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Abstract. Profiling can effectively analyze program behavior and fe\criti-
cal information for feedback-directed or dynamic optintiaas. Based on mem-
ory profiling, reuse distance analysis has shown much pemipredicting data
locality for a program using inputs other than the profileceanBoth whole-
program and instruction-based locality can be accuratagipted by reuse dis-
tance analysis.

Reuse distance analysis abstracts a cluster of memonenekes for a particu-
lar instruction having similar reuse distance values intocality pattern. Prior
work has shown that a significant number of memory instrugtibave multi-
ple locality patterns, a property not desirable for manyringion-based memory
optimizations. This paper investigates the relationst&pveen locality patterns
and execution paths by analyzing reuse distance distibationg each dynamic
path to an instruction. Here a path is defined as the progratugon trace from
the previous access of a memory location to the current ac8sdifferentiat-
ing locality patterns with the context of execution patt® proposed analysis
can expose optimization opportunities tailored only to ec#fic subset of paths
leading to an instruction.

In this paper, we present an effective method for path-besgsk distance profil-
ing and analysis. We have observed that a significant pexgerdf the multiple
locality patterns for an instruction can be uniquely rediatie a particular execu-
tion path in the program. In addition, we have also investigahe influence of
inputs on reuse distance distribution for each path/icsiva pair. The experi-
mental results show that the path-based reuse distancghily lniredictable, as a
function of the data size, for a set of SPEC CPU2000 programs.

1 Introduction

The ever-increasing disparity between memory and CPU spagsdnade effective op-
eration of the memory hierarchy the single most criticahedat in the performance
of many applications. To address this issue, compilersrgttéo manipulate the spa-
tial and temporal reuse in programs to make effective usén@fcache. While static
compiler analysis has achieved some success in improvimgameperformance, lim-
ited compile-time knowledge of run-time behavior decredbe effectiveness of static
analysis. Profile analysis of a single run can yield more eateuinformation, however,
the use of a single run does not catch memory issues thatm@sitige to program input
size.

To address the lack of sensitivity to data size in profile gsial Ding et al. [10, 25]
have developed techniques to predetise distance- the number of unique memory



locations accessed between two references to the same snéonation. Given the
reuse distances of memory locations for two training runsytapply curve fitting to
determine the reuse distance for a third input using thesla¢eof the third input. Ding
et al. show that reuse distance is highly predictable giterdata size of an input set.

Our previous work [11, 12] maps the reuse distance of menaagtions to the in-
structions that reference those locations and shows teatetise distance of memory
instructions is also highly predictable. Our analysis &gt a cluster of memory ref-
erences for a particular instruction having similar reusgaghce values into a locality
pattern. The results of the analysis show that many memogyatipns exhibit more
than one locality pattern, often with widely disparate eedséstances. Unfortunately,
optimization based upon reuse distance often favors reissEndes to be consistently
either large or small, but not both, in order to improve meyabierarchy performance
effectively.

In this paper, we extend our previous work to use executath-pistory to dis-
ambiguate the reuse distances of memory instructions.iffadly, we relate branch
history to particular locality patterns in order to detenmiexactly when a particular
reuse distance will be exhibited by a memory operation. Gypegments show that
given sufficient branch history, multiple locality pattsrior a single instruction can be
disambiguated via branch history for most instructiond #hhibit such locality pat-
terns.

Being able to determine when a particular locality patteith@ecur for a memory
instruction allows the compiler and architecture to coapem targeting when to apply
memory optimizations. For example, the compiler could inpeefetches only for cer-
tain paths to a memory instruction where reuse distancepradicted to be large. In
this case, the compiler would avoid issuing useless preéstéor short reuse distance
paths.

We begin the rest of this paper with a review of work relateddose-distance
analysis and path profiling. Next, we describe our analysibniques and algorithms
for measuring instruction-based reuse distance with pditiation. Then, we present
our experiments examining the effectiveness of path-bemgsk-distance analysis and
finish with our conclusions and a discussion of future work.

