are available,these languages are not suitable for developing cyclelevel simulators. These languages are capable of de�n-ing the hardware to the smallest detail and result insimulators that are orders of magnitude slower thancycle level simulators. The retargeting of simulatorsrequires signi�cant e�ort and no solution to the porta-bility problem is o�ered by these languages.In order to allow rapid prototyping of simulators wehave designed a domain speci�c language for specify-ing processor microarchitectures called the Architec-ture Description Language (ADL) and implementedthis language in the University of Pittsburgh Flexible

Architecture Simulation Tool (UPFAST). We supportboth retargeting and portability of simulators. The keycontributions of our work are:1. The ADL language has been designed to support anexecution model that is suitable for expressing a broadclass of processor architectures. It provides constructsfor specifying the following: (a) the microarchitecture;(b) the instruction set architecture (ISA), the assem-bly language syntax and the binary representation; (c)a mapping between the calling convention of the simu-lated architecture and the machine that hosts the sim-ulator to enable the simulator to make external calls;(d) commands for the collection of statistics; (e) in-vocations of the debugger and monitoring commandsto identify information for display during debugging.2. The UPFAST system has been developed to al-low automatic generation of the cycle level simulatorsand other support tools. The system provides: (a)an implementation of a compiler for ADL; (b) auto-matic generation of the assembler, disassembler andloader/linker; (c) a cycle level assembly language de-bugger; and (d) support for displaying statistics andmonitored information.3. We have obtained some experience with the systemby developing three di�erent simulators based uponthe MIPS ISA in three months [10, 5]. The speci�-cations of the architectures varied from 5000 to 6000lines of ADL code while the sizes of automatically gen-erated software varied from 20,000 to 30,000 lines ofC++ code. Our automatically generated simulatorsare comparable in size and less than 2 times slowerthan hand coded ones.2 Architecture Description LanguageAn ADL program primarily consists of the descrip-tion of a processor architecture which includes thespeci�cation of the instruction set architecture as wellas the organization of the components of the microar-chitecture. Before we describe ADL in detail, let us�rst consider the model of execution used by ADL toexpress the operation of an architecture and highlightsome of its design characteristics:Explicit Instruction Flow and Instruction Con-text: In ADL the
ow of instructions through thearchitectural components is explicit. The data asso-ciated with an instruction under execution is calledthe instruction context. The context is passed fromone component to the next and is operated upon bythe components till the execution of the instruction iscomplete. The context is allocated when the instruc-tion enters the pipeline and is deallocated when theinstruction retires.

Minor Cycle
1

(Prologue) (Intermission 1)
2

Minor Cycle Minor Cycle
l-1

(Intermission l-2) (Epilogue)

l
Minor Cycle

Major Cycle Figure 1: ADL Clock LabelingThe Machine Clock: The notion of machineclock is built into the language and the operation ofthe architectural components is described with respectto this clock. The machine clock is viewed as a seriesof pulses. Each discrete pulse is called a minor cycle,and a number of minor cycles are grouped togetherto form a machine cycle. The minor cycles in ADLare represented by a series of labels. The �rst and thelast minor cycles of a machine cycle are labeled as theprologue and the epilogue and those in between are la-beled as intermissions. The actions of each componentin the system during a machine cycle are divided intothe operations that it performs in each of the minorcycles. During the prologue a component receives aninstruction context from another component for pro-cessing, during the intermissions it operates upon theinstruction context, and during the epilogue it sendsthe modi�ed context to another component. Fig. 1shows the clock of a machine in which the major cycleis composed of � minor cycles.Artifacts and Processing Stages: The architec-tural components are divided into two categories: ar-tifacts are components with standard well known se-mantics that are directly supported by the languageand stages are components whose semantics must beexplicitly speci�ed as part of the ADL program.Examples of artifacts include caches, memory units,and register �les. Since they are directly supported byADL as built-in types, the programmer can use themby simply declaring objects of these types in an ADLprogram. Access to artifacts takes the form of assign-ments to and from the artifact variables. Di�erentimplementations of these components can be used byspecifying di�erent attribute values for the artifacts.The interaction of an artifact with the machine clockis also speci�ed as a list of attributes.Processing stages are architectural componentsthat exhibit a signi�cant functional variety. Their op-eration is dependent on the microarchitecture as wellas the current instruction being processed. Further-more, the function such an element performs is tightlycoupled with the system clock and the status of othercomponents in the system. Thus, it is not feasible tofollow a declarative approach for stages but insteadthe user must explicitly specify their semantics usingRegister Transfer Level (RTL) statements.

