Automatic Generation of Microarchitecture Simulators*

Soner Onder

Rajiv Gupta

Department of Computer Science
University of Pittsburgh
Pittsburgh PA 15260
{soner,gupta}@cs.pitt.edu

Abstract

In this paper we describe the UPFAST system that
automatically generates a cycle level simulator, an
assembler and a disassembler from a microarchitec-
ture specification written in a domain specific language
called the Architecture Description Language (ADL).
Using the UPFAST system it is easy to retarget a sim-
ulator for an existing architecture to a modified archi-
tecture since one has to simply modify the input spec-
ification and the new simulator is generated automat-
ically. UPFAST also allows porting of simulators to
different platforms with minimal effort. We have been
able to develop three simulators ranging from simple
pipelined processors to complicated out-of-order issue
processors over a short period of three months. While
the specifications of the architectures varied from 5000
to 6000 lines of ADL code, the sizes of automatically
generated software varied from 20,000 to 30,000 lines
of C++ code. The automatically generated simulators
are less than 2 times slower than hand coded simula-
tors for similar architectures.

1 Introduction

The realization of processor architectures in silicon
is an expensive endeavor. Thus before a new proces-
sor is actually built, extensive simulation studies are
carried out to estimate the expected performance of
the microarchitecture on a variety of benchmark pro-
grams. The evaluation process requires collection of
cycle level statistics. Typically the simulations must
be carried out for millions of machine cycles so that
general conclusions can be drawn regarding the perfor-
mance of the microarchitecture with confidence. Thus
to support the development of new processors, tools
are required to enable rapid development of cycle level
simulators that are fast enough to carry out extensive
simulation studies.

*This work is supported by NSF PYI Award CCR-9157371,
NSF grant CCR-9402226, and grants from Intel Corporation
and HP Labs to the University of Pittsburgh.

A commonly used approach for developing simu-
lators is their hand coding in a general purpose lan-
guage such as C. Examples of some popular simula-
tors which were developed using this approach include
the SPIM simulator for the MIPS architecture [6], the
SimpleScalar simulator [3], and the SuperDLX simu-
lator [8]. The hand coding of simulators is a substan-
tial task which typically takes between 12 to 24 man
months. Once developed, such simulators are difficult
to retarget to a modified microarchitecture or an in-
struction set architecture without a significant amount
of effort. Another problem that one encounters is the
difficulty in porting these simulators to different plat-
forms. The portability issue arises due to the need for
handling of external system calls that are made by the
benchmarks being run. Solutions that either disallow
such calls or allow external calls but sacrifice portabil-
ity by allowing the simulator to run only on a specific
platform (e.g., SPIM) are undesirable.

An alternative to hand coding a simulator is to
generate it automatically from a machine specifica-
tion written in a domain specific language. Automatic
generation not only significantly shortens the develop-
ment cycle, it also allows retargeting since modifica-
tions in the architecture can be made at the specifi-
cation level and the new simulator can then be au-
tomatically generated. Although a number of hard-
ware description languages [1, 7, 9, 13] are available,
these languages are not suitable for developing cycle
level simulators. These languages are capable of defin-
ing the hardware to the smallest detail and result in
simulators that are orders of magnitude slower than
cycle level simulators. The retargeting of simulators
requires significant effort and no solution to the porta-
bility problem is offered by these languages.

In order to allow rapid prototyping of simulators we
have designed a domain specific language for specify-
ing processor microarchitectures called the Architec-
ture Description Language (ADL) and implemented
this language in the University of Pittsburgh Flexible

Architecture Simulation Tool (UPFAST). We support
both retargeting and portability of simulators. The key
contributions of our work are:

1. The ADL language has been designed to support an
execution model that is suitable for expressing a broad
class of processor architectures. It provides constructs
for specifying the following: (a) the microarchitecture;
(b) the instruction set architecture (ISA), the assem-
bly language syntax and the binary representation; (c)
a mapping between the calling convention of the simu-
lated architecture and the machine that hosts the sim-
ulator to enable the simulator to make external calls;
(d) commands for the collection of statistics; (e) in-
vocations of the debugger and monitoring commands
to identify information for display during debugging.
2. The UPFAST system has been developed to al-
low automatic generation of the cycle level simulators
and other support tools. The system provides: (a)
an implementation of a compiler for ADL; (b) auto-
matic generation of the assembler, disassembler and
loader/linker; (c) a cycle level assembly language de-
bugger; and (d) support for displaying statistics and
monitored information.

3. We have obtained some experience with the system
by developing three different simulators based upon
the MIPS ISA in three months [10, 5]. The specifi-
cations of the architectures varied from 5000 to 6000
lines of ADL code while the sizes of automatically gen-
erated software varied from 20,000 to 30,000 lines of
C++ code. Our automatically generated simulators
are comparable in size and less than 2 times slower
than hand coded ones.

2 Architecture Description Language

An ADL program primarily consists of the descrip-
tion of a processor architecture which includes the
specification of the instruction set architecture as well
as the organization of the components of the microar-
chitecture. Before we describe ADL in detail, let us
first consider the model of execution used by ADL to
express the operation of an architecture and highlight
some of its design characteristics:

Explicit Instruction Flow and Instruction Con-
text: In ADL the flow of instructions through the
architectural components is explicit. The data asso-
ciated with an instruction under execution is called
the instruction contert. The context is passed from
one component to the next and is operated upon by
the components till the execution of the instruction is
complete. The context is allocated when the instruc-
tion enters the pipeline and is deallocated when the
instruction retires.

