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roar
hite
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ien
eUniversity of PittsburghPittsburgh PA 15260fsoner,guptag�
s.pitt.eduAbstra
tIn this paper we des
ribe the UPFAST system thatautomati
ally generates a 
y
le level simulator, anassembler and a disassembler from a mi
roar
hite
-ture spe
i�
ation written in a domain spe
i�
 language
alled the Ar
hite
ture Des
ription Language (ADL).Using the UPFAST system it is easy to retarget a sim-ulator for an existing ar
hite
ture to a modi�ed ar
hi-te
ture sin
e one has to simply modify the input spe
-i�
ation and the new simulator is generated automat-i
ally. UPFAST also allows porting of simulators todi�erent platforms with minimal e�ort. We have beenable to develop three simulators ranging from simplepipelined pro
essors to 
ompli
ated out-of-order issuepro
essors over a short period of three months. Whilethe spe
i�
ations of the ar
hite
tures varied from 5000to 6000 lines of ADL 
ode, the sizes of automati
allygenerated software varied from 20,000 to 30,000 linesof C++ 
ode. The automati
ally generated simulatorsare less than 2 times slower than hand 
oded simula-tors for similar ar
hite
tures.1 Introdu
tionThe realization of pro
essor ar
hite
tures in sili
onis an expensive endeavor. Thus before a new pro
es-sor is a
tually built, extensive simulation studies are
arried out to estimate the expe
ted performan
e ofthe mi
roar
hite
ture on a variety of ben
hmark pro-grams. The evaluation pro
ess requires 
olle
tion of
y
le level statisti
s. Typi
ally the simulations mustbe 
arried out for millions of ma
hine 
y
les so thatgeneral 
on
lusions 
an be drawn regarding the perfor-man
e of the mi
roar
hite
ture with 
on�den
e. Thusto support the development of new pro
essors, toolsare required to enable rapid development of 
y
le levelsimulators that are fast enough to 
arry out extensivesimulation studies.�This work is supported by NSF PYI Award CCR-9157371,NSF grant CCR-9402226, and grants from Intel Corporationand HP Labs to the University of Pittsburgh.

A 
ommonly used approa
h for developing simu-lators is their hand 
oding in a general purpose lan-guage su
h as C. Examples of some popular simula-tors whi
h were developed using this approa
h in
ludethe SPIM simulator for the MIPS ar
hite
ture [6℄, theSimpleS
alar simulator [3℄, and the SuperDLX simu-lator [8℄. The hand 
oding of simulators is a substan-tial task whi
h typi
ally takes between 12 to 24 manmonths. On
e developed, su
h simulators are diÆ
ultto retarget to a modi�ed mi
roar
hite
ture or an in-stru
tion set ar
hite
ture without a signi�
ant amountof e�ort. Another problem that one en
ounters is thediÆ
ulty in porting these simulators to di�erent plat-forms. The portability issue arises due to the need forhandling of external system 
alls that are made by theben
hmarks being run. Solutions that either disallowsu
h 
alls or allow external 
alls but sa
ri�
e portabil-ity by allowing the simulator to run only on a spe
i�
platform (e.g., SPIM) are undesirable.An alternative to hand 
oding a simulator is togenerate it automati
ally from a ma
hine spe
i�
a-tion written in a domain spe
i�
 language. Automati
generation not only signi�
antly shortens the develop-ment 
y
le, it also allows retargeting sin
e modi�
a-tions in the ar
hite
ture 
an be made at the spe
i�-
ation level and the new simulator 
an then be au-tomati
ally generated. Although a number of hard-ware des
ription languages [1, 7, 9, 13℄ are available,these languages are not suitable for developing 
y
lelevel simulators. These languages are 
apable of de�n-ing the hardware to the smallest detail and result insimulators that are orders of magnitude slower than
y
le level simulators. The retargeting of simulatorsrequires signi�
ant e�ort and no solution to the porta-bility problem is o�ered by these languages.In order to allow rapid prototyping of simulators wehave designed a domain spe
i�
 language for spe
ify-ing pro
essor mi
roar
hite
tures 
alled the Ar
hite
-ture Des
ription Language (ADL) and implementedthis language in the University of Pittsburgh Flexible



Ar
hite
ture Simulation Tool (UPFAST). We supportboth retargeting and portability of simulators. The key
ontributions of our work are:1. The ADL language has been designed to support anexe
ution model that is suitable for expressing a broad
lass of pro
essor ar
hite
tures. It provides 
onstru
tsfor spe
ifying the following:(a) the mi
roar
hite
ture in
luding pipelines, 
on-trol, and the memory hierar
hy in
luding instru
tionand data 
a
hes;(b) the instru
tion set ar
hite
ture (ISA), the as-sembly language syntax and the binary representation;(
) a mapping between the 
alling 
onvention of thesimulated ar
hite
ture and the ma
hine that hosts thesimulator. This spe
i�
ation enables the simulator tomake external 
alls and a
hieve portability;(d) 
ommands for the 
olle
tion of statisti
s thatmay be desired by the user to understand the perfor-man
e of the ar
hite
ture; and(e) invo
ations of the debugger when error 
ondi-tions are en
ountered and monitoring 
ommands toidentify information for display during debugging.2. The UPFAST system has been developed to allowautomati
 generation of the 
y
le level simulators andother support tools. The system provides:(a) an implementation of a 
ompiler for ADLthrough whi
h 
y
le level simulators 
an be generatedautomati
ally from an ADL pro
essor des
ription;(b) automati
 generation of support softwaretools in
luding the assembler, disassembler and theloader/linker for the ar
hite
ture;(
) a 
y
le level assembly language debugger thatassists in tra
ing of program behavior; and(d) support for displaying statisti
s and monitoredinformation.3. We have obtained some experien
e with the systemby developing three di�erent simulators based uponthe MIPS ISA [10, 5℄. These simulators range from asimple pipelined design to a 
ompli
ated supers
alarar
hite
ture design. The three simulators were devel-oped in a short time period of three months demon-strating the ability for rapid prototyping. The spe
i-�
ations of the ar
hite
tures varied from 5000 to 6000lines of ADL 
ode while the sizes of automati
ally gen-erated software varied from 20,000 to 30,000 lines ofC++ 
ode. Our automati
ally generated simulatorsare less than 2 times slower than hand 
oded ones.In se
tion 2, we present the ADL language. In se
-tion 3, we des
ribe an implementation of the language,the UPFAST system. We 
on
lude by reporting ourexperien
e with UPFAST in se
tion 4.
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k Labeling2 Ar
hite
ture Des
ription LanguageAn ADL program primarily 
onsists of the des
rip-tion of a pro
essor ar
hite
ture whi
h in
ludes thespe
i�
ation of the instru
tion set ar
hite
ture as wellas the organization of the 
omponents of the mi
roar-
hite
ture. Before we des
ribe ADL in detail, let us�rst 
onsider the model of exe
ution used by ADL toexpress the operation of an ar
hite
ture and highlightsome of its design 
hara
teristi
s:Expli
it Instru
tion Flow and Instru
tion Con-text: In ADL the 
ow of instru
tions through thear
hite
tural 
omponents is expli
it. The data asso-
iated with an instru
tion under exe
ution is 
alledthe instru
tion 
ontext. The 
ontext is passed fromone 
omponent to the next and is operated upon bythe 
omponents till the exe
ution of the instru
tion is
omplete. The 
ontext is allo
ated when the instru
-tion enters the pipeline and is deallo
ated when theinstru
tion retires.The Ma
hine Clo
k: The notion of ma
hine 
lo
kis built into the language and the operation of thear
hite
tural 
omponents is des
ribed with respe
t tothis 
lo
k. The ma
hine 
lo
k is viewed as a seriesof pulses. Ea
h dis
rete pulse is 
alled a minor 
y
le,and a number of minor 
y
les are grouped togetherto form a ma
hine 
y
le. The minor 
y
les in ADLare represented by a series of labels. The �rst and thelast minor 
y
les of a ma
hine 
y
le are labeled as theprologue and the epilogue and those in between are la-beled as intermissions. The a
tions of ea
h 
omponentin the system during a ma
hine 
y
le are divided intothe operations that it performs in ea
h of the minor
y
les. During the prologue a 
omponent re
eives aninstru
tion 
ontext from another 
omponent for pro-
essing, during the intermissions it operates upon theinstru
tion 
ontext, and during the epilogue it sendsthe modi�ed 
ontext to another 
omponent. Fig. 1shows the 
lo
k of a ma
hine in whi
h the major 
y
leis 
omposed of � minor 
y
les.Artifa
ts and Pro
essing Stages: The ar
hite
-tural 
omponents are divided into two 
ategories: ar-tifa
ts are 
omponents with standard well known se-manti
s that are dire
tly supported by the languageand stages are 
omponents whose semanti
s must beexpli
itly spe
i�ed as part of the ADL program.Examples of artifa
ts in
lude 
a
hes, memory units,