Separation of Instruction Set Architecture andMicroarchitecture Speci�cation: The ISA speci-�cation is separated from the microarchitecture spec-i�cation to facilitate the development of di�erent mi-croarchitecture implementations for the same ISA orextend an ISA by adding new instructions without al-tering the microarchitecture. The above separationhas the following consequence on the speci�cation ofstage semantics. The RTL statements describing thesemantics of stages are divided into two components:the general component that is common to all instruc-tions and the ISA-component which depends upon thespeci�c instruction being processed. The former isspeci�ed in the microarchitecture description while thelatter is included as part of the ISA speci�cation.Time Annotated Actions and Parallelism inthe Microarchitecture: The speci�cation of the ac-tions associated with the execution of speci�c instruc-tions as well as the actions associated with variousarchitectural components are annotated with timinginformation so that it can be determined when theyare to be performed.The procedures that implement the general com-ponent of actions associated with a processing stagecarry the name of the stage and the label of the mi-nor clock cycle during which they are to be executed.Such procedures are referred to as time annotated pro-cedures (TAPs). Since there are � minor cycles, theremay be up to � TAPs for a given stage. The ISA-component associated with an instruction is labeledwith the name of the processing stage and optionallywith the label of the minor cycle during which it mustbe executed. These statements are referred to as la-beled register transfer level (LRTL) segments.Microarchitecture parallelism is achieved by execut-ing in each machine cycle the actions associated witheach component as well as actions associated with aninstruction that are annotated with the current cy-cle. The machine execution is realized by invokingeach TAP corresponding to a minor cycle as the clockgenerates the corresponding label and the parallel op-eration of individual components is modeled by con-currently executing all TAPs which have the same an-notation. During this process, LRTL segments cor-responding to the currently processed instruction arefused together with the corresponding TAP. The ma-chine operation is as follows:do foreverfor clock.label := prologue, intermission 1, intermission (�� 2), epilogue do8 TAP, TAP.annotation = clock.label dof process fTAP; TAP.instruction.LRTL g gend

Artifact

Pipeline stage

Pipeline register

(L1)

Data
Cache

IF ID MEM WBEX

Forwarding paths
clock

Cache

Instruction

File

Register

(L2)

Data
Cache

Port 0
MEMORY Port 1Figure 2: A Simple Pipelined Processor2.1 Microarchitecture Speci�cationThe speci�cation of the microarchitecture consistsof describing the artifacts of the architecture, declar-ing pipelines involved and their stages, specifying in-struction contexts, and �nally de�ning TAPs for eachof the stages. In the following sections, we will use asimple pipelined architecture shown in Fig. 2 to dis-cuss each of these steps. In this architecture, the in-struction fetch stage (IF) fetches instructions from theinstruction cache and ships them to the instructiondecode (ID) stage. ID stage decodes the instructionsit receives, fetches their operands from the register�le, and sends them to the execution unit (EX). Thememory access (MEM) stage performs a data mem-ory access for the load and the store instructions, butother instructions pass through this stage unchanged.Finally, the write back (WB) stage writes the resultsback to the register �le. In order to eliminate pipelinestalls that would otherwise result, data values are for-warded through forwarding paths to the earlier stages.Artifacts: Artifacts are hardware objects with well-established operational semantics and they are sup-ported as built-in types by the language. A declara-tion of an artifact supplies the values of the attributesof the artifact to derive a speci�c implementation ofthe artifact. For an artifact, we also specify how longdoes it take to process a single request in terms ofclock cycles (i.e., the latency), the rate at which newrequests can be issued to the artifact (i.e., the repeatrate), and the maximum number of requests that canbe outstanding in a clock cycle (i.e., the number ofports). The list of the di�erent types of artifacts sup-ported by the language is given below.artifact-declaration) register-declarationj register-�le-declarationj memory-port-declarationj cache-declarationj bu�er-declarationj token-declarationA register declaration declares an artifact of typesimple register while a register �le declaration declaresan array of registers. Registers and register �les may

be given the attribute shadow which makes them in-visible to the instruction set. ADL allows de�nitionof one or more aliases for the individual register �leentries. A memory declaration de�nes a memory portwith a given access latency in units of machine cyclesand a data path width in units of bits. For the cacheartifact, attribute values include degree of set associa-tivity, the kind of replacement strategy, and whetherit is a write-back or write-through cache. Memories,caches and bu�ers have an important property of be-ing stackable. This property is required for buildingmemory hierarchies. When an artifact is declared, thename of the artifact immediately lower in the hierar-chy is mentioned using the of clause, e�ectively placingthe new artifact higher in the hierarchy.shadow register temp 16; # A 16 bit temporary register.register file gpr [32,32] # 32 registers,32 bits each.$zero 0, # $zero is another alias for gpr[0]$at 1, # $at is another alias for gpr[1].....$sp 29,$ra 31;memory mport0 latency 12 width 64, # 64 bit path to memory.mport1 latency 12 width 64; # 64 bit path to memory.instruction cache icache of mport0 directmapped 64 kb 4 wpl;data cache l2 of mport1 directmapped 64 kb 4 wpl,l1 of l2 4 way 8 kb 4 wpl;Figure 3: Example artifact declarationsA sequence of artifact declarations for the examplepipelined architecture of Fig. 2 is shown in Fig. 3. The�rst declaration declares a temporary register invisiblefrom the instruction set. Next a register �le gpr is de-clared and individual registers in the �le are assignedaliases. RTL statements may use either form of access(i.e., gpr[31] or $ra). The declaration speci�es twomemory ports with 12 cycles of access latency and 64bit data paths. The memory port mport0 hosts a di-rect mapped instruction cache of 64 kilobytes with 4words per cache line. Memory port mport1 hosts a di-rect mapped cache of similar attributes and this directmapped cache in turn services a four way set associa-tive cache of size 8 kilobytes. Thus, the cache L1 isat the highest level in the hierarchy and the memoryports are at the lowest level.Once declared, artifacts are accessed just like vari-ables by the RTL statements in the speci�cation. Forcomplicated structures, such as data caches, passingof additional parameters may be required. For ex-ample, in order to store a single byte to the L1 cache,and retrieve a halfword, the following sequence of RTLstatements could be used:l1.(_BYTE) [addr] = data_value;data_value = l1.(_HALFWORD) [addr];When an artifact is accessed, the status of the re-sult is queried using the access-complete statement.