— Major Cycle

—1 | J— |
F Minor Ojcle—>i<* Minor O/cle—>3

I
I I
=— Minor Cycle=r Minor Cycle
' I-1 ' |

I I

1 I I
(Prologue) i+ (Intermission 1) 1 " (Intermission2) '

Figure 1: ADL Clock Labeling

The Machine Clock: The notion of machine
clock is built into the language and the operation of
the architectural components is described with respect
to this clock. The machine clock is viewed as a series
of pulses. Each discrete pulse is called a minor cycle,
and a number of minor cycles are grouped together
to form a machine cycle. The minor cycles in ADL
are represented by a series of labels. The first and the
last minor cycles of a machine cycle are labeled as the
prologue and the epilogue and those in between are la-
beled as intermissions. The actions of each component
in the system during a machine cycle are divided into
the operations that it performs in each of the minor
cycles. During the prologue a component receives an
instruction context from another component for pro-
cessing, during the intermissions it operates upon the
instruction context, and during the epilogue it sends
the modified context to another component. Fig. 1
shows the clock of a machine in which the major cycle
is composed of A minor cycles.

(Epilogue)

Artifacts and Processing Stages: The architec-
tural components are divided into two categories: ar-
tifacts are components with standard well known se-
mantics that are directly supported by the language
and stages are components whose semantics must be
explicitly specified as part of the ADL program.

Examples of artifacts include caches, memory units,
and register files. Since they are directly supported by
ADL as built-in types, the programmer can use them
by simply declaring objects of these types in an ADL
program. Access to artifacts takes the form of assign-
ments to and from the artifact variables. Different
implementations of these components can be used by
specifying different attribute values for the artifacts.
The interaction of an artifact with the machine clock
is also specified as a list of attributes.

Processing stages are architectural components
that exhibit a significant functional variety. Their op-
eration is dependent on the microarchitecture as well
as the current instruction being processed. Further-
more, the function such an element performs is tightly
coupled with the system clock and the status of other
components in the system. Thus, it is not feasible to
follow a declarative approach for stages but instead
the user must explicitly specify their semantics using
Register Transfer Level (RTL) statements.

Separation of Instruction Set Architecture and
Microarchitecture Specification: The ISA speci-
fication is separated from the microarchitecture spec-
ification to facilitate the development of different mi-
croarchitecture implementations for the same ISA or
extend an ISA by adding new instructions without al-
tering the microarchitecture. The above separation
has the following consequence on the specification of
stage semantics. The RTL statements describing the
semantics of stages are divided into two components:
the general component that is common to all instruc-
tions and the ISA-component which depends upon the
specific instruction being processed. The former is
specified in the microarchitecture description while the
latter is included as part of the ISA specification.
Time Annotated Actions and Parallelism in
the Microarchitecture: The specification of the ac-
tions associated with the execution of specific instruc-
tions as well as the actions associated with various
architectural components are annotated with timing
information so that it can be determined when they
are to be performed.

The procedures that implement the general com-
ponent of actions associated with a processing stage
carry the name of the stage and the label of the mi-
nor clock cycle during which they are to be executed.
Such procedures are referred to as time annotated pro-
cedures (TAPs). Since there are A minor cycles, there
may be up to A TAPs for a given stage. The ISA-
component associated with an instruction is labeled
with the name of the processing stage and optionally
with the label of the minor cycle during which it must
be executed. These statements are referred to as la-
beled register transfer level (LRTL) segments.

Microarchitecture parallelism is achieved by execut-
ing in each machine cycle the actions associated with
each component as well as actions associated with an
instruction that are annotated with the current cy-
cle. The machine execution is realized by invoking
each TAP corresponding to a minor cycle as the clock
generates the corresponding label and the parallel op-
eration of individual components is modeled by con-
currently executing all TAPs which have the same an-
notation. During this process, LRTL segments cor-
responding to the currently processed instruction are
fused together with the corresponding TAP. The ma-
chine operation is as follows:

do forever
for clock.label := prologue, intermission 1, ...
intermission (A — 2), epilogue do
YV TAP, TAP.annotation = clock.label do
{ process {TAP; TAP.instruction.LRTL } }
end

| | |
| | Forwardirg paths | |
I T T I I
v t v t v ‘ v v
‘ IF I——>‘ ID I——>‘ EX I——> MEM I——>‘ WwB
Data
Instruction Register Cache
Cache File Ly
T [[| Pipeline register
- Data
Port 0 "
Pipeline st:
MEMORY Port 1 Cache peline stzge
= L2 Artifact

Figure 2: A Simple Pipelined Processor

2.1 Microarchitecture Specification

The specification of the microarchitecture consists
of describing the artifacts of the architecture, declar-
ing pipelines involved and their stages, specifying in-
struction contexts, and finally defining TAPs for each
of the stages. In the following sections, we will use a
simple pipelined architecture shown in Fig. 2 to dis-
cuss each of these steps. In this architecture, the in-
struction fetch stage (IF) fetches instructions from the
instruction cache and ships them to the instruction
decode (ID) stage. ID stage decodes the instructions
it receives, fetches their operands from the register
file, and sends them to the execution unit (EX). The
memory access (MEM) stage performs a data mem-
ory access for the load and the store instructions, but
other instructions pass through this stage unchanged.
Finally, the write back (WB) stage writes the results
back to the register file. In order to eliminate pipeline
stalls that would otherwise result, data values are for-
warded through forwarding paths to the earlier stages.
Artifacts: Artifacts are hardware objects with well-
established operational semantics and they are sup-
ported as built-in types by the language. A declara-
tion of an artifact supplies the values of the attributes
of the artifact to derive a specific implementation of
the artifact. For an artifact, we also specify how long
does it take to process a single request in terms of
clock cycles (i.e., the latency), the rate at which new
requests can be issued to the artifact (i.e., the repeat
rate), and the maximum number of requests that can
be outstanding in a clock cycle (i.e., the number of
ports). The list of the different types of artifacts sup-
ported by the language is given below.