2 Reated Work

Currently, compilers use either static analysis or simpigfifing to detect data lo-
cality. Both approaches have limitations. Dependenceyaisatan help to detect data
reuse [13, 20]. McKinley, et al., design a model to group esumnd estimate cache miss
costs for loop transformations based upon dependencessflg]. Wolf and Lam use
an approach based upon uniformly generated sets to analgality. Their technique
produces similar results to that of McKinley, but does nojuiee the storage of input
dependences [23]. These analytical models can capturelédghreuse patterns but
may miss reuse opportunities due to a lack of run-time infdfam and limited scope.
Beyls and D’Hollander advance the static technique to emcodditions to accommo-
date dynamic reuse distances for the class of programsthia fiolyhedral mode]6].



Unfortunately, the model currently cannot handle spataise and only works for a
subset of numerical programs.

To address the limits of static analysis, much work has bemre dn developing
feedback-directed schemes to analyze the memory behavmrograms using reuse
distance. Mattson et al. [17] introduce reuse distance R Istack distance) for stack
processing algorithms for virtual memory management. Gtivave developed effi-
cient reuse distance analysis tools to estimate cachesfiss® 22, 24] and to evaluate
the effect of program transformations [1, 4, 9]. Ding et 4D [21, 25] have developed
a set of tools to predict reuse distance across all prograutsnaccurately, making
reuse distance analysis a promising approach for locadisetd program analysis and
optimizations. They apply reuse distance prediction tarege whole program miss
rates [25], to perform data transformations [26] and to jotethe locality phases of
a program [21]. Beyls and D'Hollander collect reuse distadéstribution for mem-
ory instructions through one profiling run to generate cagm@acement hints for an
Itanium processor [5]. Beyls, D’Hollander and Vandeputiesent a reuse distance vi-
sualization tool called RDVIS that suggests memory-h@raoptimization. Marin and
Mellor-Crummey [16] incorporate reuse distance analysiheir performance models
to calculate cache misses.

In our previous work, we propose an instruction-based rdistence analysis frame-
work [11, 12]. We usdocality patterngto represent the reuse distance distribution of an
instruction, where a locality pattern is defined as a set aflmerelated reuse distances
of an instruction. Our work first builds the relationship Wween instruction-based lo-
cality patterns and the data size of program inputs, anchdstéhe analysis to predict
cache misses for each instruction, and identififical instructions those which pro-
duce most of the L2 cache misses. We find that a significant euwfinstructions,
especially critical instructions, have multiple localggtterns. In this paper, we investi-
gate the relationship between branch history and the oexaerof multiple locality pat-
terns. To this end, we extend our reuse-distance analysisgfivork to path/instruction
pairs to predict the path-based reuse distances acrossapragputs.

Previous research in path profiling usually aims at coliecéiccurate dynamic paths
and execution frequencies for helping optimizing frequmths [2, 3, 15]. Ammons and
Larus use path profiles to identifyot paths and improve data flow analysis [2]. Ball and
Larus present a fast path profiling algorithm that identi@iash path with a unique num-
ber. Larus represents a stream of whole program paths agextdree grammar which
describes a program’s entire control flow including loopaten and interprocedural
paths [15]. All of the aforementioned work takes basic blpekhs. We instead track
only branch history since many modern superscalar procgsdeady record branch
history for branch prediction, allowing us to use the redsgance analysis in a dy-
namic optimization framework in the future.

With the intention of applying latency tolerating technéguto the specific set of
dynamic load instructions that suffer cache misses, Mowd/lauk [19] propose a pro-
filing approach to correlate cache misses to paths. Whiletagion profiling motivates
our work, we focus on path-based reuse distance analysiseRi#istance analysis ex-
poses not only the results of hits or misses of cache acaggdsin also the relevant



reasons. Further, our analysis can predict locality chamgpaths across program in-
puts, which is not mentioned in Mowry and Luk’s paper [19].