This statement returns a true value if the operationhas been completed successfully, and a false value oth-erwise. A false value may be returned because the ar-tifact is slow, such as in the case of memory-ports, orbecause there is a structural hazard. In these casesthe request must be repeated. Further details of whythe operation was not successful may be queried usingadditional statements.Processing Stages and Instruction ContextDeclarations: The primary means of declaringstages of the microarchitecture is the pipeline decla-ration. A pipeline declaration speci�es an orderingamong pipeline stages such that each stage receivesan instruction context from the preceding stage andsends the processed context to a later stage. Theremay be more than one pipeline declaration in an ADLprogram but the stage names must be unique. Once astage is declared using a pipeline construct, TAPs maybe speci�ed for each of the stages and semantic sec-tions of instruction declarations may utilize the stagenames as LRTL labels. The following declaration de-�nes the pipeline for the example architecture:pipeline ipipe (IF, ID, EX, MEM, WB);In ADL, the set of data values carried along withpipeline stages are grouped together in a structurecalled controldata. There is only one such decla-ration, which means all stages have the same type ofcontext, and the instruction context is the union of thedata required by all the pipeline stages in the system.While in a hardware implementation pipeline stagesmay carry di�erent types of contexts, de�nition of in-struction context in this way simpli�es the transferand handling of instruction contexts in the simulator.Since there is a uniform single instruction context forall pipeline stages, each pipeline stage name is also anobject of type controldata. The following is a simplecontroldata declaration for a pipelined machine:controldata registermy_pc 32, # Instruction pointer for the instruction.simm 32, # Sign extended immediate.....dest 32, # dest holds the value to be written.lop 32, # lop holds the left operand value.rop 32; # rop holds the right operand value.Elements of the controldata structure may be ac-cessed from TAPs and by the semantic parts of in-struction declarations (i.e., LRTLs). Access to theelements of the structure may be quali�ed or unqual-i�ed. When they are not quali�ed, the pipeline stageis the stage of the TAP that performs the reference orthe label associated with the LRTL segment that per-forms the reference. In its quali�ed form, the syntaxcontroldata-element[stage-name] is used to accessthe instruction context of another stage. This form is

primarily used to implement internal data forwardingby either the source stage writing into the context ofthe sink stage or the sink stage reading the data fromthe context of the source stage.Specifying Control and TAPs: The machine con-trol is responsible for checking the conditions for mov-ing the pipeline forward, forwarding the instructioncontext from one stage to the next, controlling the
ow of data to and from the artifacts, and introduc-ing stalls for resolving data, control, and structuralhazards. In ADL, the semantics of the control part ofthe architecture is speci�ed in a distributed fashion asparts of TAPs by indicating how and when instructioncontexts are transferred from one stage to another.The movement of an instruction context throughthe pipeline is accomplished using the send statementwhich is executed during the epilogue minor cycle byall the pipeline stages. The send is successful if thedestination stage is in the idle state or it is also ex-ecuting a send statement in the same cycle. Typ-ically, an instruction context is allocated by the �rstpipeline stage using the ADL statement new-context.It is �lled in using the decode statement which de-codes the contents of the instruction register and es-tablishes a mapping from the current context to aninstruction name. Once decoded, all the attributes ofthe instruction become read-only controldata vari-ables. When this stage �nishes its processing, it exe-cutes the send statement to send the context to thedownstream pipeline stage. When a context reachesthe last pipeline stage it is deallocated using the ADLstatement retire. If any of the pipeline stages doesnot execute a send, send operations of the precedingstages fail. In this case, they repeat their send opera-tions at the end of next cycle.The conditions for internal data forwarding can beeasily checked by the stage that needs the data. Forexample, the TAP for the ID stage in the examplepipelined machine may check if any of the stages EXand MEM has computed a value that is needed bythe current instruction by comparing their destinationregisters with the source registers of the instructioncurrently in the ID stage. In that case, the stage readsthe data from the respective stages.For the handling of artifact data-
ow and the han-dling of various hazards, ADL provides the stallstatement through which a stage may stall itself. Thestall statement terminates the processing of the cur-rent TAP and the remaining TAPs that handle therest of the machine cycle. As a result, no send state-ment is executed by that stage in that machine cycle.