artifact-declaration = register-declaration
| register-file-declaration
| memory-port-declaration
| cache-declaration
| buffer-declaration
| token-declaration

A register declaration declares an artifact of type
simple register while a register file declaration declares
an array of registers. Registers and register files may

be given the attribute shadow which makes them in-
visible to the instruction set. ADL allows definition
of one or more aliases for the individual register file
entries. A memory declaration defines a memory port
with a given access latency in units of machine cycles
and a data path width in units of bits. For the cache
artifact, attribute values include degree of set associa-
tivity, the kind of replacement strategy, and whether
it is a write-back or write-through cache. Memories,
caches and buffers have an important property of be-
ing stackable. This property is required for building
memory hierarchies. When an artifact is declared, the
name of the artifact immediately lower in the hierar-
chy is mentioned using the of clause, effectively placing
the new artifact higher in the hierarchy.

shadow register temp 16; # A 16 bit temporary register.
register file gpr [32,32] # 32 registers,32 bits each.
$zero 0, # $zero is another alias for gpr[0]

$at 1, # $at is another alias for gpr[i]
$sp 29,
$ra 31;

memory mportO latency 12 width 64, # 64 bit path to memory.
mportl latency 12 width 64; # 64 bit path to memory.
instruction cache icache of mportO directmapped 64 kb 4 wpl;
data cache 12 of mportl directmapped 64 kb 4 wpl,
11 of 12 4 way 8 kb 4 wpl;

Figure 3: Example artifact declarations

A sequence of artifact declarations for the example
pipelined architecture of Fig. 2 is shown in Fig. 3. The
first declaration declares a temporary register invisible
from the instruction set. Next a register file gpr is de-
clared and individual registers in the file are assigned
aliases. RTL statements may use either form of access
(i.e., gpr[31] or $ra). The declaration specifies two
memory ports with 12 cycles of access latency and 64
bit data paths. The memory port mport0 hosts a di-
rect mapped instruction cache of 64 kilobytes with 4
words per cache line. Memory port mport1 hosts a di-
rect mapped cache of similar attributes and this direct
mapped cache in turn services a four way set associa-
tive cache of size 8 kilobytes. Thus, the cache L1 is
at the highest level in the hierarchy and the memory
ports are at the lowest level.

Once declared, artifacts are accessed just like vari-
ables by the RTL statements in the specification. For
complicated structures, such as data caches, passing
of additional parameters may be required. For ex-
ample, in order to store a single byte to the L1 cache,
and retrieve a halfword, the following sequence of RTL
statements could be used:

11. (_BYTE) [addr] = data_value;
data_value = 11.(_HALFWORD) [addr];

When an artifact is accessed, the status of the re-
sult is queried using the access-complete statement.

This statement returns a true value if the operation
has been completed successfully, and a false value oth-
erwise. A false value may be returned because the ar-
tifact is slow, such as in the case of memory-ports, or
because there is a structural hazard. In these cases
the request must be repeated. Further details of why
the operation was not successful may be queried using
additional statements.

Processing Stages and Instruction Context
Declarations: The primary means of declaring
stages of the microarchitecture is the pipeline decla-
ration. A pipeline declaration specifies an ordering
among pipeline stages such that each stage receives
an instruction context from the preceding stage and
sends the processed context to a later stage. There
may be more than one pipeline declaration in an ADL
program but the stage names must be unique. Once a
stage is declared using a pipeline construct, TAPs may
be specified for each of the stages and semantic sec-
tions of instruction declarations may utilize the stage
names as LRTL labels. The following declaration de-
fines the pipeline for the example architecture:

pipeline ipipe (IF, ID, EX, MEM, WB);

In ADL, the set of data values carried along with
pipeline stages are grouped together in a structure
called controldata. There is only one such decla-
ration, which means all stages have the same type of
context, and the instruction contextis the union of the
data required by all the pipeline stages in the system.
While in a hardware implementation pipeline stages
may carry different types of contexts, definition of in-
struction context in this way simplifies the transfer
and handling of instruction contexts in the simulator.
Since there is a uniform single instruction context for
all pipeline stages, each pipeline stage name is also an
object of type controldata. The following is a simple
controldata declaration for a pipelined machine:

controldata register
my_pc 32, # Instruction pointer for the instruction.
simm 32, # Sign extended immediate.

Aé;; 32, # dest holds the value to be written.

lop 32, # lop holds the left operand value.

rop 32; # rop holds the right operand value.