and register �les. Sin
e they are dire
tly supported byADL as built-in types, the programmer 
an use themby simply de
laring obje
ts of these types in an ADLprogram. A

ess to artifa
ts takes the form of assign-ments to and from the artifa
t variables. Di�erentimplementations of these 
omponents 
an be used byspe
ifying di�erent attribute values for the artifa
ts.The intera
tion of an artifa
t with the ma
hine 
lo
kis also spe
i�ed as a list of attributes.Pro
essing stages are ar
hite
tural 
omponentsthat exhibit a signi�
ant fun
tional variety. Their op-eration is dependent on the mi
roar
hite
ture as wellas the 
urrent instru
tion being pro
essed. Further-more, the fun
tion su
h an element performs is tightly
oupled with the system 
lo
k and the status of other
omponents in the system. Thus, it is not feasible tofollow a de
larative approa
h for stages but insteadthe user must expli
itly spe
ify their semanti
s usingRegister Transfer Level (RTL) statements.Separation of Instru
tion Set Ar
hite
ture andMi
roar
hite
ture Spe
i�
ation: The ISA spe
i-�
ation is separated from the mi
roar
hite
ture spe
-i�
ation to fa
ilitate the development of di�erent mi-
roar
hite
ture implementations for the same ISA orextend an ISA by adding new instru
tions without al-tering the mi
roar
hite
ture. The above separationhas the following 
onsequen
e on the spe
i�
ation ofstage semanti
s. The RTL statements des
ribing thesemanti
s of stages are divided into two 
omponents:the general 
omponent that is 
ommon to all instru
-tions and the ISA-
omponent whi
h depends upon thespe
i�
 instru
tion being pro
essed. The former isspe
i�ed in the mi
roar
hite
ture des
ription while thelatter is in
luded as part of the ISA spe
i�
ation.Time Annotated A
tions and Parallelism inthe Mi
roar
hite
ture: The spe
i�
ation of the a
-tions asso
iated with the exe
ution of spe
i�
 instru
-tions as well as the a
tions asso
iated with variousar
hite
tural 
omponents are annotated with timinginformation so that it 
an be determined when theyare to be performed.The pro
edures that implement the general 
om-ponent of a
tions asso
iated with a pro
essing stage
arry the name of the stage and the label of the mi-nor 
lo
k 
y
le during whi
h they are to be exe
uted.Su
h pro
edures are referred to as time annotated pro-
edures (TAPs). Sin
e there are � minor 
y
les, theremay be up to � TAPs for a given stage. The ISA-
omponent asso
iated with an instru
tion is labeledwith the name of the pro
essing stage and optionallywith the label of the minor 
y
le during whi
h it mustbe exe
uted. These statements are referred to as la-

beled register transfer level (LRTL) segments.Parallelism at the ar
hite
ture level is a
hieved byexe
uting in ea
h ma
hine 
y
le the a
tions asso
i-ated with ea
h 
omponent during that 
y
le as well asa
tions asso
iated with an instru
tion that are anno-tated with the 
urrent 
y
le. The ma
hine exe
utionis realized by invoking ea
h TAP 
orresponding to aminor 
y
le as the 
lo
k generates the 
orrespondinglabel and the parallel operation of individual 
ompo-nents is modeled by 
on
urrently exe
uting all TAPswhi
h have the same annotation. During this pro-
ess, LRTL segments 
orresponding to the 
urrentlypro
essed instru
tion are fused together with the 
or-responding TAP. The operation of a ma
hine 
an bedes
ribed as follows:do foreverfor 
lo
k.label := prologue, intermission 1, ...... intermission (�� 2), epilogue do8 TAP, TAP.annotation = 
lo
k.label dof pro
ess fTAP; TAP.instru
tion.LRTL g gend2.1 Mi
roar
hite
ture Spe
i�
ationThe spe
i�
ation of the mi
roar
hite
ture 
onsistsof des
ribing the artifa
ts of the ar
hite
ture, de
lar-ing pipelines involved and their stages, spe
ifying in-stru
tion 
ontexts, and �nally de�ning TAPs for ea
hof the stages. In the following se
tions, we will use asimple pipelined ar
hite
ture shown in Fig. 2 to dis-
uss ea
h of these steps. In this ar
hite
ture, the in-stru
tion fet
h stage (IF) fet
hes instru
tions from theinstru
tion 
a
he and ships them to the instru
tionde
ode (ID) stage. ID stage de
odes the instru
tionsit re
eives, fet
hes their operands from the register�le, and sends them to the exe
ution unit (EX). Thememory a

ess (MEM) stage performs a data mem-ory a

ess for the load and the store instru
tions, butother instru
tions pass through this stage un
hanged.Finally, the write ba
k (WB) stage writes the resultsba
k to the register �le. In order to eliminate pipelinestalls that would otherwise result, data values are for-warded through forwarding paths to the earlier stages.Artifa
ts: Artifa
ts are hardware obje
ts with well-established operational semanti
s and they are sup-ported as built-in types by the language. A de
lara-tion of an artifa
t supplies the values of the attributesof the artifa
t to derive a spe
i�
 implementation ofthe artifa
t. For an artifa
t, we also spe
ify how longdoes it take to pro
ess a single request in terms of
lo
k 
y
les (i.e., the laten
y), the rate at whi
h newrequests 
an be issued to the artifa
t (i.e., the repeatrate), and the maximum number of requests that 
anbe outstanding in a 
lo
k 
y
le (i.e., the number of
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essorports). The list of the di�erent types of artifa
ts sup-ported by the language is given below.artifa
t-de
laration ) register-de
larationj register-�le-de
larationj memory-port-de
larationj 
a
he-de
larationj bu�er-de
larationj token-de
larationA register de
laration de
lares an artifa
t of typesimple register while a register �le de
laration de
laresan array of registers. Registers and register �les maybe given the attribute shadow whi
h makes them in-visible to the instru
tion set. ADL allows de�nitionof one or more aliases for the individual register �leentries. A memory de
laration de�nes a memory portwith a given a