instruction register ir;stall category mem ic,ld d dep,pool full;(a) procedure ID epiloguebegin if i type[EX]== load type &(dest r[EX]==lop r j dest r[EX]==rop r) thenstall ld d dep;end ID;(b) procedure IF prologuebegin ir=icache[pc];if access complete thenbegin unfreeze; pc=pc+4 endelsebegin freeze; stall mem icl end;end IF;(c) pipeline RSPOOL(RSTA[64]);procedure ID epiloguebegin reserve unit RSTA my pc;if ! access complete then stall pool full;end ID; Figure 4: Handling of Hazards.In addition to the stall statement, ADL also pro-vides statements to reserve a stage, release a stage,and freeze/unfreeze the whole pipeline. When astage is reserved, only the instruction that reservedit may perform a send operation to that stage, andonly this instruction can release it regardless of wherein the pipeline the instruction is at. When a stageexecutes a freeze, all stages except the stage that ex-ecuted the freeze statement will stall and only thestage that executed the freeze statement may laterexecute an unfreeze statement.Examples of hazard handling using these state-ments are shown in Fig. 4. Fig. 4(a) indicates the casewhere the result of a load instruction may be used im-mediately by the next instruction. Such data hazardscannot be overcome by forwarding alone and thereforerequire insertion of pipeline bubbles. The stage in thiscase checks for the condition by examining the con-text of the EX stage and its destination register andstalls appropriately. Because of the stall, the ID stagedoes not execute a send in this cycle. Since the sendoperations of following stages are not e�ected by thestall of prior stages, the EX stage enters the nextcycle in an idle state which is equivalent to introduc-ing a pipeline bubble. An instruction cache miss in apipelined architecture is usually handled by freezingthe machine state. In Fig. 4(b), the instruction fetchstage executes a freeze statement whenever there isa cache miss. A stall is also executed so that the epi-logue will not attempt to execute the send statement.Note that an unfreeze is always executed wheneverthe cache access is successful. Executing an unfreezeon a pipeline which is not frozen is a null operation.In this way, the stage code does not have to be his-tory sensitive. Finally in Fig. 4(c), a structural hazardand its handling is illustrated. The example showsone possible way to implement a uni�ed pool of 64

reservation stations using an array of stages for theTomasulo's algorithm [14]. The ID stage attempts toreserve a unit from the pool of reservation stations. Ifthe reserve statement is unsuccessful, the stage exe-cutes the stall statement.2.2 ISA Speci�cationThe ISA is speci�ed by means of instruction dec-larations which describe the syntax and semantics ofboth the machine instructions and the macro instruc-tions using a uniform syntax given below:instruction-declaration) machine-instruction-declarationj macro-instruction-declarationmachine-instruction-declaration) syntax-part emitbinary-part semantic-partmacro-instruction-declaration) syntax-part macrosemantic-partThere are three major components of the instruc-tion speci�cation. These are the syntax-part, thebinary-part and the semantic part. The syntax partand the binary part together de�ne how the assem-bler should parse instructions and generate the ap-propriate binary encoding of them. The binary partis also used to automatically generate the decoder forthe implementation of the decode statement discussedearlier. The semantic part of a machine instruction de-scription is a list of LRTL segments describing whateach stage should compute when the instruction isprocessed by the stage, whereas the semantic part ofa macro instruction description speci�es how the as-sembler should generate machine instructions from themacro speci�cation.Generation of a binary encoding of an assembly in-struction involves three steps. These are the parsing ofthe assembly instruction, extracting the values of anyinstruction �elds which are derived from the assemblyinstruction, and packing these values in an instructionformat. The instruction format for an instruction isa sequence of �elds making up the instruction word.Some of the instruction formats for the MIPS archi-tecture are shown in Fig. 5(a).ADL de�nes instruction �elds by associating a startbit and �eld width pair with a name. The same pairmay be de�ned multiple times using di�erent namessince the same pair may have a di�erent purpose ina di�erent instruction format. If a �eld has a con-stant value for all the instructions, it is declared to bea constant �eld. Otherwise, it is declared to be oneof the ADL types register, integer or signed integer.Such �elds are considered to be variable �elds. Vari-able �elds typically get their values from the assemblyinstruction when such an instruction is parsed by theassembler. We specify the instruction �elds using thedeclare construct.