Elements of the controldata structure may be ac-
cessed from TAPs and by the semantic parts of in-
struction declarations (i.e., LRTLs). Access to the
elements of the structure may be qualified or unqual-
ified. When they are not qualified, the pipeline stage
is the stage of the TAP that performs the reference or
the label associated with the LRTL segment that per-
forms the reference. In its qualified form, the syntax
controldata-element [stage-name] is used to access
the instruction context of another stage. This form is

primarily used to implement internal data forwarding
by either the source stage writing into the context of
the sink stage or the sink stage reading the data from
the context of the source stage.

Specifying Control and TAPs: The machine con-
trol is responsible for checking the conditions for mov-
ing the pipeline forward, forwarding the instruction
context from one stage to the next, controlling the
flow of data to and from the artifacts, and introduc-
ing stalls for resolving data, control, and structural
hazards. In ADL, the semantics of the control part of
the architecture is specified in a distributed fashion as
parts of TAPs by indicating how and when instruction
contexts are transferred from one stage to another.

The movement of an instruction context through
the pipeline is accomplished using the send statement
which is executed during the epilogue minor cycle by
all the pipeline stages. The send is successful if the
destination stage is in the idle state or it is also ex-
ecuting a send statement in the same cycle. Typ-
ically, an instruction context is allocated by the first
pipeline stage using the ADL statement new-context.
It is filled in using the decode statement which de-
codes the contents of the instruction register and es-
tablishes a mapping from the current context to an
instruction name. Once decoded, all the attributes of
the instruction become read-only controldata vari-
ables. When this stage finishes its processing, it exe-
cutes the send statement to send the context to the
downstream pipeline stage. When a context reaches
the last pipeline stage it is deallocated using the ADL
statement retire. If any of the pipeline stages does
not execute a send, send operations of the preceding
stages fail. In this case, they repeat their send opera-
tions at the end of next cycle.

The conditions for internal data forwarding can be
easily checked by the stage that needs the data. For
example, the TAP for the ID stage in the example
pipelined machine may check if any of the stages EX
and MEM has computed a value that is needed by
the current instruction by comparing their destination
registers with the source registers of the instruction
currently in the ID stage. In that case, the stage reads
the data from the respective stages.

For the handling of artifact data-flow and the han-
dling of various hazards, ADL provides the stall
statement through which a stage may stall itself. The
stall statement terminates the processing of the cur-
rent TAP and the remaining TAPs that handle the
rest of the machine cycle. As a result, no send state-
ment is executed by that stage in that machine cycle.

instruction register ir;
stall category mem-_ic,ld_d_dep,pool_full;

(a) procedure ID epilogue

begin if i_type[EX]== load-type &
(dest_r[EX]==lop_r | dest_r[EX]==rop_r) then
stall 1d_d-dep;

end ID;

(b) procedure IF prologue
begin ir=icache[pc];
if access_complete then
begin unfreeze; pc=pc+4 end
else
begin freeze; stall mem_icl end;
end IF;
(c) pipeline RSPOOL(RSTA[64]);
procedure ID epilogue
begin reserve_unit RSTA my_pc;
if | access_complete then stall pool_full;

end ID; . .

Figure 4: Handling of Hazards.

In addition to the stall statement, ADL also pro-
vides statements to reserve a stage, release a stage,
and freeze/unfreeze the whole pipeline. When a
stage is reserved, only the instruction that reserved
it may perform a send operation to that stage, and
only this instruction can release it regardless of where
in the pipeline the instruction is at. When a stage
executes a freeze, all stages except the stage that ex-
ecuted the freeze statement will stall and only the
stage that executed the freeze statement may later

execute an unfreeze statement.

Examples of hazard handling using these state-
ments are shown in Fig. 4. Fig. 4(a) indicates the case
where the result of a load instruction may be used im-
mediately by the next instruction. Such data hazards
cannot be overcome by forwarding alone and therefore
require insertion of pipeline bubbles. The stage in this
case checks for the condition by examining the con-
text of the EX stage and its destination register and
stalls appropriately. Because of the stall, the ID stage
does not execute a send in this cycle. Since the send
operations of following stages are not effected by the
stall of prior stages, the EX stage enters the next
cycle in an idle state which is equivalent to introduc-
ing a pipeline bubble. An instruction cache miss in a
pipelined architecture is usually handled by freezing
the machine state. In Fig. 4(b), the instruction fetch
stage executes a freeze statement whenever there is
a cache miss. A stall is also executed so that the epi-
logue will not attempt to execute the send statement.
Note that an unfreeze is always executed whenever
the cache access is successful. Executing an unfreeze
on a pipeline which is not frozen is a null operation.
In this way, the stage code does not have to be his-
tory sensitive. Finally in Fig. 4(c), a structural hazard
and its handling is illustrated. The example shows
one possible way to implement a unified pool of 64

reservation stations using an array of stages for the
Tomasulo’s algorithm [14]. The ID stage attempts to
reserve a unit from the pool of reservation stations. If
the reserve statement is unsuccessful, the stage exe-
cutes the stall statement.

2.2 ISA Specification

The ISA is specified by means of instruction dec-
larations which describe the syntax and semantics of
both the machine instructions and the macro instruc-
tions using a uniform syntax given below:

instruction-declaration = machine-instruction-declaration
| macro-instruction-declaration
machine-instruction-declaration = syntaz-part emit
binary-part semantic-part
= syntaz-part macro
semantic-part

macro-instruction-declaration

There are three major components of the instruc-
tion specification. These are the syntaz-part, the
binary-part and the semantic part. The syntax part
and the binary part together define how the assem-
bler should parse instructions and generate the ap-
propriate binary encoding of them. The binary part
is also used to automatically generate the decoder for
the implementation of the decode statement discussed
earlier. The semantic part of a machine instruction de-
scription is a list of LRTL segments describing what
each stage should compute when the instruction is
processed by the stage, whereas the semantic part of
a macro instruction description specifies how the as-
sembler should generate machine instructions from the
macro specification.