ess laten
y in units of ma
hine 
y
lesand a data path width in units of bits. For the 
a
heartifa
t, attribute values in
lude degree of set asso
ia-tivity, the kind of repla
ement strategy, and whetherit is a write-ba
k or write-through 
a
he. Memories,
a
hes and bu�ers have an important property of be-ing sta
kable. This property is required for buildingmemory hierar
hies. When an artifa
t is de
lared, thename of the artifa
t immediately lower in the hierar-
hy is mentioned using the of 
lause, e�e
tively pla
ingthe new artifa
t higher in the hierar
hy.shadow register temp 16; # A 16 bit temporary register.register file gpr [32,32℄ # 32 registers,32 bits ea
h.$zero 0, # $zero is another alias for gpr[0℄$at 1, # $at is another alias for gpr[1℄$v0 2,.....$sp 29,$fp 30,$ra 31;memory mport0 laten
y 12 width 64, # 64 bit path to memory.mport1 laten
y 12 width 64; # 64 bit path to memory.instru
tion 
a
he i
a
he of mport0 dire
tmapped 64 kb 4 wpl;data 
a
he l2 of mport1 dire
tmapped 64 kb 4 wpl,l1 of l2 4 way 8 kb 4 wpl;Figure 3: Example artifa
t de
larationsA sequen
e of artifa
t de
larations for the examplepipelined ar
hite
ture of Fig. 2 is shown in Fig. 3. The�rst de
laration de
lares a temporary register invisible

from the instru
tion set. Next a register �le gpr is de-
lared and individual registers in the �le are assignedaliases. The names $0, $sp, et
, are ISA visible sin
ethe register �le itself is ISA visible. RTL statementsmay use either form of a

ess (i.e., gpr[31℄ or $ra).The de
laration spe
i�es two memory ports with 12
y
les of a

ess laten
y and 64 bit data paths. Thememory port mport0 hosts a dire
t mapped instru
-tion 
a
he of 64 kilobytes with 4 words per 
a
he line.Memory port mport1 hosts a dire
t mapped 
a
he ofsimilar attributes and this dire
t mapped 
a
he in turnservi
es a four way set asso
iative 
a
he of size 8 kilo-bytes. Thus, the 
a
he L1 is at the highest level inthe hierar
hy and the memory ports are at the lowestlevel.On
e de
lared, artifa
ts are a

essed just like vari-ables by the RTL statements in the spe
i�
ation. For
ompli
ated stru
tures, su
h as data 
a
hes, passingof additional parameters may be required. For ex-ample, in order to store a single byte to the L1 
a
he,and retrieve a halfword, the following sequen
e of RTLstatements 
ould be used:l1.(_BYTE) [addr℄ = data_value;data_value = l1.(_HALFWORD) [addr℄;When an artifa
t is a

essed, the status of the re-sult is queried using the a

ess-
omplete statement.This statement returns a true value if the operationhas been 
ompleted su

essfully, and a false value oth-erwise. A false value may be returned be
ause the ar-tifa
t is slow, su
h as in the 
ase of memory-ports, orbe
ause there is a stru
tural hazard. In these 
asesthe request must be repeated. Further details of whythe operation was not su

essful may be queried usingadditional statements.Pro
essing Stages and Instru
tion ContextDe
larations: The primary means of de
laringstages of the mi
roar
hite
ture is the pipeline de
la-ration. A pipeline de
laration spe
i�es an orderingamong pipeline stages su
h that ea
h stage re
eivesan instru
tion 
ontext from the pre
eding stage andsends the pro
essed 
ontext to a later stage. Theremay be more than one pipeline de
laration in an ADLprogram but the stage names must be unique. On
e astage is de
lared using a pipeline 
onstru
t, TAPs maybe spe
i�ed for ea
h of the stages and semanti
 se
-tions of instru
tion de
larations may utilize the stagenames as LRTL labels. The following de
laration de-�nes the pipeline for the example ar
hite
ture:pipeline ipipe (IF, ID, EX, MEM, WB);In ADL, the set of data values 
arried along withpipeline stages are grouped together in a stru
ture
alled 
ontroldata. There is only one su
h de
la-



ration, whi
h means all stages have the same type of
ontext, and the instru
tion 
ontext is the union of thedata required by all the pipeline stages in the system.While in a hardware implementation pipeline stagesmay 
arry di�erent types of 
ontexts, de�nition of in-stru
tion 
ontext in this way simpli�es the transferand handling of instru
tion 
ontexts in the simulator.Sin
e there is a uniform single instru
tion 
ontext forall pipeline stages, ea
h pipeline stage name is also anobje
t of type 
ontroldata. The following is a simple
ontroldata de
laration for a pipelined ma
hine:
ontroldata registermy_p
 32, # Instru
tion pointer for the instru
tion.simm 32, # Sign extended immediate.....dest 32, # dest holds the value to be written.lop 32, # lop holds the left operand value.rop 32; # rop holds the right operand value.Elements of the 
ontroldata stru
ture may be a
-
essed from TAPs and by the semanti
 parts of in-stru
tion de
larations (i.e., LRTLs). A

ess to theelements of the stru
ture may be quali�ed or unqual-i�ed. When they are not quali�ed, the pipeline stageis the stage of the TAP that performs the referen
e orthe label asso
iated with the LRTL segment that per-forms the referen
e. In its quali�ed form, the syntax
ontroldata-element[stage-name℄ is used to a

essthe instru
tion 
ontext of another stage. This form isprimarily used to implement internal data forwardingby either the sour
e stage writing into the 
ontext ofthe sink stage or the sink stage reading the data fromthe 
ontext of the sour
e stage.Spe
ifying Control and TAPs: The ma
hine 
on-trol is responsible for 
he
king the 
onditions for mov-ing the pipeline forward, forwarding the instru
tion
ontext from one stage to the next, 
ontrolling the
ow of data to and from the artifa
ts, and introdu
-ing stalls for resolving data, 
ontrol, and stru
turalhazards. In ADL, the semanti
s of the 
ontrol part ofthe ar
hite
ture is spe
i�ed in a distributed fashion asparts of TAPs by indi
ating how and when instru
tion
ontexts are transferred from one stage to another.The movement of an instru
tion 
ontext throughthe pipeline, from one stage to the next, is a

om-plished through the send statement. The send is su
-
essful if the destination stage is in the idle state or itis also exe
uting a send statement in the same 
y
le.All pipeline stages exe
ute the send statement duringthe epilogue minor 
y
le. In the normal pipeline oper-ation, an instru
tion 
ontext is allo
ated by the �rstpipeline stage using the ADL statement new-
ontext.This 
ontext is then �lled in with an instru
tion loadedto the instru
tion register. When this stage �nishesits pro
essing, it exe
utes the send statement to send