3 Analysis

In this section we first describe previous work on whole-pangand instruction-based
reuse distance analysis. We then relate branch historycalitp patterns at the in-
struction level. We further discuss locality pattern potidin with respect to the branch
history of each instruction.

3.1 ReuseDistance Analysis

Reuse distancis defined as the number of distinct memory references bethuee
accesses to the same memory location. In terms of memorjidosareuse distance
has different levels of granularity, e.g. per memory adslres per cache line. With
the intention of analyzing data locality, this work focusas cache-line based reuse
distance. According to the access order of a reuse paireréisgance has two forms:
backwardreuse distance anfdirward reuse distance. Backward reuse distance is the
reuse distance from the current access to the previous airesging the same memory
location. Similarly, forward reuse distance measures tbi@dce from the current to the
next access of the same memory location. In this paper, watreply backward reuse
distances. The results for forward reuse distance areasimil

Ding et al. [10] show that the reuse distance distributioe@a¢h memory location
accessed in a whole program is predictable with respecetprbigram input size. They
define thedata sizeof an input as the largest reuse distance and use a histoggam d
scribing reuse distance distribution. Each bar in the lgisto consists of the portion
of memory references whose reuse distance falls into the sange. Given two his-
tograms with different data sizes, they predict the histagof a third data size and find
that those histograms are predictable in a selected sehchibearks. Typically, one can
use this method to predict reuse distance for a large data ofpa program based on
training runs of a pair of small inputs.

Previously, we have extended Ding et al.’'s work to prediaseedistance for each
instruction rather than memory location. We map the reustadces for a memory lo-
cation to the instructions that cause the access and shothéh@use distances of each
memory instruction are also predictable across programtsfor both floating-point
and integer programs [11, 12]. In our approach, the reugartdiss for each instruction
are collected and distributed in logarithmic scaled birrsdistances less than 1K and
in 1K-sized bins for distances greater than 1K. The minimoraximum, and mean
reuse distances together with the access frequency arelestfor each bin. We scan
the original bins from the smallest distance to largestdlisé and iteratively merge any
pair of adjacent binsandi + 1 if

min; 1 — max < max — min,.

This inequality is true if the difference between the minimdistance in bin + 1
and the maximum distance in birs no greater than the length of binThe merging



process stops when it reaches a minimum frequency and stawgsv pattern for the
next bin. We call the merged birscality patterns which accurately and efficiently
represent the reuse distance distribution on a per ingbruttasis. Furthermore, we
have shown that locality patterns can be predicted acdyifatea third input using two
small training inputs and curve fitting, and can be used tdipteache misses for fully
and set associative caches. These results show that yopalierns are an effective
abstraction for data locality analysis.

3.2 Using Pathsto Disambiguate Reuse Patterns

Although previous results show that over half of the ingfiarts in SPEC CPU2000
contain only one pattern, a significant number of instruetiexhibit two or more lo-
cality patterns. For the purposes of memory-hierarchymjattion, the compiler may
need to know when each locality pattern occurs in order fortaptimization to the
pattern exhibiting little cache reuse.

Typically two backward reuse distance locality patterna &dad come either from
different sources which meet at the current load througfediht paths (otherwise,
one access will override the other) as shown in Figure 1(ap single source that
reaches the current load through distinct paths as showiguré1(b). This suggests
that a dynamic basic block history plus the source block aaiquely identify each
reuse. However, it is expensive to track a basic block tracaratime and apply it to
memory optimizations. Branch history is a close approxiomato basic block history
and available on most modern superscalar architectures.

X X . X
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Fig. 1. Path-related reuses, (a) from two separate sources, h)drsingle source

In this work, we use a stack to keep track of the branch higlanng profiling and
collect reuse distances for each distinct branch histogndhstruction. During a load,
our reuse distance collection tool calculates reuse distand records the distance with
respect to the current branch history. If an instructionmagtiple locality patterns and
the reuse distances for each branch history form at most atterp, the branch history
can differentiate the multiple patterns and make it possibl determine when each
pattern will occur.