Generation of a binary encoding of an assembly in-
struction involves three steps. These are the parsing of
the assembly instruction, extracting the values of any
instruction fields which are derived from the assembly
instruction, and packing these values in an instruction
format. The instruction format for an instruction is
a sequence of fields making up the instruction word.
Some of the instruction formats for the MIPS archi-
tecture are shown in Fig. 5(a).

ADL defines instruction fields by associating a start
bit and field width pair with a name. The same pair
may be defined multiple times using different names
since the same pair may have a different purpose in
a different instruction format. If a field has a con-
stant value for all the instructions, it is declared to be
a constant field. Otherwise, it is declared to be one
of the ADL types register, integer or signed integer.
Such fields are considered to be variable fields. Vari-
able fields typically get their values from the assembly
instruction when such an instruction is parsed by the
assembler. We specify the instruction fields using the
declare construct.

‘ op ‘ s ‘ r ‘ rd ‘ shami‘ funct ‘ R-FORMAT

31 26 25 21 20 16 15 11 10 6 5 0

‘ op ‘ target ‘ JFORMAT

31 26 25 0

rs ‘ it ‘ immediate ‘ I-FORMAT

31 26 25 21 20 16

(a) MIPS formats

declare op constant field 31 6,
rs register field 25 5,
rt register field 20 5,
rd register field 15 5,
shamt integer field 10 5,
funct integer field 5 6,
target integer field 25 26,

immediate integer field 15 16,
(b) Field declarations
Figure 5: Instruction format specification

Examples of field declarations for the MIPS instruc-
tion formats are given in Fig. 5(b). Field declarations
alone are not sufficient to describe the binary encoding
of an instruction. We also need to define which fields
make up the instruction (i.e., the instruction format)
as well as how their values are computed. Instead of
defining separate instruction formats and then map-
ping instructions to these formats [4], ADL chooses to
specify the instruction format as part of the instruc-
tion’s binary part. The binary part of each instruction
is represented as a sequence of field expressions. A
field expression is the assignment of a value to a field
of the instruction. The value assigned to a field may be
a constant, a constant expression, or it may reference
a value to be derived from the assembly instruction by
the syntax-part. The ADL syntax for the syntax-part
and the binary-parts of an instruction declaration are
given below:

= wnstruction-mnemonics argument-list
= argument | argument argument-list

= label-variable | field

= field-expression

| field-ezpression binary-part
field-expression = field | field = constant | field = <fog-list>
fog-list = fog-predeclared | fog-list .pure-function
fog-predeclared = label-variable .base

| label-variable .offset

| label-variable .absolute

| label-variable .delta

| label-variable .segoffset

syntaz-part
argument-list
argument
binary-part

The syntax part of an instruction declaration is a
list of arguments defined to be either label variables
or fields. A field in the argument list means that the
assembler should expect to find an object of the cor-
responding type such as a register or an integer con-
stant at the corresponding position of the assembly
instruction. A label variable represents an address pri-
mary. Examples of address primaries include labels,
base/offset pairs, and any constant arithmetic on la-
bels. Field expressions given in the binary-part may
query the values of the arguments of the instruction
using pre-declared functions such as base, offset, abso-

lute, or delta, or substitute them directly. These val-
ues may also be transformed by using pure functions
which are functions which have a single parameter and
return a single transformation of this parameter.

Let us now see how the assembler could parse an
instruction using the specification shown in Fig. 6 and
generate the appropriate binary. Since the argument
part consists of a register field (rt), and a label vari-
able (address), the assembler expects to find a regis-
ter name followed by a sequence of tokens which can be
reduced to an address primary when a 1w mnemonic is
detected. The field expressions in the binary part indi-
cate that the opcode field must be set to the constant
value of 35, rs field must be given the base register of
the address, and the immediate portion must be given
the offset of the address. Since the rt field appears
in the argument list, it gets a register number from
the parsed instruction. ADL representation of binary
encoding is a concise representation and is more natu-
ral than the SLED approach [11, 12] since there is no
need for separate opcode tables and constructors.
oy

rs
immediate signed field
address |abel variable

declare rt

Instruction
Iw rt address

emit opcode=35 rs=<address.base> rt immediate=<address.offset>

attributes (i_type: load_type, dest_r: rt, lop_r: rs)

begin
case|D simm=immediate.[15:1] |< 16 || immediate; end;
case EX Imar=lop + ssimm; end;
case MEM dest=dcache[lmar]; end;

end;

Figure 6: MIPS Load Word Instruction

Specifying Instruction Semantics: The semantic-

part of an instruction specification serves two pur-
poses. These are the specification of what each stage
computes when such an instruction is received and
instruction classification so that stages may apply op-
erations specific to a class of instructions. For exam-
ple, branch instructions may be handled by a specific
stage which requires that the type of an instruction be
known for proper instruction steering.

The instruction specific operations of stages are
specified using LRTL segments. A LRTL segment is
a program segment that consists of register transfer
level statements where each block of such statements
are labeled using a stage name. The syntax of the
LRTL segment is depicted below.