the 
ontext to the downstream pipeline stage. Whena 
ontext rea
hes the last pipeline stage it is deallo-
ated using the ADL statement retire. If any of thepipeline stages does not exe
ute a send, send opera-tions of the pre
eding stages fail. In this 
ase, theyrepeat their send operations at the end of next 
y
le.For de
oding the instru
tions, ADL provides a de
odestatement. The de
ode statement does not take anyarguments and establishes a mapping from the 
ur-rent 
ontext to an instru
tion name. This mapping isfully 
omputable from the binary se
tion of instru
tionde
larations. On
e de
oded, all the attributes of theinstru
tion be
ome read-only 
ontroldata variablesand are a

essed a

ordingly.The 
onditions for internal data forwarding 
an beeasily 
he
ked by the stage that needs the data. Forexample, the TAP for the ID stage in the examplepipelined ma
hine may 
he
k if any of the stages EXand MEM has 
omputed a value that is needed bythe 
urrent instru
tion by 
omparing their destinationregisters with the sour
e registers of the instru
tion
urrently in the ID stage. If that is the 
ase, the stagereads the data from the respe
tive stages instead ofthe register �le.For the handling of artifa
t data-
ow and the han-dling of various hazards, ADL provides the stallstatement through whi
h a stage may stall itself. Thestall statement terminates the pro
essing of the 
ur-rent TAP and the remaining TAPs that handle therest of the ma
hine 
y
le. The net e�e
t of the stallstatement is that no send statement is exe
uted bythe stage exe
uting the stall in that ma
hine 
y
le.In addition to the stall statement, ADL also pro-vides statements to reserve a stage, release a stage,and freeze/unfreeze the whole pipeline. When astage is reserved, only the instru
tion that reservedit may perform a send operation to that stage, andonly this instru
tion 
an release it regardless of wherein the pipeline the instru
tion is at. When a stageexe
utes a freeze, all stages ex
ept the stage that ex-e
uted the freeze statement will stall and only thestage that exe
uted the freeze statement may laterexe
ute an unfreeze statement.Examples of hazard handling using these state-ments are shown in Fig. 4. Fig. 4(a) indi
ates the 
asewhere the result of a load instru
tion may be used im-mediately by the next instru
tion. Su
h data hazards
annot be over
ome by forwarding alone and thereforerequire insertion of pipeline bubbles. The stage in this
ase 
he
ks for the 
ondition by examining the 
on-text of the EX stage and its destination register andstalls appropriately. Be
ause of the stall, the ID stage



instru
tion register ir;stall 
ategory mem i
,ld d dep,pool full;(a) pro
edure ID epiloguebegin if i type[EX℄== load type &(dest r[EX℄==lop r j dest r[EX℄==rop r) thenstall ld d dep;end ID;(b) pro
edure IF prologuebegin ir=i
a
he[p
℄;if a

ess 
omplete thenbegin unfreeze; p
=p
+4 endelsebegin freeze; stall mem i
l end;end IF;(
) pipeline RSPOOL(RSTA[64℄);pro
edure ID epiloguebegin reserve unit RSTA my p
;if ! a

ess 
omplete then stall pool full;end ID; Figure 4: Handling of Hazards.does not exe
ute a send in this 
y
le. Sin
e the sendoperations of following stages are not e�e
ted by thestall of prior stages, the EX stage enters the next
y
le in an idle state whi
h is equivalent to introdu
-ing a pipeline bubble. An instru
tion 
a
he miss in apipelined ar
hite
ture is usually handled by freezingthe ma
hine state. In Fig. 4(b), the instru
tion fet
hstage exe
utes a freeze statement whenever there isa 
a
he miss. A stall is also exe
uted so that the epi-logue will not attempt to exe
ute the send statement.Note that an unfreeze is always exe
uted wheneverthe 
a
he a

ess is su

essful. Exe
uting an unfreezeon a pipeline whi
h is not frozen is a null operation.In this way, the stage 
ode does not have to be his-tory sensitive. Finally in Fig. 4(
), a stru
tural hazardand its handling is illustrated. The example showsone possible way to implement a uni�ed pool of 64reservation stations using an array of stages for theTomasulo's algorithm [14℄. The ID stage attempts toreserve a unit from the pool of reservation stations. Ifthe reserve statement is unsu

essful, the stage exe-
utes the stall statement.2.2 ISA Spe
i�
ationThe ISA is spe
i�ed by means of instru
tion de
-larations whi
h des
ribe the syntax and semanti
s ofboth the ma
hine instru
tions and the ma
ro instru
-tions using a uniform syntax given below:instru
tion-de
laration ) ma
hine-instru
tion-de
larationj ma
ro-instru
tion-de
larationma
hine-instru
tion-de
laration ) syntax-part emitbinary-part semanti
-partma
ro-instru
tion-de
laration ) syntax-part ma
rosemanti
-partThere are three major 
omponents of the instru
-tion spe
i�
ation. These are the syntax-part, thebinary-part and the semanti
 part. The syntax partand the binary part together de�ne how the assem-bler should parse instru
tions and generate the ap-

31      26 25      21 20      16 15      11 10       6  5       0

op                rs                rt                  rd                 shamt           funct R-FORMAT

op                                                         target J-FORMAT

31      26 25                                                                                           0

31      26 25      21 20      16

op                rs                rt                              immediate I-FORMAT(a) MIPS formatsde
lare op 
onstant �eld 31 6,rs register �eld 25 5,rt register �eld 20 5,rd register �eld 15 5,shamt integer �eld 10 5,fun
t integer �eld 5 6,target integer �eld 25 26,immediate integer �eld 15 16,(b) MIPS formatsFigure 5: Instru
tion format spe
i�
ationpropriate binary en
oding of them. The binary partis also used to automati
ally generate the de
oder forthe implementation of the de
ode statement dis
ussedearlier. The semanti
 part of a ma
hine instru
tion de-s
ription is a list of LRTL segments des
ribing whatea
h stage should 
ompute when the instru
tion ispro
essed by the stage, whereas the semanti
 part ofa ma
ro instru
tion des
ription spe
i�es how the as-sembler should generate ma
hine instru
tions from thema
ro spe
i�
ation.Generation of a binary en
oding of an assembly in-stru
tion involves three steps. These are the parsing ofthe assembly instru
tion, extra
ting the values of anyinstru
tion �elds whi
h are derived from the assemblyinstru
tion, and pa
king these values in an instru
tionformat. The instru
tion format for an instru
tion isa sequen
e of �elds making up the instru
tion word.Some of the instru
tion formats for the MIPS ar
hi-te
ture are shown in Fig. 2.2.ADL de�nes instru
tion �elds by asso
iating a startbit and �eld width pair with a name. The same pairmay be de�ned multiple times using di�erent namessin
e the same pair may have a di�erent purpose ina di�erent instru
tion format. If a �eld has a 
on-stant value for all the instru
tions in the instru
tionset, it is de
lared to be a 
onstant �eld. Otherwise,it is de
lared to be one of the ADL types register, in-teger or signed integer. Su
h �elds are 
onsidered tobe variable �elds. Variable �elds typi
ally get theirvalues from the assembly instru
tion when su
h an in-stru
tion is parsed by the assembler. We spe
ify theinstru
tion �elds using the de
lare 
onstru
t.de
lare-
onstru
t ) de
lare de
larationsde
larations ) �eld-de
larationj variable-de
larationj temporary-de
laration�eld-de
laration ) �eld-name(
onstant j integer j register j signed)field start-bit �eld-widthExamples of �eld de
larations for the MIPS instru
-