Due to the existence of loops in a program, the history staokig to be quickly
saturated, making it difficult to track the reuses from adesihe loops. To solve this
problem, we detect loop back-edges during profiling and kkefranch history for up
tot iterations of a loop, whereis the number of data elements that fit in one cache-line.
Note that we choosebased on the cache-line size to differentiate betweenad fe-
erences within the same cache line) and temporal reusempateferences to the same
memory location). Aftet iterations or at the exit of a loop, the branch history in the
loop is squashed with all corresponding history bits clddrem the stack. In this way,
we efficiently use a small number of history bits to represeng) paths. Furthermore,
by squashing loops, the branch histories to an instructod to be consistent across
program inputs, making it feasible to predict reuse distaralong execution paths.

it (...)

for (i =0; i <n; i++) [/ loop 1
N

el se

for(i =0; i <n; i++) [/ loop 2
N

for(i =0; i <n; i+4) Il loop 3
G AT .

Fig. 2. Multiple reuses

As an example, consider the program shown in Figurd 2] in the third loop has
spatial reuse from within the lodp- 1 out of evenfiterations, wheré¢is the cache-line
size. AdditionallyA[ i ] has temporal reuse once evéiterations from either loop 1 or
loop 2, depending on the condition of thie-statement. For this case, a histonteaf1
bits are enough to differentiate all reuse patterndits for reuse from within the loop
and one bit for reuse from outside the loop.

After the reuse distances for all paths of each instructrercallected, the patterns
are formulated following the merging process discussecetin 3.1. We then exam-
ine whether the path history can help to uniquely identifyadtgrn and whether the
path-based patterns can be predicted for a third input.

3.3 Path-based Reuse Distance Prediction

Previous work has shown that reuse distances are likelydog# across program in-
puts. To make the above analysis useful for optimizatidis gissential to predict reuse
distances along execution paths. Our path-based reusacksprediction is very sim-
ilar to that for whole programs [10] and instructions [11],1&cept that we form pat-
terns for each path in the two training runs and predict théepas for the path in the
validation run.

In the two training runs, the reuse patterns of each insbn@re created for each
profiled path. If a path does not occur in both of the two trainiuns, the reuse pat-



terns for that path are not predictable. Our prediction alssumes a path has an equal
number of patterns in the two training runs. We definedbeerageof the prediction as
the percentage of dynamic paths whose reuse distanceseglietpble based upon the
above assumptions.

Given the reuse patterns of the same path in two runs, thégpeddgatterns for the
path in the validation run can be predicted using curve {ttis proposed by Ding et
al. [10]. The predictioraccuracyis computed by comparing the predicted patterns with
the observed ones in the validation run. Here accuracy iselkfas the percentage of
the covered paths whose reuse distances are correcthcmedh path’s reuse distance
distribution is said to be correctly predicted if and onlglf of its patterns are correctly
predicted. The prediction of a reuse pattern is said todreectif the predicted pattern
and the observed pattern fall into the same set of bins, grdlierlap by at least 90%.
Given two pattern$\ andB such thatB.min < A max< B.max we say tha#A andB
overlap by at least 90% if

A.max— maxA.min, B.min) > 0.9
maxB.max— B.min,A.max—Amin) =

4 Experiment

In this section, we report the results of our experimental@ation of the relationship
between locality patterns and execution paths. We beghmanitiscussion of our exper-
imental methodology and then, we discuss the effectiveoiessing path information

in differentiating multiple locality patterns of an insttion. Finally, we report the pre-
dictability of the reuse distance distribution along exemupaths.

4.1 Methodology

In this work, we execute our benchmark suite on the Simpliesédpha simulator [7].
We modifysim-cachdo generate the branch history and collect the data addrassk
reuse distances of all memory instructions. Ding and Zh®rgyise-distance collection
tool [10, 25] is used to calculate the reuse distance for esaory access. During pro-
filing, our analysis records a 32-byte cache-line-basekwan reuse distance for each
individual memory instruction with the current branch bistof varying lengths. Given
the 32-byte cache-line size, we squash the branch histotgdps every 4 iterations to
help differentiate spatial and temporal reuse.