LRTL-segment = begin labeled-RTL-list end
labeled-RTL-list = labeled~-RTL | ; labeled-RTL-list
labeled-RTL = case stage-name RTL-statement-list end

The classification of instructions is achieved using
an optional instruction attributes section where the
attributes of the instruction are specified. These at-
tributes can be queried by pipeline stages upon receiv-

ing the instruction. Since an attribute of an instruc-
tion classifies an instruction, values of attributes must
be specified for all the instructions. An instruction at-
tribute is a member of the global enumeration defined
by the attribute declaration given below:

attribute-declaration = identifier: attribute-list
attribute-list = name-list | integer
name-list = identifier | identifier , name-list

Let us examine the semantic part of the lw instruc-
tion declaration shown in Fig. 6. This instruction has
the i_type attribute load_type, and LRTL segments
ID, EX, and MEM define the operations each of the cor-
responding stages. The LRTL segment ID performs
a sign extension using powerful ADL bit operations.
The sign extension is achieved by repeating the bit 15
of the immediate field (|< operator) for 16 bits and
then concatenating (|| operator) it with the field it-
self. The result is then stored into the variable simm.
The LRTL segment EX performs an address computa-
tion by adding the contents of the variable lop with the
sign extended value computed by the ID stage. Simi-
larly, the LRTL segment MEM performs a data cache
access using the value computed in the EX stage and
stores the returned value into the variable dest. Since
writing back the results of instructions into the reg-
ister file is common for all instructions, this task is
handled by TAPs.

The address space of a TAP consists of the global
address space implemented by the artifacts and the
local address space defined by the instruction being
currently processed. In Fig. 6, the variables simm,
dest_r, lop are part of the local address space or the
instruction context. When the execution of a TAP
is completed, the local address space is transferred to
another TAP instead of being deallocated. Typically,
the next TAP that executes in the same context is the
TAP belonging to the same stage that has the next
clock label. When the TAP that has the label epilogue
is executed, the context is either transferred to the
prologue TAP of the same stage or to the prologue
TAP of another stage.

Macro Instructions: Most compilers available to-
day (e.g., gcc) make use of macro instructions in code
generation. The task of converting these instructions
into machine instructions is left up to the assembler.
ADL handles macro instructions in a manner simi-
lar to machine instructions. The syntax part of the
instruction has the same syntax, but no field vari-
ables are allowed in the argument part, and there is
no binary generation part. The macro specification
can be visualized as a procedure where the proce-
dure arguments correspond to the instruction argu-
ments and the semantic part corresponds to the body

of the procedure. The procedure defines what instruc-
tion(s) should be generated given a particular set of
arguments. Instructions to be generated are specified
using an instruction cell statement that generates a
machine instruction by passing the values of the fields
of the instruction as parameters.

declare rdest register variable,
src2 integer variable,
tx integer temporary,
ty integer temporary;
instruction li rdest src2 macro
begin tx=src2.[31:16];
ty=src2.[15:16];
if (src2.[31:17] == Ox1ffff) | (src2.[31:17] == 0) then
oricrt=rdest rs=0 immediate=ty
else
begin lui:rt=rdest immediate=tx;
ori:rt=rdest rs=rdest immediate=ty;
end;
end;

Figure 7: Macro Instruction Example.

An example macro declaration for the MIPS load
immediate instruction is shown in Fig. 7. This macro
generates either a single instruction (ori) or a pair of
instructions (lui, ori) depending on the size of the
immediate field.

2.3 Calling Convention Specification

The purpose of the calling convention specification
is to enable the simulator to perform external system
calls on behalf of the simulated program so that op-
erating system services can be provided through the
operating system of the host machine.

The calling convention specification is based on the
formal model and specification language for procedure
calling conventions by Bailey and Davidson [2]. Their
language has been modified so that it fits the general
structure of the ADL language. The specification pro-
vides a mapping to a register or a memory location,
given an argument’s position and type in the proce-
dure call. Since an argument’s value may not have
been written to the memory cell or to the register file
at the time of the call, we modified the mapping so
that each register identifier that may be used to pass
arguments to the callee and each stack alignment are
associated with a supplier procedure. Supplier proce-
dures are microarchitecture specific procedures that
return the value of the argument at the time of the
call. In a pipelined architecture, the supplier proce-
dure may return the value from an artifact if there are
no instructions in the pipeline that are computing the
value, or the value may be returned from a stage if the
value has been computed, but did not yet reach the
write-back phase. If the value is available and is be-
ing returned, the procedure sets the built-in variable
access-complete to true. In the case that more cy-

calling_convention begin
argument $4:int_p1, $5:int_p2, $6:int_p3, $7:int_p3;
$12:1t_p1,$f13:it_p2,$f14:ft_p3,$f15:ft_p4;
unbounded stk4: stk_p4, stk8: stk_p8;
set intregs($4,$5,$6,$7,stk4),
intfpregs(<$4,$5>,<$6,37>,<stk8,st4>),
fpfpregs (<$f12,$f13>,<$f14,$f15>,<stk8,stkd>);
equivalence ($4,$f12), ($5,$f12), ($6,$f14), ($7,$f14);
typeset singleword(int, void *, ...), doubleword(double, ...);
map argument.type begin
singleword : intregs;
doubleword : map argument[1].type begin
singleword: intfpregs;
doubleword: fpfpregs;
end map;
end map;
prototypes begin
reference errno, sys_errlist ...
double cosh(double); int printf(int,...);
end;
end calling_convention;
procedure int_p1()
begin
int_pl=gpr[4];
access_complete=(has_context EX |
has_context MEM | has_context WB)==0;
end int_pl;

Figure 8: MIPS Calling Convention Specification

cles are necessary before the value becomes available,
the access-complete variable is set to false. An ex-
ample calling convention specification for the MIPS
architecture is given in Fig. 8.