31 26 25 21 20 16 15 11 10 6 5 0

op rs rt rd shamt funct R-FORMAT

op target J-FORMAT

31 26 25 0

31 26 25 21 20 16

op rs rt immediate I-FORMAT(a) MIPS formatsdeclare op constant �eld 31 6,rs register �eld 25 5,rt register �eld 20 5,rd register �eld 15 5,shamt integer �eld 10 5,funct integer �eld 5 6,target integer �eld 25 26,immediate integer �eld 15 16,(b) Field declarationsFigure 5: Instruction format speci�cationExamples of �eld declarations for the MIPS instruc-tion formats are given in Fig. 5(b). Field declarationsalone are not su�cient to describe the binary encodingof an instruction. We also need to de�ne which �eldsmake up the instruction (i.e., the instruction format)as well as how their values are computed. Instead ofde�ning separate instruction formats and then map-ping instructions to these formats [4], ADL chooses tospecify the instruction format as part of the instruc-tion's binary part. The binary part of each instructionis represented as a sequence of �eld expressions. A�eld expression is the assignment of a value to a �eldof the instruction. The value assigned to a �eld may bea constant, a constant expression, or it may referencea value to be derived from the assembly instruction bythe syntax-part. The ADL syntax for the syntax-partand the binary-parts of an instruction declaration aregiven below:syntax-part) instruction-mnemonics argument-listargument-list) argument j argument argument-listargument) label-variable j �eldbinary-part) �eld-expressionj �eld-expression binary-part�eld-expression) �eld j �eld = constant j �eld = <fog-list>fog-list) fog-predeclared j fog-list.pure-functionfog-predeclared) label-variable.basej label-variable.offsetj label-variable.absolutej label-variable.deltaj label-variable.segoffsetThe syntax part of an instruction declaration is alist of arguments de�ned to be either label variablesor �elds. A �eld in the argument list means that theassembler should expect to �nd an object of the cor-responding type such as a register or an integer con-stant at the corresponding position of the assemblyinstruction. A label variable represents an address pri-mary. Examples of address primaries include labels,base/o�set pairs, and any constant arithmetic on la-bels. Field expressions given in the binary-part mayquery the values of the arguments of the instructionusing pre-declared functions such as base, o�set, abso-

lute, or delta, or substitute them directly. These val-ues may also be transformed by using pure functionswhich are functions which have a single parameter andreturn a single transformation of this parameter.Let us now see how the assembler could parse aninstruction using the speci�cation shown in Fig. 6 andgenerate the appropriate binary. Since the argumentpart consists of a register �eld (rt), and a label vari-able (address), the assembler expects to �nd a regis-ter name followed by a sequence of tokens which can bereduced to an address primary when a lw mnemonic isdetected. The �eld expressions in the binary part indi-cate that the opcode �eld must be set to the constantvalue of 35, rs �eld must be given the base register ofthe address, and the immediate portion must be giventhe o�set of the address. Since the rt �eld appearsin the argument list, it gets a register number fromthe parsed instruction. ADL representation of binaryencoding is a concise representation and is more natu-ral than the SLED approach [11, 12] since there is noneed for separate opcode tables and constructors.
declare registerrt field

rs register field
immediate signed field
address variablelabel

Instruction
lw rt address

emit opcode=35 rs=<address.base> rt immediate=<address.offset>
attributes (i_type: load_type, dest_r: rt, lop_r: rs)
begin

case ID simm=immediate.[15:1] |< 16 || immediate; end;
lmar=lop + simm;case EX end;

case MEM dest=dcache[lmar]; end;
end;Figure 6: MIPS Load Word InstructionSpecifying Instruction Semantics: The semantic-part of an instruction speci�cation serves two pur-poses. These are the speci�cation of what each stagecomputes when such an instruction is received andinstruction classi�cation so that stages may apply op-erations speci�c to a class of instructions. For exam-ple, branch instructions may be handled by a speci�cstage which requires that the type of an instruction beknown for proper instruction steering.The instruction speci�c operations of stages arespeci�ed using LRTL segments. A LRTL segment isa program segment that consists of register transferlevel statements where each block of such statementsare labeled using a stage name. The syntax of theLRTL segment is depicted below.LRTL-segment) begin labeled-RTL-list endlabeled-RTL-list) labeled-RTL j ; labeled-RTL-listlabeled-RTL) case stage-name RTL-statement-list endThe classi�cation of instructions is achieved usingan optional instruction attributes section where theattributes of the instruction are speci�ed. These at-tributes can be queried by pipeline stages upon receiv-