tion formats are given in Fig. 2.2. Field de
larationsalone are not suÆ
ient to des
ribe the binary en
odingof an instru
tion. We also need to de�ne whi
h �eldsmake up the instru
tion (i.e., the instru
tion format)as well as how their values are 
omputed. Instead ofde�ning separate instru
tion formats and then map-ping instru
tions to these formats [4℄, ADL 
hooses tospe
ify the instru
tion format as part of the instru
-tion's binary part. The binary part of ea
h instru
tionis represented as a sequen
e of �eld expressions. A�eld expression is the assignment of a value to a �eldof the instru
tion. The value assigned to a �eld may bea 
onstant, a 
onstant expression, or, it may referen
ea value to be derived from the assembly instru
tion bythe syntax-part. The ADL syntax for the syntax-partand the binary-parts of an instru
tion de
laration aregiven below:syntax-part ) instru
tion-mnemoni
s argument-listargument-list ) argument j argument argument-listargument ) label-variable j �eldbinary-part ) �eld-expressionj �eld-expression binary-part�eld-expression ) �eld j �eld = 
onstant j �eld = <fog-list>fog-list ) fog-prede
lared j fog-list.pure-fun
tionfog-prede
lared ) label-variable.basej label-variable.offsetj label-variable.absolutej label-variable.deltaj label-variable.segoffsetThe syntax part of an instru
tion de
laration is alist of arguments de�ned to be either label variablesor �elds. A �eld in the argument list means that theassembler should expe
t to �nd an obje
t of the 
or-responding type su
h as a register or an integer 
on-stant at the 
orresponding position of the assemblyinstru
tion. A label variable represents an address pri-mary. Examples of address primaries in
lude labels,base/o�set pairs, and any 
onstant arithmeti
 on la-bels. Field expressions given in the binary-part mayquery the values of the arguments of the instru
tionusing pre-de
lared fun
tions su
h as base, o�set, abso-lute, or delta, or substitute them dire
tly. These val-ues may also be transformed by using pure fun
tionswhi
h are fun
tions whi
h have a single parameter andreturn a single transformation of this parameter.Let us now see how the assembler 
ould parse aninstru
tion using the spe
i�
ation shown in Fig. 6 andgenerate the appropriate binary. In the example, theargument part 
onsists of a register �eld (rt), and alabel variable (address). Therefore, the assembler ex-pe
ts to �nd a register name followed by a sequen
eof tokens whi
h 
an be redu
ed to an address primarywhen a lw mnemoni
 is dete
ted in the input stream.The �eld expressions in the binary part indi
ate thatthe op
ode �eld must be set to the 
onstant value

of 35, rs �eld must be given the base register num-ber representing the address, and the immediate por-tion must be given the o�set representing the address.Sin
e the rt �eld appears in the argument list, it getsa register number from the parsed instru
tion. ADLrepresentation of binary en
oding is a 
on
ise repre-sentation and is more natural than the SLED approa
h[11, 12℄ sin
e there is no need for separate op
ode ta-bles and 
onstru
tors.Spe
ifying Instru
tion Semanti
s: The semanti
-part of an instru
tion spe
i�
ation serves two pur-poses. These are the spe
i�
ation of what ea
h stage
omputes when su
h an instru
tion is re
eived andinstru
tion 
lassi�
ation so that stages may apply op-erations spe
i�
 to a 
lass of instru
tions. For exam-ple, bran
h instru
tions may be handled by a spe
i�
stage whi
h requires that the type of an instru
tionbe known so that proper instru
tion steering 
an beperformed.The instru
tion spe
i�
 operations of stages arespe
i�ed using LRTL segments. A LRTL segment isa program segment that 
onsists of register transferlevel statements where ea
h blo
k of su
h statementsare labeled using a stage name. The syntax of theLRTL segment is depi
ted below.LRTL-segment ) begin labeled-RTL-list endlabeled-RTL-list ) labeled-RTL j ; labeled-RTL-listlabeled-RTL ) 
ase stage-name RTL-statement-list endThe 
lassi�
ation of instru
tions is a
hieved usingan optional instru
tion attributes se
tion where theattributes of the instru
tion are spe
i�ed. These at-tributes 
an be queried by pipeline stages upon re-
eiving the instru
tion. An instru
tion attribute is amember of the global enumeration de�ned by the at-tribute de
laration given below:attribute-de
laration ) identi�er:attribute-listattribute-list ) name-list j integername-list ) identi�er j identi�er , name-listSin
e an attribute of an instru
tion 
lassi�es an in-stru
tion, values of attributes must be spe
i�ed forall the instru
tions. An example attribute de
larationse
tion that 
lassi�es instru
tions a

ording to theiroperation types is shown below:attributesi_type : alu_type, bran
h_type_0,bran
h_type_1,load_type,store_type;end;Let us examine the semanti
 part of the lw instru
-tion de
laration shown in Fig. 6. This instru
tion hasthe i_type attribute load_type, and LRTL segmentsID, EX, and MEM de�ne the operations ea
h of the 
or-responding stages. The LRTL segment ID performsa sign extension using powerful ADL bit operations.The sign extension is a
hieved by repeating the bit 15



declare registerrt field
rs register field
immediate signed field
address variablelabel

Instruction
lw rt address

emit opcode=35 rs=<address.base>  rt immediate=<address.offset>
attributes (i_type: load_type, dest_r: rt, lop_r: rs)
begin

case ID simm=immediate.[15:1] |<  16 || immediate; end;
lmar=lop + simm;case EX end;

case MEM dest=dcache[lmar]; end;
end;Figure 6: MIPS Load Word Instru
tionof the immediate �eld (|< operator) for 16 bits andthen 
on
atenating (|| operator) it with the �eld it-self. The result is then stored into the variable simm.The LRTL segment EX performs an address 
omputa-tion by adding the 
ontents of the variable lop with thesign extended value 
omputed by the ID stage. Simi-larly, the LRTL segment MEM performs a data 
a
hea

ess using the value 
omputed in the EX stage andstores the returned value into the variable dest. Sin
ewriting ba
k the results of instru
tions into the reg-ister �le is 
ommon for all instru
tions, this task ishandled by TAPs.The address spa
e of a TAP 
onsists of the globaladdress spa
e implemented by the artifa
ts and thelo
al address spa
e de�ned by the instru
tion being
urrently pro
essed. In Fig. 6, the variables simm,dest r, lop are part of the lo
al address spa
e or theinstru
tion 
ontext. When the exe
ution of a TAPis 
ompleted, the lo
al address spa
e is transferred toanother TAP instead of being deallo
ated. Typi
ally,the next TAP that exe
utes in the same 
ontext is theTAP belonging to the same stage that has the next
lo
k label. When the TAP that has the label epilogueis exe
uted, the 
ontext is either transferred to theprologue TAP of the same stage or to the prologueTAP of another stage.Ma
ro Instru
tions: Most 
ompilers available to-day (e.g., g