In the prototypes section the prototypes of external
procedure and the data references are defined which
can be renamed to provide greater portability. argu-
ment declarations, set declarations and map declara-
tion together define a supplier given an argument’s
position and the type. Argument declarations asso-
ciate either a register name with a supplier procedure
name, or a stack alignment name with a supplier pro-
cedure. For example, in Fig. 8, argument register $4 is
associated with the supplier procedure int_p1. Stack
alignment names are declared using the unbounded
keyword and correspond to an unlimited pool of argu-
ment values starting at a given alignment of the frame
pointer for the architecture. Supplier procedures for
stack alignment names do the required alignment first
and return the first word at the indicated location.
The register names and stack alignment names given
as part of the argument declarations are called argu-
ment locations.

Set declarations create ordered pools of arguments
based on types. In our example, the set intregs cre-
ates a pool of argument values which consists of four
integer registers and an unbounded pool of stack loca-
tions. Thus, a call site that requires six integer argu-
ments would find the values of its first four arguments
in the registers $4, $5, $6, $7, and the remaining
two on the stack. In some architectures, if one reg-
ister is used, some other registers can no longer be

used for the following arguments. For example, in the
MIPS architecture, if the floating point register $12 is
allocated, integer registers $4 and 5 cannot be used
to pass the following integer arguments. The specifica-
tion handles this problem by creating equivalence sets
given by the equivalence declaration. Register pairs
listed in an equivalence declaration are removed to-
gether from the respective sets when one of them is
allocated.

Typeset declarations group variable types that
map to the same sized objects. Once the sets and
typesets are defined, a map declaration creates a map-
ping from typesets to sets. For each argument type,
first the typesets are consulted to find the correspond-
ing typeset. Next the typeset is supplied to the map
construct to find the set from which the argument
value(s) should be obtained. These sets are consumed
one by one for each argument value that is needed.
The map declaration in the example in Fig. 8 speci-
fies that any arguments which have a type listed in
the singleword typeset will consume the set intregs
while those which are members of the doubleword set
select the set based on the type of the first argument.

The calling convention specification when complied,
provides an interface that returns a list of supplier pro-
cedures given a call site which is used by the simulator
to assemble the argument values, perform the external
call and return the values to the simulated program.

statistics ” Total number of branches %d:” ,branch_count,
”Empty slots %d:” ,empty slots;
procedure EX epilogue
begin if i_type == branch_typel | i_type == branch_type0 then
begin branch_count=branch_count+1;
if op[ID] == 0 then
empty_slots=empty_slots+1;

end;

Figure 9: Language Support for Gathering Statistics

2.4 Statistics Collection and Debugging

ADL provides support for assisting the user in col-
lection of statistics that may be required to evalu-
ate the specified architecture. An instruction category
declaration is supported using which the user can clas-
sify instructions into different categories. The counts
for the number of retired instructions in each of these
categories are provided to the user by the generated
simulator. The stall statement may be followed by an
optional stall category name. In this form, the stall is
registered under the mentioned category for the cur-
rent instruction and the stall statistics for each of the
categories are reported to the user. This can be help-
ful in identifying performance bottlenecks.

More advanced customized statistic collection is
also possible. The ADL programmer can insert state-
ments into the ADL program to collect special purpose
statistics. For this purpose, ADL provides a statistics
declaration which accepts a register name and a format
string. At the end of execution, the value of the regis-
ter is printed using the supplied format. The example
in Fig. 9 shows how one could count the number of
branch-delay slots which are not filled with useful in-
structions by the compiler. In this example, the TAP
for the EX stage checks if the instruction in EX is a
branch instruction and the instruction in the ID stage
is a null operation which has an opcode field of zero.

Interaction with the debugger can also be speci-
fied in an ADL program. The debugger can be en-
tered through the ISA specification by using the ADL
statement pause. In general, when an unexpected con-
dition is detected, this statement may be used to enter
the debugger. For example, a divide instruction may
check for a zero operand and execute pause statement
as part of an LRTL segment. The registers whose con-
tents are desired by the user to be displayed when the
debugger is entered can also be specified in the ADL
program through the monitor declaration.

3 The UPFAST System

We have developed a compiler for the ADL lan-
guage, a linker/loader, C language libraries and a de-
bugger in an integrated system called the University of
Pittsburgh Flexible Architecture Simulation Tool, UP-
FAST. As shown in Fig. 10(a), the compiler reads in
an architecture description in ADL and automatically
generates a simulator, an assembler, and a disassem-
bler from the given description. The generated simu-
lator includes a built-in debugger which can be used to
debug the architecture specification and monitor the
simulated architecture. The resulting software is of
good quality and can be used to compile and simulate
large benchmark programs. For instance, we have ex-
tensively simulated SPEC95 integer and floating point
benchmarks on a variety of architecture specifications.