ing the instruction. Since an attribute of an instruc-tion classi�es an instruction, values of attributes mustbe speci�ed for all the instructions. An instruction at-tribute is a member of the global enumeration de�nedby the attribute declaration given below:attribute-declaration) identi�er:attribute-listattribute-list) name-list j integername-list) identi�er j identi�er , name-listLet us examine the semantic part of the lw instruc-tion declaration shown in Fig. 6. This instruction hasthe i_type attribute load_type, and LRTL segmentsID, EX, and MEM de�ne the operations each of the cor-responding stages. The LRTL segment ID performsa sign extension using powerful ADL bit operations.The sign extension is achieved by repeating the bit 15of the immediate �eld (|< operator) for 16 bits andthen concatenating (|| operator) it with the �eld it-self. The result is then stored into the variable simm.The LRTL segment EX performs an address computa-tion by adding the contents of the variable lop with thesign extended value computed by the ID stage. Simi-larly, the LRTL segment MEM performs a data cacheaccess using the value computed in the EX stage andstores the returned value into the variable dest. Sincewriting back the results of instructions into the reg-ister �le is common for all instructions, this task ishandled by TAPs.The address space of a TAP consists of the globaladdress space implemented by the artifacts and thelocal address space de�ned by the instruction beingcurrently processed. In Fig. 6, the variables simm,dest r, lop are part of the local address space or theinstruction context. When the execution of a TAPis completed, the local address space is transferred toanother TAP instead of being deallocated. Typically,the next TAP that executes in the same context is theTAP belonging to the same stage that has the nextclock label. When the TAP that has the label epilogueis executed, the context is either transferred to theprologue TAP of the same stage or to the prologueTAP of another stage.Macro Instructions: Most compilers available to-day (e.g., gcc) make use of macro instructions in codegeneration. The task of converting these instructionsinto machine instructions is left up to the assembler.ADL handles macro instructions in a manner simi-lar to machine instructions. The syntax part of theinstruction has the same syntax, but no �eld vari-ables are allowed in the argument part, and there isno binary generation part. The macro speci�cationcan be visualized as a procedure where the proce-dure arguments correspond to the instruction argu-ments and the semantic part corresponds to the body

of the procedure. The procedure de�nes what instruc-tion(s) should be generated given a particular set ofarguments. Instructions to be generated are speci�edusing an instruction call statement that generates amachine instruction by passing the values of the �eldsof the instruction as parameters.declare rdest register variable,src2 integer variable,tx integer temporary,ty integer temporary;instruction li rdest src2 macrobegin tx=src2.[31:16];ty=src2.[15:16];if (src2.[31:17] == 0x1��) j (src2.[31:17] == 0) thenori:rt=rdest rs=0 immediate=tyelsebegin lui:rt=rdest immediate=tx;ori:rt=rdest rs=rdest immediate=ty;end;end; Figure 7: Macro Instruction Example.An example macro declaration for the MIPS loadimmediate instruction is shown in Fig. 7. This macrogenerates either a single instruction (ori) or a pair ofinstructions (lui, ori) depending on the size of theimmediate �eld.2.3 Calling Convention Speci�cationThe purpose of the calling convention speci�cationis to enable the simulator to perform external systemcalls on behalf of the simulated program so that op-erating system services can be provided through theoperating system of the host machine.The calling convention speci�cation is based on theformal model and speci�cation language for procedurecalling conventions by Bailey and Davidson [2]. Theirlanguage has been modi�ed so that it �ts the generalstructure of the ADL language. The speci�cation pro-vides a mapping to a register or a memory location,given an argument's position and type in the proce-dure call. Since an argument's value may not havebeen written to the memory cell or to the register �leat the time of the call, we modi�ed the mapping sothat each register identi�er that may be used to passarguments to the callee and each stack alignment areassociated with a supplier procedure. Supplier proce-dures are microarchitecture speci�c procedures thatreturn the value of the argument at the time of thecall. In a pipelined architecture, the supplier proce-dure may return the value from an artifact if there areno instructions in the pipeline that are computing thevalue, or the value may be returned from a stage if thevalue has been computed, but did not yet reach thewrite-back phase. If the value is available and is be-ing returned, the procedure sets the built-in variableaccess-complete to true. In the case that more cy-

calling convention beginargument $4:int p1, $5:int p2, $6:int p3, $7:int p3;$f12:
t p1,$f13:
t p2,$f14:
t p3,$f15:
t p4;unbounded stk4: stk p4, stk8: stk p8;set intregs($4,$5,$6,$7,stk4),intfpregs(<$4,$5>,<$6,$7>,<stk8,st4>),fpfpregs (<$f12,$f13>,<$f14,$f15>,<stk8,stk4>);equivalence ($4,$f12), ($5,$f12), ($6,$f14), ($7,$f14);typeset singleword(int, void *, ...), doubleword(double, ...);map argument.type beginsingleword : intregs;doubleword : map argument[1].type beginsingleword: intfpregs;doubleword: fpfpregs;end map;end map;prototypes beginreference errno, sys errlist ...double cosh(double); int printf(int,...);end;end calling convention;procedure int p1()beginint p1=gpr[4];access complete=(has context EX jhas context MEM j has context WB)==0;end int p1;Figure 8: MIPS Calling Convention Speci�cationcles are necessary before the value becomes available,the access-complete variable is set to false. An ex-ample calling convention speci�cation for the MIPSarchitecture is given in Fig. 8.In the prototypes section the prototypes of externalprocedure and the data references are de�ned whichcan be renamed to provide greater portability. argu-ment declarations, set declarations and map declara-tion together de�ne a supplier given an argument'sposition and the type. Argument declarations asso-ciate either a register name with a supplier procedurename, or a stack alignment name with a supplier pro-cedure. For example, in Fig. 8, argument register $4 isassociated with the supplier procedure int_p1. Stackalignment names are declared using the unboundedkeyword and correspond to an unlimited pool of argu-ment values starting at a given alignment of the framepointer for the architecture. Supplier procedures forstack alignment names do the required alignment �rstand return the �rst word at the indicated location.The register names and stack alignment names givenas part of the argument declarations are called argu-ment locations.Set declarations create ordered pools of argumentsbased on types. In our example, the set intregs cre-ates a pool of argument values which consists of fourinteger registers and an unbounded pool of stack loca-tions. Thus, a call site that requires six integer argu-ments would �nd the values of its �rst four argumentsin the registers $4, $5, $6, $7, and the remainingtwo on the stack. In some architectures, if one reg-ister is used, some other registers can no longer be