Our benchmark suite consists of 10 of the 14 floating-poiogpms and 11 of the
12 integer programs from SPEC CPU2000, as shown in Figurd&.r@dmaining five
benchmarks (178.galgel, 187.facerec, 191.fma3d, 2Qfask and 252.eon) in SPEC
CPU2000 are not included because we could not get them toiogrectly with
version 5.5 of the Alpha compiler using optimization levél3. For all benchmarks
we use theest andtrain input sets for the training runs. For floating-point progeam
we use theeference input sets for verification. However, for integer programs, use
the MinneSpec workload [14] in order to save profiling timeeda the large memory
requirements of theeference input set. We collect the reuse distance distribution by
running all programs to completion.



4.2 Differentiating Multiple L ocality Patterns
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Fig. 3. % instructions having multiple reuse patterns

In this section, we experimentally analyze the ability ahgsbranch history to dif-
ferentiate between multiple locality patterns for a singkgructions on our benchmark
suite. We examine branch histories of length 1, 2, 4, 8, 163#lits using the history
collection described in Section 3.2.

Figure 3 presents the percentage of instructions that havépte locality pat-
terns in a program. On average, 39.1% of the instructionsomtifig-point programs
and 30.2% of the instructions in integer programs have nttaa bne locality pattern.
Floating-point programs, especially 168.wupwise, 17ingwl 72.mgrid and 301.apsi,
tend to have diverse locality patterns. Many instructionthiese programs have both
temporal reuse from outside the loop that corresponds ¢ lause distances, and spa-
tial reuse from within the loop that normally has short redstances. In integer pro-
grams, a high number of conditional branches tends to cau$igta locality patterns.
This phenomenon occurs often in 164.gzip, 186.crafty, @&gdand 300.twolf.

Figures 4 and 5 show the percentage of multiple localitygpatt that can be dif-
ferentiated using branch histories with various lengthee Bars labeled "patti show
the differentiation results for a path withbits of history. We see from these two fig-
ures that, for both floating-point and integer programsng@xecution path context
can differentiate a significant percentage of multiple gra for an instruction. This
percentage increases with the increase in the number aiisits used. On average,
paths with 8-bit history can disambiguate over 50% of thetiplel patterns. Whereas
paths with 32 bits of history can disambiguate over 70% ofntiudtiple patterns.

There are still some multiple patterns that cannot be diffeated by our approach
even though a 32-bit history is used. Several factors haee bbserved to be respon-
sible for this non-differentiability. The first is branchshdry aliasing, where different
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Fig. 4. % multiple patterns differentiable by paths for CFP2000

execution paths have the same branch history. Branch hialiasing occurs when ex-
ecutions from different block traces share the last se\#tslof the branch history, as
shown in Figure 6. In this case, when using a 2-bit histonhlpatths have the history
of 01. However, a 3-bit history will solve the problem.

To examine the effect of branch history aliasing on our sahene report the per-
centage of multiple patterns that cannot be differentigsghuse of history aliasing, as
listed in Tables 1 and 2. We identify whether or not a partictistory is an aliased one
by tracking the block trace associated with this history. &perimentally collect the
data forpathl6. Forpathnwheren < 16, the non-differentiable multiple patterns due to
aliasing are those fgpathl6 plus all patterns that can be differentiated by a 16-Isi hi
tory but not then-bit history. We see from Tables 1 and 2 that the branch histtasing