) make use of ma
ro instru
tions in 
odegeneration. The task of 
onverting these instru
tionsinto a
tual ma
hine instru
tions is left up to the as-sembler. ADL handles ma
ro instru
tions in a mannersimilar to ma
hine instru
tions. The syntax part ofthe instru
tion has the same syntax, but no �eld vari-ables are allowed in the argument part. Therefore,all of the instru
tion arguments are variables. Sin
ema
ro instru
tions themselves do not dire
tly lead toa binary representation, there is no binary generationpart. The ma
ro spe
i�
ation 
an be visualized as apro
edure where the pro
edure arguments 
orrespondto the instru
tion arguments and the semanti
 part
orresponds to the body of the pro
edure. The pro
e-dure de�nes what instru
tion(s) should be generatedgiven a parti
ular instan
e of arguments. Instru
tions

to be generated are spe
i�ed using an instru
tion 
allstatement that generates a ma
hine instru
tion bypassing the values of the �elds of the instru
tion asparameters. The syntax for the instru
tion 
all state-ment is shown below.instru
tion-
all ) instru
tion-mnemoni
s :�eld-assignment-listAn example ma
ro de
laration for the MIPS loadimmediate instru
tion is shown in Fig. 7. This ma
rogenerates either a single instru
tion (ori) or a pair ofinstru
tions (lui, ori) depending on the size of theimmediate �eld.2.3 Calling Convention Spe
i�
ationThe purpose of the 
alling 
onvention spe
i�
ationis to enable the simulator to perform external system
alls on behalf of the simulated program so that op-erating system servi
es 
an be provided through theoperating system of the host ma
hine. For this pur-pose ADL provides a 
alling 
onvention se
tion wherethe 
alling 
onvention of the simulated ar
hite
tureand the prototypes of external referen
es are spe
i�ed.From this spe
i�
ation, we are able to automati
allygenerate an engine that 
an exe
ute an external pro
e-dure by passing the values of the parameters from thesimulated ar
hite
ture and returning the results ba
kinto the simulator. This approa
h allows the languageuser to spe
ify external referen
es of a program andtreat them as if they are single instru
tions.The 
alling 
onvention spe
i�
ation is based on theformal model and spe
i�
ation language for pro
edure
alling 
onventions by Bailey and Davidson [2℄. Theirlanguage has been modi�ed so that it �ts the generalstru
ture of the ADL language. The spe
i�
ation pro-vides a mapping to a register or a memory lo
ation,given an argument's position and type in the pro
e-dure 
all. Sin
e an argument's value may not havebeen written to the memory 
ell or to the register �leat the time of the 
all, we modi�ed the mapping sothat ea
h register identi�er that may be used to passarguments to the 
allee and ea
h sta
k alignment arede
lare rdest register variable,sr
2 integer variable,tx integer temporary,ty integer temporary;instru
tion li rdest sr
2 ma
robegin tx=sr
2.[31:16℄;ty=sr
2.[15:16℄;if (sr
2.[31:17℄ == 0x1��) j (sr
2.[31:17℄ == 0) thenori:rt=rdest rs=0 immediate=tyelsebegin lui:rt=rdest immediate=tx;ori:rt=rdest rs=rdest immediate=ty;end;end; Figure 7: Ma
ro Instru
tion Example.




alling 
onvention beginargument $4:int p1, $5:int p2, $6:int p3, $7:int p3;$f12:
t p1,$f13:
t p2,$f14:
t p3,$f15:
t p4;unbounded stk4: stk p4, stk8: stk p8;set intregs($4,$5,$6,$7,stk4),intfpregs(<$4,$5>,<$6,$7>,<stk8,st4>),fpfpregs (<$f12,$f13>,<$f14,$f15>,<stk8,stk4>);equivalen
e ($4,$f12), ($5,$f12), ($6,$f14), ($7,$f14);typeset singleword(int, void *, ...), doubleword(double, ...);map argument.type beginsingleword : intregs;doubleword : map argument[1℄.type beginsingleword: intfpregs;doubleword: fpfpregs;end map;end map;prototypes beginreferen
e errno, sys errlist ...double 
osh(double); int printf(int,...);end;end 
alling 
onvention;pro
edure int p1()beginint p1=gpr[4℄;a

ess 
omplete=( has 
ontext EX jhas 
ontext MEM j has 
ontext WB)==0;end int p1;Figure 8: MIPS Calling Convention Spe
i�
ationasso
iated with a supplier pro
edure. Supplier pro
e-dures are mi
roar
hite
ture spe
i�
 pro
edures thatreturn the value of the argument at the time of the
all. In a pipelined ar
hite
ture, the supplier pro
e-dure may return the value from an artifa
t if there areno instru
tions in the pipeline that are 
omputing thevalue, or the value may be returned from a stage if thevalue has been 
omputed, but did not yet rea
h thewrite-ba
k phase. If the value is available and is be-ing returned, the pro
edure sets the built-in variablea

ess-
omplete to true. In the 
ase that more 
y-
les are ne
essary before the value be
omes available,the a

ess-
omplete variable is set to false. An ex-ample 
alling 
onvention spe
i�
ation for the MIPSar
hite
ture is given in Fig. 8.The 
alling 
onvention spe
i�
ation 
onsists of twose
tions, namely a data transfer se
tion whi
h de-s
ribes how arguments are allo
ated into the regis-ters and the sta
k lo
ations, and a prototypes se
tion,where prototypes of external pro
edures and namesof external data addresses are supplied. The datatransfer se
tion 
onsists of argument de
larations, setde
larations and a map de
laration. Argument de
-larations asso
iate either a register name with a sup-plier pro
edure name, or a sta
k alignment name witha supplier pro
edure. For example, in Fig. 8, argu-ment register $4 is asso
iated with the supplier pro-
edure int_p1. Sta
k alignment names are de
laredusing the unbounded keyword and 
orrespond to anunlimited pool of argument values starting at a givenalignment of the frame pointer for the ar
hite
ture.Supplier pro
edures for sta
k alignment names do the

required alignment �rst and return the �rst word atthe indi
ated lo
ation. The register names and sta
kalignment names given as part of the argument de
la-rations are 
alled argument lo
ations.Set de
larations 
reate ordered pools of argumentsbased on types. In our example, the set intregs 
re-ates a pool of argument values whi
h 
onsists of fourinteger registers and an unbounded pool of sta
k lo
a-tions. Thus, a 
all site that requires six integer argu-ments would �nd the values of its �rst four argumentsin the registers $4, $5, $6, $7, and the remainingtwo on the sta
k. In some ar
hite
tures, if one reg-ister is used, some other registers 
an no longer beused for the following arguments. For example, in theMIPS ar
hite
ture, if the 
oating point register $12 isallo
ated, integer registers $4 and $5$ 
annot be usedto pass the following integer arguments. The spe
i�
a-tion handles this problem by 
reating equivalen
e setsgiven by the equivalen
e de
laration. Register pairslisted in an equivalen
e de
laration are removed to-gether from the respe
tive sets when one of them isallo
ated.Typeset de
larations group variable types thatmap to the same sized obje
ts. On
e the sets andtypesets are de�ned, a map de
laration 
reates a map-ping from typesets to sets. For ea
h argument type,�rst the typesets are 
onsulted to �nd the 
orrespond-ing typeset. Next the typeset is supplied to the map
onstru
t to �nd the set from whi
h the argumentvalue(s) should be obtained. These sets are 
onsumedone by one for ea
h argument value that is needed.The map de
laration in the example in Fig. 8 spe
i-�es that any arguments whi
h have a type listed inthe singleword typeset will 
onsume the set intregswhile those whi
h are members of the doubleword setsele
t the set based on the type of the �rst argument.The prototypes se
tion is an ADL extension to the
alling 
onvention spe
i�
ation whi
h is ne
essary to
all external pro
edures. This se
tion 
onsists of a listof external pro
edure prototypes and data referen
enames used by the ben
hmark programs. Both pro-
edures and data referen
es 
an be renamed to mat
hthe names of the ar
hite
ture so that greater portabil-ity is a
hieved.The 
alling 
onvention spe
i�
ation when 
omplied,provides an interfa
e that returns a list of supplier pro-
edures given a 
all site. This interfa
e is used by thesimulator to assemble the argument values, performthe external 
all on behalf of the simulated programand return the values.