used for the following arguments. For example, in theMIPS architecture, if the
oating point register $12 isallocated, integer registers $4 and 5 cannot be usedto pass the following integer arguments. The speci�ca-tion handles this problem by creating equivalence setsgiven by the equivalence declaration. Register pairslisted in an equivalence declaration are removed to-gether from the respective sets when one of them isallocated.Typeset declarations group variable types thatmap to the same sized objects. Once the sets andtypesets are de�ned, a map declaration creates a map-ping from typesets to sets. For each argument type,�rst the typesets are consulted to �nd the correspond-ing typeset. Next the typeset is supplied to the mapconstruct to �nd the set from which the argumentvalue(s) should be obtained. These sets are consumedone by one for each argument value that is needed.The map declaration in the example in Fig. 8 speci-�es that any arguments which have a type listed inthe singleword typeset will consume the set intregswhile those which are members of the doubleword setselect the set based on the type of the �rst argument.The calling convention speci�cation when complied,provides an interface that returns a list of supplier pro-cedures given a call site which is used by the simulatorto assemble the argument values, perform the externalcall and return the values to the simulated program.statistics "Total number of branches %d:",branch count,"Empty slots %d:",empty slots;procedure EX epiloguebegin if i type == branch type1 j i type == branch type0 thenbegin branch count=branch count+1;if op[ID] == 0 thenempty slots=empty slots+1;end;.......end;Figure 9: Language Support for Gathering Statistics2.4 Statistics Collection and DebuggingADL provides support for assisting the user in col-lection of statistics that may be required to evalu-ate the speci�ed architecture. An instruction categorydeclaration is supported using which the user can clas-sify instructions into di�erent categories. The countsfor the number of retired instructions in each of thesecategories are provided to the user by the generatedsimulator. The stall statement may be followed by anoptional stall category name. In this form, the stall isregistered under the mentioned category for the cur-rent instruction and the stall statistics for each of thecategories are reported to the user. This can be help-ful in identifying performance bottlenecks.

More advanced customized statistic collection isalso possible. The ADL programmer can insert state-ments into the ADL program to collect special purposestatistics. For this purpose, ADL provides a statisticsdeclaration which accepts a register name and a formatstring. At the end of execution, the value of the regis-ter is printed using the supplied format. The examplein Fig. 9 shows how one could count the number ofbranch-delay slots which are not �lled with useful in-structions by the compiler. In this example, the TAPfor the EX stage checks if the instruction in EX is abranch instruction and the instruction in the ID stageis a null operation which has an opcode �eld of zero.Interaction with the debugger can also be speci-�ed in an ADL program. The debugger can be en-tered through the ISA speci�cation by using the ADLstatement pause. In general, when an unexpected con-dition is detected, this statement may be used to enterthe debugger. For example, a divide instruction maycheck for a zero operand and execute pause statementas part of an LRTL segment. The registers whose con-tents are desired by the user to be displayed when thedebugger is entered can also be speci�ed in the ADLprogram through the monitor declaration.3 The UPFAST SystemWe have developed a compiler for the ADL lan-guage, a linker/loader, C language libraries and a de-bugger in an integrated system called the University ofPittsburgh Flexible Architecture Simulation Tool, UP-FAST. As shown in Fig. 10(a), the compiler reads inan architecture description in ADL and automaticallygenerates a simulator, an assembler, and a disassem-bler from the given description. The generated simu-lator includes a built-in debugger which can be used todebug the architecture speci�cation and monitor thesimulated architecture. The resulting software is ofgood quality and can be used to compile and simulatelarge benchmark programs. For instance, we have ex-tensively simulated SPEC95 integer and
oating pointbenchmarks on a variety of architecture speci�cations.The UPFAST system has been implemented by oneprogrammer over a period of 18 months using C++.Using UPFAST, we have developed three simulatorsduring a course of an additional three months. Allthe simulators we have developed are based on theMIPS ISA consisting of 84 machine instructions and53 macro instructions. Simulators we have developedinclude a standard �ve stage pipelined MIPS archi-tecture (PIPE), an implementation of the Tomasulo'salgorithm applied to MIPS ISA (TOM), and �nallya simulator for our ongoing research that investigatesa novel microarchitecture called the data forwarding