Benchmark | pathl | path2 | path4| path8| path16
168.wupwis¢ 62.6 | 53.7 | 42.9| 23.4| 5.4
171.swim 70.3 | 69.8 | 68.7| 36.0| 54
172.mgrid | 51.1 | 50.9 | 46.9| 31.7| 9.6
173.applu 52.3 | 48.7 | 295|214 | 24
177.mesa | 76.4 | 67.1 | 54.9| 35.3| 18.6
179.art 40.8 | 38.0| 309 249| 241
183.equake| 74.9 | 64.0 | 50.1| 29.8 | 16.2
188.ammp | 51.4 | 42.7 | 30.1| 9.2 6.7
189.lucas 519 | 47.8 | 37.4| 28.0| 20.1
301.apsi 60.0 | 48.3 | 36.2| 275| 214
average 59.2 | 53.1 | 42.7 | 26.7 | 13.0

Table 1. % multiple patterns that are non-differentiable becaudgsibry aliasing for CFP2000
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Fig. 5. % multiple patterns differentiable by paths for CINT2000

problem is more severe in integer programs than in floatioigipprograms, and in-
creasing the number of history bits can greatly reduce tmebaur of non-differentiable

patterns.

We have observed that, branch history aliasing most comynacdurs when all
locality patterns represent short reuse distances. Thisti@ severe problem for de-

termining cache misses. There are two ways to reduce theeirdiof the branch his-
tory aliasing problem. We can use more history bits and famlg on those critical

instructions which produce most of the cache misses. Othfige applications consid-
ering only short reuse distances, a block trace can be useshihof branch history for
path representation. If only short reuse distances arévadpthe memory requirement

needed for basic block traces will not be excessive.

Fig. 6. Branch history aliasing



Benchmark | pathl | path2 | path4| path8| path16
164.9zip 74.0 | 64.6 | 52.6 | 37.7| 234
175.vpr 81.3 | 71.8 | 48.2| 24.0| 12.0
176.gcc 65.0 | 58.7 | 485 | 37.9| 21.7
181.mcf 91.8 | 83.0 | 56.5| 44.3| 33.3
186.crafty | 87.6 | 75.9 | 52.7 | 27.3| 13.9
197.parser | 82.8 | 74.0 | 59.0 | 46.7 | 32.8
253.perlbmk 89.1 | 74.8 | 61.6 | 34.4| 8.0

254.gap 73.6 | 66.2 | 53.5| 40.1| 28.6
255.vortex | 70.1 | 66.5 | 58.1 | 51.4 | 42.4
256.bzip2 | 59.6 | 52.9 | 44.5| 43.2| 40.2
300.twolf 749 | 63.0 | 50.3| 28.2| 17.4
average 77.3 | 68.3 | 53.2| 37.7| 249

Table 2. % multiple patterns that are non-differentiable becaudestbry aliasing for CINT2000

CFP2000 |path4{path8|pathl16||CINT2000 |path4|path8|pathl6
168.wupwisg 28.5| 24.3| 17.5 ||164.gzip 36.5(28.7| 21.9
171.swim | 37.1|21.5| 7.2 ||175.vpr 03|02 02
172.mgrid | 10.4| 8.2 | 6.1 ||176.gcc 03] 03] 0.2
173.applu | 11.5| 10.8| 6.6 [|181.mcf 16.8| 16.7| 13.9
177.mesa 48| 46 | 4.6 ||186.crafty | 0.0 | 0.0 | 0.0
179.art 18.3|12.1| 11.5 ||197.parser | 0.1 | 0.1 | 0.0
183.equake| 4.6 | 4.2 | 4.1 ||253.perlbomk 1.4 | 0.0 | 0.8
188.ammp | 0.4 | 0.3 | 0.2 [|254.gap 15| 12| 11
189.lucas | 42.6| 37.1| 30.2 ||255.vortex | 0.4 | 0.3 | 0.3
301.apsi 52| 46 | 3.8 ||256.bzip2 | 14.0| 14.0| 11.2
300.twolf 6.8 | 50| 4.2
average 16.3| 12.8| 9.2 ||average 70| 6.1 | 4.9

Table 3. % multiple patterns that cannot be differentiated and haitk bhort and long distances

In addition to branch history aliasing, cache line alignineauses some multiple
patterns to be not differentiable using our scheme. Thevielig code occurs in the
functionful lGu(Int32 i1, Int32 i2) in program 256.bzip2.