statisti
s "Total number of bran
hes %d:",bran
h 
ount,"Empty slots %d:",empty slots;pro
edure EX epiloguebegin if i type == bran
h type1 j i type == bran
h type0 thenbegin bran
h 
ount=bran
h 
ount+1;if op[ID℄ == 0 thenempty slots=empty slots+1;end;.......end;Figure 9: Language Support for Gathering Statisti
s2.4 Statisti
s Colle
tion and DebuggingADL provides support for assisting the user in 
ol-le
tion of statisti
s that may be required to evalu-ate the spe
i�ed ar
hite
ture. An instru
tion 
ategoryde
laration is supported using whi
h the user 
an 
las-sify instru
tions into di�erent 
ategories. The 
ountsfor the number of retired instru
tions in ea
h of these
ategories are provided to the user by the generatedsimulator. The stall statement may be followed by anoptional stall 
ategory name. In this form, the stall isregistered under the mentioned 
ategory for the 
ur-rent instru
tion and the stall statisti
s for ea
h of the
ategories are reported to the user. This 
an be help-ful in identifying performan
e bottlene
ks.More advan
ed 
ustomized statisti
 
olle
tion isalso possible. The ADL programmer 
an insert state-ments into the ADL program to 
olle
t spe
ial purposestatisti
s. For this purpose, ADL provides a statisti
sde
laration whi
h a

epts a register name and a for-mat spe
i�er string. At the end of exe
ution, the valueof the register is printed using the supplied format.The example in Fig. 9 shows how one 
ould 
ount thenumber of bran
h-delay slots whi
h are not �lled withuseful instru
tions by the 
ompiler. In this example,the TAP for the EX stage 
he
ks if the instru
tion inEX is a bran
h instru
tion and the instru
tion in theID stage is a null operation whi
h has an op
ode �eldof zero.Intera
tion with the debugger 
an also be spe
i-�ed in an ADL program. The debugger 
an be en-tered through the ISA spe
i�
ation by using the ADLstatement pause. In general, when an unexpe
ted 
on-dition is dete
ted, this statement may be used to enterthe debugger. For example, a divide instru
tion may
he
k for a zero operand and exe
ute pause statementas part of an LRTL segment. The registers whose 
on-tents are desired by the user to be displayed when thedebugger is entered 
an also be spe
i�ed in the ADLprogram through the monitor de
laration.3 The UPFAST SystemWe have developed a 
ompiler for the ADL lan-guage and additional support software, namely a

linker/loader, C language libraries and a debugger inan integrated system 
alled the University of Pitts-burgh Flexible Ar
hite
ture Simulation Tool, UPFAST.As shown in Fig. 3, the 
ompiler reads in an ar
hite
-ture des
ription in ADL and automati
ally generates asimulator, an assembler, and a disassembler from thegiven des
ription. The generated simulator in
ludesa built-in debugger whi
h 
an be used to debug thear
hite
ture spe
i�
ation and monitor the simulatedar
hite
ture. The resulting software is of good qualityand 
an be used to 
ompile and simulate large ben
h-mark programs. For instan
e, we have extensivelysimulated SPEC95 integer and 
oating point ben
h-marks on a variety of ar
hite
ture spe
i�
ations.The ADL CompilerThe ADL 
ompiler uses prototype modules 
alledtemplates to generate the desired software. A tem-plate is a prototype module of software that 
onsistsof only ar
hite
ture independent 
omponents. For ex-ample, the assembler template 
ontains a 
omplete as-sembler with the ex
eption of instru
tion set spe
i�
portions su
h as the mnemoni
s tables and spe
i�
rules to parse individual instru
tions and 
ode that
onverts symboli
 addresses to ma
hine addresses. Allthese portions of an assembler are ISA spe
i�
 andthey are 
ompiled in from the ADL program and �lledin by the 
ompiler. Similarly, artifa
ts have beenimplemented in another template �le. For ea
h in-stan
e of artifa
t de
laration, the ADL 
ompiler ob-tains the 
orresponding artifa
t de
laration from thetemplate �le and generates the desired artifa
t imple-mentation. The generation of the simulator system isa

omplished by 
opying a template until a des
rip-tor marker, indi
ating the position at whi
h a 
om-ponent should be generated and pla
ed, is en
oun-tered. The 
ompiler generates a table, a pro
edure,
Template

DisassemblerAssembler

Template

Artifacts
Template Template

Simulator

Assembler

(C++,bison,lex)

Makefile

Simulator

(C++)

Disassembler
(C++)

    Compiler(ADL)

ADLDescription

Machine (a) Main ComponentsSoftware Component LinesADL Compiler 15794Artifa
ts 1141Shared modules 499Linker template 970Disassembler template 531Assembler template 3915Simulator template 2677Total 25527(b) Number of lines of C++Figure 10: The UPFAST System.



or a C++ 
lass des
ribed by the marker. On
e therequired software element is generated, the s
anning
ontinues until another marker is found, or the end of�le is rea
hed.The ADL 
ompiler uses separate representations todes
ribe the ISA and the mi
roar
hite
ture. Impera-tive 
ode su
h as TAPs, general pro
edures and LRTLsegments are ea
h represented by a separate syntaxtree and these trees emanate from the internal repre-sentation of 
omponents of the ar
hite
ture. In 
aseof ISA, LRTL syntax trees emanate from instru
tiondes
riptions whi
h represent the assembly syntax, bi-nary representation, and ma
ro implementations. In
ase of mi
roar
hite
ture representation, syntax treesemanate from pipeline des
riptions.The DebuggerThe debugger is entered through 
ommand line ar-guments or automati
ally upon dete
ting an error 
on-dition. Command line arguments may spe
ify that thedebugger must be entered after a spe
i�ed number of
y
les, or immediately. If a deadlo
k is suspe
ted, thatis, no instru
tion is retired for a large number of 
y
les,the simulator invokes the debugger. Upon an internalfault in the simulator the system's standard debuggeralong with the UPFAST debugger are �red. Finallythe debugger may be invoked when the pause state-ment in an ADL program is en
ountered whi
h is usedwhen an unexpe
ted 
ondition o