The UPFAST system has been implemented by one
programmer over a period of 18 months using C++.
Using UPFAST, we have developed three simulators
during a course of an additional three months. All
the simulators we have developed are based on the
MIPS ISA consisting of 84 machine instructions and
53 macro instructions. Simulators we have developed
include a standard five stage pipelined MIPS archi-
tecture (PIPE), an implementation of the Tomasulo’s
algorithm applied to MIPS ISA (TOM), and finally
a simulator for our ongoing research that investigates
a novel microarchitecture called the data forwarding

. \
' Assembler Disassembler | |
| Template Template i
| I
| g Assembler
. I
Machine ' ABL : (C++,bison,lex)

Description

(ADL) 3 Compiler \ Simulator
! : (C+4)
1 Template Template | (C++)

(a) Main Components
Software Component Lines
ADL Compiler 15794
Artifacts 1141
Shared modules 499
Linker template 970
Disassembler template 531
Assembler template 3915
Simulator template 2677
Total 25527

(b) Number of lines of C++
Figure 10: The UPFAST System.

architecture (FWD).

For each of the architectures we defined, relative
percentages and the sizes of various sections of ADL
descriptions are illustrated in Fig. 11(a). While the
sizes of the architecture specifications are around 6000
lines of ADL code, the sizes of the simulators vary from
approximately 20,000 to 30,000 lines of C++ code.
This clearly shows the merit of automatic generation.
Since the ADL approach is an instruction oriented ap-
proach, a significant portion of the semantics of the
machine execution is defined as part of the ISA speci-
fication. This accounts for the long ISA specification.
The small size of the artifacts section is due to the
ease with which they can be specified using powerful
ADL abstractions.

The size of the ADL generated software for each
of the architectures are given in Fig. 11(b). The size
of the ADL generated software is comparable to hand
coded simulators. For example the PIPE simulator
consisting of 22,063 lines compares well with the ver-
sion of the SPIM software that we have that consists
of 20,441 lines of C code. The automatically gener-
ated TOM simulator consisting of 30,959 lines com-
pares well the SimpleScalar simulator which consists
of 25,000 lines.

Simulation speeds of UPFAST simulators also com-
pare well with hand coded simulators. The PIPE
and TOM simulators execute at average speeds of
200,000 and 100,000 simulator cycles/second while
the SimpleScalar simulator which is comparable with
TOM executes with a simulation speed of 150,000 cy-
cles/second (both on a 200 MHZ Pentium Pro). On
the other hand, given that the development time for
SimpleScalar simulator was 18 man-months [3], it is
obvious that the ADL approach is a cost-effective ap-
proach.

Component | PIPE % | TOM % | FWD %
ISA spec 4549 78.6 4549 73.8 4549 76.6
Artifacts 210 3.6 230 3.7 230 3.9
p-arch 554 9.6 890 14.4 673 11.3
Other 459 8.2 497 8.1 485 8.2
Total 5782 6166 5937
(a) ADL lines of code

Component | PIPE % | TOM % | FWD %
Assembler 6775 30.7 6775 21.9 6775 35.8
Disassm. 1508 6.8 1508 4.9 1508 8.0
Simulator 10942 49.6 19834 64.1 7803 41.2
Linker-etc 2838 12.9 2842 9.1 2842 15.0
Total 22063 30959 18928

(b) Generated C++ lines of code
Figure 11: ADL programs and generated software

References
[1] J.R. Armstrong and F.G. Gray. Structured Logic De-
sign with VHDL. New Jersey: Prentice Hall, 1993.

[2] M.W. Bailey and J.W. Davidson. A formal model
and specification language for procedure calling con-
ventions. In 22nd ACM Symp. on Principles of Pro-
gramming Languages, pages 298-310, 1995.

[3] D.C. Burger and T.M. Austin. The SimpleScalar Tool
Set, V. 2.0. Technical Report 97-1342, Computer Sci.
Dept., Univ. of Wisconsin Madison, 1997.

[4] T.A. Cook and E.A. Harcourt. A functional spec-
ification language for instruction set architectures.
In Proc. 199/ International Conference on Computer
Languages, pages 11-19, 1994.

[6] L. Huffman and D. Graves. MIPSpro Assembly Lan-
guage Programmers Manual. Silicon Graphics Corp.,
Doc. 007-2418-002, 1996.

[6] J.R. Larus. SPIM S20: A MIPS R2000 Simulator.
Technical Report 90-966, Computer Sci. Dept., Univ.
of Wisconsin Madison, 1990.

[7] J.D. Morison and A.S. Clarke. ELLA2000 A language
for Electronic System Design. McGraw-Hill, 1993.

[8] C. Moura. SuperDLX a generic superscalar simula-
tor. Technical Report 64, School of Computer Science,
McGill University, 1993.

[9] D.L. Perry. VHDL. McGraw-Hill, 1991.

[10] C. Price. MIPS IV Instruction Set Revision 3.2. MIPS
Technologies Inc., September 1995.

[11] N. Ramsey and M.F. Fernandez. The new jersey
machine-code toolkit. In Proc. 1995 USENIX Tech-
nical Conference, January 1995.

[12] N. Ramsey and M.F. Fernandez. Specifying repre-
sentations of machine instructions. ACM Trans. on
Programming Lang. and Systems, 1997.

[13] D.E. Thomas and P.R. Moorby. The Verilog Hardware
Description Language. Kluwer Academic Publishers,
1991.

[14] R.M. Tomasulo. An efficient algorithm for exploiting
multiple arithmetic units. IBM Journal of Research
and Development, 11:25-33, 1967.