cl=bl ock[i1];

c2=hl ock[i 2] ;

if(cll=c2) return(cl>c2);
i 1++; 0 2++;

el o

cl=bl ock[i1];

c2=bl ock[i 2];

if(cll=c2) return(cl>c2);
i 1++; 0 2++;

NG

Depending on the value ofL, bl ock[i 1] at line 5 may reuse the data touched at line
2 having a short reuse distance, or data from beyond theiumbaving a long reuse



distance. The change in the value éfmay cause the load at line 5 to be in a different
cache line from the load at line 1. In this case, our schempatatifferentiate between
the two patterns. Notice that this piece of code is similartanrolled loop, which sug-
gests that compile-time loop unrolling may also influencesmineme. Indeed, we have
found cases of loop unrolling that cause some multiple pat® be not differentiable
by paths in floating-point programs such as 168.wupwise &3dapplu.

For cache-related optimization, it is important to diffetiate multiple patterns of an
instruction having both short and long reuse distances Wwbuld allow the compiler to
optimize the long reuse distance that is likely a cache nmidsgnore the path where the
reuse distance is short and a cache hit is likely. Table 8 i percentage of multiple
patterns that cannot be differentiated and have both shdriang patterns. Here we
use a threshold of 1K, which corresponds to the size of a 3@k bl cache, to classify
reuse distances as short or long. We can see that non-difiloée multiple patterns
with both short and long reuse distances only account for algmrtion of the total
number of the multiple patterns in a program, and on avelatgger programs have a
lower percentage than floating-point programs.

4.3 Path Based Reuse Distance Prediction

Tables 4 and 5 list the path-based reuse distance predictieerage and accuracy
for floating-point and integer programs, respectively. Eemparison, we also list the
instruction-based reuse distance prediction resultsdretthumns labeled "inst”. Due to

the excessive memory requirements of simulation via Si®qdéar and profile collec-

tion, we cannot generate the prediction results for the3satar integer programs.

coverage (%) accuracy(%)
Benchmark |inst path inst path
112|4|8]| 16 |32 112|4|8|16]32

168.wupwis¢92.994.293.7/94.996.6 97.5|98.5(98.1{99.099.1{99.499.499.599.7
171.swim |95.598.698.7/98.999.20 99.7|99.8|89.093.693.593.695.995.795.7]
172.mgrid  |96.697.997.397.7/96.6 97.1|94.1)|91.994.895.095.896.496.596.2
173.applu  |96.494.092.292.391.9 87.8|77.0(96.097.096.296.2/96.1{96.397.1)
177.mesa |96.997.097.199.299.2 99.9|99.§|98.698.699.399.399.398.998.9
179.art 94.696.296.297.399.5 99.5|99.5|96.595.695.695.794.694.694.7
183.equake |99.299.699.699.699.2 98.9|98.0(98.398.698.698.898.699.098.9
188.ammp |99.999.999.999.999.9 99.8|99.4(89.692.892.§93.994.094.1{94.3
189.lucas |71.7/66.565.363.362.4 60.1|59.3(94.1{97.598.698.698.398.898.8
301.apsi 96.696.696.897.196.1] 91.4|85.9|93.096.597.097.296.997.297.7
average 94.094.193.7/94.094.1/93.1791.1)|94.596.496.696.997.097.1{97.2

Table 4. CFP2000 path-based reuse-distance prediction

For floating-point programs, on average, our mechanism pedligt reuse distances
for over 91% of the paths with accuracies all above 96%, withritumber of history
bits ranging from 1 up to 32. With less than or equal to 8 bitsrahch history, the path-
based prediction coverage compares well with using no brarstory. When more than