urs. The debuggerwhen entered �res up two windows. The �rst windowdisplays a disassembled memory image where the linenumber of the assembly language program, the mem-ory lo
ation, binary en
oding of the instru
tion, thema
hine instru
tions and the original assembly lan-guage program are shown in that order on ea
h line.The se
ond window displays the 
ontents of registersspe
i�ed in the monitor de
larations and the 
ontentsof the pipeline stages of the ma
hine ar
hite
ture. Inaddition, the 
urrent number of ma
hine 
y
les, thenumber of useful 
y
les and the number of stall 
y
lesare also displayed.On
e in the debugger, the user 
an single-step theexe
ution, 
ontinue the exe
ution until a 
ertain num-ber of additional 
y
les are exe
uted, or simply resumethe exe
ution. In 
ase more powerful debugging isneeded, the user may �re the regular system debugger,su
h as gdb, and perform further analysis. Sin
e ADL
ompiler preserves ADL program names when gener-ating the simulator, the user may inquire the valuesof variables using the ADL program names.In some 
ases, problems surfa
e after large num-bers of simulation 
y
les although the exa
t 
ause ofthe problem may a
tually be hundreds of 
y
les prior

Component PIPE % TOM % FWD %ISA spe
 4549 78.6 4549 73.8 4549 76.6Artifa
ts 210 3.6 230 3.7 230 3.9�-ar
h 554 9.6 890 14.4 673 11.3Other 459 8.2 497 8.1 485 8.2Total 5782 6166 5937(a) ADL lines of 
odeComponent PIPE % TOM % FWD %Assembler 6775 30.7 6775 21.9 6775 35.8Disassm. 1508 6.8 1508 4.9 1508 8.0Simulator 10942 49.6 19834 64.1 7803 41.2Linker-et
 2838 12.9 2842 9.1 2842 15.0Total 22063 30959 18928(b) Generated C++ lines of 
odeFigure 11: ADL programs and generated softwareto the point it is dete
ted. Solving these kinds of prob-lems requires the knowledge of how a spe
i�
 point inthe program exe
ution is rea
hed. For example, a labelmay be the destination of a number of bran
h instru
-tions and it is virtually impossible to know whi
h pathhad been taken to arrive at this point. In order to ad-dress these problems, the debugger provides a uniquereverse exe
ution mode. In order to use this mode, theuser spe
i�es a range of 
y
les during whi
h the sim-ulator saves register and the pipeline 
ontents. Whenthe debugger is entered upon the o

urren
e of theproblem, the program 
an be tra
ed in reverse usingthe ba
kstep 
ommand. In this mode, it is possibleto ba
kstep then forward step, within the window ofsaved 
y
les. This mode is slow and saves signi�
antamounts of data. However, it has proven to be veryvaluable in our experien
e.4 Experien
e with UPFASTThe UPFAST system has been implemented by oneprogrammer over a period of 18 months using C++.Using the system, we have developed three simulatorsduring a 
ourse of an additional three months. Allthe simulators we have developed are based on theMIPS ISA 
onsisting of 84 ma
hine instru
tions and53 ma
ro instru
tions. Simulators we have developedin
lude a standard �ve stage pipelined MIPS ar
hi-te
ture (PIPE), an implementation of the Tomasulo'salgorithm applied to MIPS ISA (TOM), and �nallya simulator for our ongoing resear
h that investigatesa novel mi
roar
hite
ture 
alled the data forwardingar
hite
ture (FWD).For ea
h of the ar
hite
tures we de�ned, relativeper
entages and the sizes of various se
tions of ADLdes
riptions are illustrated in Fig. 4. One immediateobservation is the larger share of the ISA spe
i�
a-tion. This is a dire
t result of the ADL approa
h tothe problem. ADL approa
h is an instru
tion orientedapproa
h and in this respe
t, a signi�
ant portion ofthe semanti
s of the ma
hine exe
ution is de�ned aspart of the ISA spe
i�
ation. Another important point



is the small size of the artifa
ts se
tion. Althoughartifa
ts make up a signi�
ant portion of the a
tualhardware, they 
an be spe
i�ed with ease by means ofpowerful ADL abstra
tions in a few hundred lines. Fi-nally, while the sizes of the ar
hite
ture spe
i�
ationsare around 6000 lines of ADL 
ode, the sizes of thesimulators vary from approximately 20,000 to 30,000lines of C++ 
ode. This 
learly shows the merit ofautomati
 generation.In our experien
e, developing the ISA portion wasrelatively straightforward. Few software bugs havebeen tra
ed to the ISA se
tion. Most of these er-rors resulted either be
ause of typing errors or ambi-guity in the ar
hite
ture manuals we used. AlthoughISA se
tion is fairly large and the mi
roar
hite
turese
tion is relatively small, the development times forthe ISA 
omponent and the mi
roar
hite
ture se
tionswere roughly equal. This is expe
ted as the mi
roar-
hite
ture se
tion involves a high degree of paralleloperation. These results demonstrate that the sepa-ration of ISA from the mi
roar
hite
ture is a powerfulapproa
h sin
e developing three fully fun
tional sim-ulators in three months would not have been possiblewithout this separation.The size of the ADL generated software for ea
hof the ar
hite
tures are given in Fig. 4. When we
ompare the size of the ADL generated software to
omparable hand 
oded simulators, we observe sur-prising similarities. For example, our pipelined MIPSar
hite
ture implements essentially the same ar
hite
-ture as SPIM. The automati
ally generated PIPE sim-ulator 
onsisting of 22,063 lines 
ompares quite wellwith the version of the SPIM software that we havethat 
onsists of 20,441 lines of C 
ode. Comparisonof MIPS-Tomasulo (an out-of-order ar
hite
ture) im-plementation with SimpleS
alar yields similar results.SimpleS
alar pa
kage 
ontains a total of 26,500 lines(ex
luding the library and the provided g

 
ompiler)and in
ludes three simulators. Considering only theout-of-order simulator would 
orrespond roughly to25,000 lines, as these simulators are relatively smalland share enormous amount of 
ode. Thus, the au-tomati
ally generated TOM simulator 
onsisting of30,959 lines 
ompares well the above SimpleS
alarsimulator. Finally, the data-forwarding ar
hite
turehas an intermediate 
omplexity, for whi
h there is nohand 
oded simulator that we 
an 
ompare with.Simulation speeds are very reasonable and 
omparewell with hand 
oded simulators. The pipelined ver-sion exe
utes at an average speed of 200,000 simu-lator 
y
les/se
ond on a 200 MHZ Pentium Pro andthe Tomasulo's algorithm exe
utes at an average speed

of 100,000 
y
les/se
ond. The Tomasulo's algorithmis 
omparable in 
omplexity to the out-of-order Sim-pleS
alar simulator [3℄ whi
h reports a simulationspeed of 150,000 
y
les/se
ond on a 200 MHZ PentiumPro. Comparing these �gures with the SimpleS
alarnumbers we �nd that ADL generated simulators areless than 2 times slower than the hand 
oded 
ounter-parts. On the other hand, given that the developmenttime for SimpleS
alar simulator was 18 man-months[3℄, it is obvious that the ADL approa
h is a 
ost-e�e
tive approa
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