Template

DisassemblerAssembler

Template

Artifacts
Template Template

Simulator

Assembler

(C++,bison,lex)

Makefile

Simulator

(C++)

Disassembler
(C++)

 Compiler(ADL)

ADLDescription

Machine (a) Main ComponentsSoftware Component LinesADL Compiler 15794Artifacts 1141Shared modules 499Linker template 970Disassembler template 531Assembler template 3915Simulator template 2677Total 25527(b) Number of lines of C++Figure 10: The UPFAST System.architecture (FWD).For each of the architectures we de�ned, relativepercentages and the sizes of various sections of ADLdescriptions are illustrated in Fig. 11(a). While thesizes of the architecture speci�cations are around 6000lines of ADL code, the sizes of the simulators vary fromapproximately 20,000 to 30,000 lines of C++ code.This clearly shows the merit of automatic generation.Since the ADL approach is an instruction oriented ap-proach, a signi�cant portion of the semantics of themachine execution is de�ned as part of the ISA speci-�cation. This accounts for the long ISA speci�cation.The small size of the artifacts section is due to theease with which they can be speci�ed using powerfulADL abstractions.The size of the ADL generated software for eachof the architectures are given in Fig. 11(b). The sizeof the ADL generated software is comparable to handcoded simulators. For example the PIPE simulatorconsisting of 22,063 lines compares well with the ver-sion of the SPIM software that we have that consistsof 20,441 lines of C code. The automatically gener-ated TOM simulator consisting of 30,959 lines com-pares well the SimpleScalar simulator which consistsof 25,000 lines.Simulation speeds of UPFAST simulators also com-pare well with hand coded simulators. The PIPEand TOM simulators execute at average speeds of200,000 and 100,000 simulator cycles/second whilethe SimpleScalar simulator which is comparable withTOM executes with a simulation speed of 150,000 cy-cles/second (both on a 200 MHZ Pentium Pro). Onthe other hand, given that the development time forSimpleScalar simulator was 18 man-months [3], it isobvious that the ADL approach is a cost-e�ective ap-proach.

Component PIPE % TOM % FWD %ISA spec 4549 78.6 4549 73.8 4549 76.6Artifacts 210 3.6 230 3.7 230 3.9�-arch 554 9.6 890 14.4 673 11.3Other 459 8.2 497 8.1 485 8.2Total 5782 6166 5937(a) ADL lines of codeComponent PIPE % TOM % FWD %Assembler 6775 30.7 6775 21.9 6775 35.8Disassm. 1508 6.8 1508 4.9 1508 8.0Simulator 10942 49.6 19834 64.1 7803 41.2Linker-etc 2838 12.9 2842 9.1 2842 15.0Total 22063 30959 18928(b) Generated C++ lines of codeFigure 11: ADL programs and generated softwareReferences[1] J.R. Armstrong and F.G. Gray. Structured Logic De-sign with VHDL. New Jersey: Prentice Hall, 1993.[2] M.W. Bailey and J.W. Davidson. A formal modeland speci�cation language for procedure calling con-ventions. In 22nd ACM Symp. on Principles of Pro-gramming Languages, pages 298{310, 1995.[3] D.C. Burger and T.M. Austin. The SimpleScalar ToolSet, V. 2.0. Technical Report 97-1342, Computer Sci.Dept., Univ. of Wisconsin Madison, 1997.[4] T.A. Cook and E.A. Harcourt. A functional spec-i�cation language for instruction set architectures.In Proc. 1994 International Conference on ComputerLanguages, pages 11{19, 1994.[5] L. Hu�man and D. Graves. MIPSpro Assembly Lan-guage Programmers Manual. Silicon Graphics Corp.,Doc. 007-2418-002, 1996.[6] J.R. Larus. SPIM S20: A MIPS R2000 Simulator.Technical Report 90-966, Computer Sci. Dept., Univ.of Wisconsin Madison, 1990.[7] J.D. Morison and A.S. Clarke. ELLA2000 A languagefor Electronic System Design. McGraw-Hill, 1993.[8] C. Moura. SuperDLX a generic superscalar simula-tor. Technical Report 64, School of Computer Science,McGill University, 1993.[9] D.L. Perry. VHDL. McGraw-Hill, 1991.[10] C. Price. MIPS IV Instruction Set Revision 3.2. MIPSTechnologies Inc., September 1995.[11] N. Ramsey and M.F. Fernandez. The new jerseymachine-code toolkit. In Proc. 1995 USENIX Tech-nical Conference, January 1995.[12] N. Ramsey and M.F. Fernandez. Specifying repre-sentations of machine instructions. ACM Trans. onProgramming Lang. and Systems, 1997.[13] D.E. Thomas and P.R. Moorby. The Verilog HardwareDescription Language. Kluwer Academic Publishers,1991.[14] R.M. Tomasulo. An e�cient algorithm for exploitingmultiple arithmetic units. IBM Journal of Researchand Development, 11:25{33, 1967.