coverage (%) accuracy(%)
Benchmark |inst path inst path
1|2]4]8]16 112]4]8]16
164.gzip  |99.299.299.299.099.298.8|95.195.595.897.297.097.5
175.vpr 97.7/99.298.998.395.890.0(93.993.7/93.993.494.295.6
176.gcc 95.696.7/96.896.493.690.2(93.395.295.294.995.394.8
181.mcf  |94.595.095.095.094.692.7/88.989.990.689.390.090.6
186.crafty |97.798.599.099.299.197.9|93.293.394.493.894.494.4
197.parser |83.385.587.184.879.166.484.984.485.288.591.697.0
253.perlbmk99.899.899.899.899.899.2(97.297.297.297.298.097.9
254.gap |86.886.686.985.282.177.5|91.592.692.7/94.797.099.6
255.vortex |99.799.799.899.899.899.7(97.397.397.397.497.296.4
256.bzip2 |99.999.999.999.999.999.9(98.097.897.8§97.8§98.197.9
300.twolf |95.696.296.195.494.190.1|93.393.393.494.094.095.0
average |95.496.096.295.794.391.1|93.393.794.094.495.296.1

Table 5. CINT2000 path-based reuse-distance prediction

8 bits are used, the prediction coverage decreases slightyrightmost part of Table 4
shows that using branch history improves the accuracy derglistance prediction.

Integer programs exhibit similar coverage and accuraaylt®sas listed in Table 5.
On average, we can predict reuse distances for over 91% qfathes with accuracies
above 93.5%. While the coverage decreases with the incirettsnumber of bits used,
the path-based reuse distance prediction coverage isrhigde the instruction-based
one when less than 8 bits are used. With a single-bit histbey,average prediction
accuracy is 93.7%, while the accuracy for a 16-bit historpilioves to 96.1% of the
covered paths.

We have observed two major factors that influence the priedictoverage. First,
our prediction assumes all paths appear in both training.idowever, some paths may
only occur when using theeference input set (we call these pathsissing paths For
example, a conditional branch may be taken whernréfeence input is used but not
when thetest input is used. Long execution paths will experience thisnaimeenon
more than short paths. Another factor determining the jptadility is pattern match-
ing. For a path or instruction, if the number of locality patteis not equal in the two
training runs, we cannot accurately match the correspanpaiterns and thus cannot
predict the reuse distances. For this case, relating rastndes to paths has an advan-
tage because most paths tend to have a single locality patter

For 168.wupwise, 171.swim and 179.art, the pattern magchioblem dominates
the cases where we do not predict reuse correctly. Thus,aerage monotonically
increases with the increase in the number of history bitslu¥¢hen missing paths
are the major factor, the prediction coverage decreasdstin path length, as is the
case for 173.applu and 189.lucas. For 173.applu, 22.8%eghdths are missing in the
training runs for the 32-bit history, leading to a low covgeaFor 189.lucas, 197.parser
and 254.gap, there is a significant number of instructioatdi not appear in the two
training runs. Thus, the corresponding paths do not ocdooth training runs, resulting
in a low coverage for all evaluation cases.



5 Conclusionsand Future Work

In this paper, we have proposed a novel approach for pathdb@sise-distance anal-
ysis. We use execution-path history to disambiguate theerelistances of memory
instructions. Specifically, we relate branch history totjgatar locality patterns in or-
der to determine exactly when a particular reuse distantt&aexhibited by a memory
operation.

Our experiments show that given sufficient branch histonyltiple locality patterns
for a single instruction can be disambiguated via branctohigor most instructions
that exhibit such locality patterns. On average, over 70%hefmultiple patterns for
static instructions can be differentiated by executiompatith a 32-bit branch history,
for both floating-point and integer programs. In additiorg also show that the path
based reuse distances can be more accurately predictethehaustruction based reuse
distances across program inputs, without a significantedeser in prediction coverage.

Being able to determine when a particular locality patteith@ecur for a memory
instruction allows the compiler and architecture to coapem targeting when to apply
memory optimizations. Our next step is to apply the anal§@isoptimizations like
prefetching. Specifically, we are developing softwarediasre cooperative approaches
to invoke prefetches only when certain paths with large ealistances are executed.
These approaches aim to avoid useless prefetches whikevaahigh performance.
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