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Abstract. Profiling can effectively analyze program behavior and provide criti-
cal information for feedback-directed or dynamic optimizations. Based on mem-
ory profiling, reuse distance analysis has shown much promise in predicting data
locality for a program using inputs other than the profiled ones. Both whole-
program and instruction-based locality can be accurately predicted by reuse dis-
tance analysis.
Reuse distance analysis abstracts a cluster of memory references for a particu-
lar instruction having similar reuse distance values into alocality pattern. Prior
work has shown that a significant number of memory instructions have multi-
ple locality patterns, a property not desirable for many instruction-based memory
optimizations. This paper investigates the relationship between locality patterns
and execution paths by analyzing reuse distance distribution along each dynamic
path to an instruction. Here a path is defined as the program execution trace from
the previous access of a memory location to the current access. By differentiat-
ing locality patterns with the context of execution paths, the proposed analysis
can expose optimization opportunities tailored only to a specific subset of paths
leading to an instruction.
In this paper, we present an effective method for path-basedreuse distance profil-
ing and analysis. We have observed that a significant percentage of the multiple
locality patterns for an instruction can be uniquely related to a particular execu-
tion path in the program. In addition, we have also investigated the influence of
inputs on reuse distance distribution for each path/instruction pair. The experi-
mental results show that the path-based reuse distance is highly predictable, as a
function of the data size, for a set of SPEC CPU2000 programs.

1 Introduction

The ever-increasing disparity between memory and CPU speedhas made effective op-
eration of the memory hierarchy the single most critical element in the performance
of many applications. To address this issue, compilers attempt to manipulate the spa-
tial and temporal reuse in programs to make effective use of the cache. While static
compiler analysis has achieved some success in improving memory performance, lim-
ited compile-time knowledge of run-time behavior decreases the effectiveness of static
analysis. Profile analysis of a single run can yield more accurate information, however,
the use of a single run does not catch memory issues that are sensitive to program input
size.

To address the lack of sensitivity to data size in profile analysis, Ding et al. [10, 25]
have developed techniques to predictreuse distance– the number of unique memory



locations accessed between two references to the same memory location. Given the
reuse distances of memory locations for two training runs, they apply curve fitting to
determine the reuse distance for a third input using the datasize of the third input. Ding
et al. show that reuse distance is highly predictable given the data size of an input set.

Our previous work [11, 12] maps the reuse distance of memory locations to the in-
structions that reference those locations and shows that the reuse distance of memory
instructions is also highly predictable. Our analysis abstracts a cluster of memory ref-
erences for a particular instruction having similar reuse distance values into a locality
pattern. The results of the analysis show that many memory operations exhibit more
than one locality pattern, often with widely disparate reuse distances. Unfortunately,
optimization based upon reuse distance often favors reuse distances to be consistently
either large or small, but not both, in order to improve memory-hierarchy performance
effectively.

In this paper, we extend our previous work to use execution-path history to dis-
ambiguate the reuse distances of memory instructions. Specifically, we relate branch
history to particular locality patterns in order to determine exactly when a particular
reuse distance will be exhibited by a memory operation. Our experiments show that
given sufficient branch history, multiple locality patterns for a single instruction can be
disambiguated via branch history for most instructions that exhibit such locality pat-
terns.

Being able to determine when a particular locality pattern will occur for a memory
instruction allows the compiler and architecture to cooperate in targeting when to apply
memory optimizations. For example, the compiler could insert prefetches only for cer-
tain paths to a memory instruction where reuse distances arepredicted to be large. In
this case, the compiler would avoid issuing useless prefetches for short reuse distance
paths.

We begin the rest of this paper with a review of work related toreuse-distance
analysis and path profiling. Next, we describe our analysis techniques and algorithms
for measuring instruction-based reuse distance with path information. Then, we present
our experiments examining the effectiveness of path-basedreuse-distance analysis and
finish with our conclusions and a discussion of future work.

2 Related Work

Currently, compilers use either static analysis or simple profiling to detect data lo-
cality. Both approaches have limitations. Dependence analysis can help to detect data
reuse [13, 20]. McKinley, et al., design a model to group reuses and estimate cache miss
costs for loop transformations based upon dependence analysis [18]. Wolf and Lam use
an approach based upon uniformly generated sets to analyze locality. Their technique
produces similar results to that of McKinley, but does not require the storage of input
dependences [23]. These analytical models can capture high-level reuse patterns but
may miss reuse opportunities due to a lack of run-time information and limited scope.
Beyls and D’Hollander advance the static technique to encode conditions to accommo-
date dynamic reuse distances for the class of programs that fit thepolyhedral model[6].



Unfortunately, the model currently cannot handle spatial reuse and only works for a
subset of numerical programs.

To address the limits of static analysis, much work has been done in developing
feedback-directed schemes to analyze the memory behavior of programs using reuse
distance. Mattson et al. [17] introduce reuse distance (or LRU stack distance) for stack
processing algorithms for virtual memory management. Others have developed effi-
cient reuse distance analysis tools to estimate cache misses [1, 8, 22, 24] and to evaluate
the effect of program transformations [1, 4, 9]. Ding et al. [10, 21, 25] have developed
a set of tools to predict reuse distance across all program inputs accurately, making
reuse distance analysis a promising approach for locality based program analysis and
optimizations. They apply reuse distance prediction to estimate whole program miss
rates [25], to perform data transformations [26] and to predict the locality phases of
a program [21]. Beyls and D’Hollander collect reuse distance distribution for mem-
ory instructions through one profiling run to generate cachereplacement hints for an
Itanium processor [5]. Beyls, D’Hollander and Vandeputte present a reuse distance vi-
sualization tool called RDVIS that suggests memory-hierarchy optimization. Marin and
Mellor-Crummey [16] incorporate reuse distance analysis in their performance models
to calculate cache misses.

In our previous work, we propose an instruction-based reusedistance analysis frame-
work [11, 12]. We uselocality patternsto represent the reuse distance distribution of an
instruction, where a locality pattern is defined as a set of nearby related reuse distances
of an instruction. Our work first builds the relationship between instruction-based lo-
cality patterns and the data size of program inputs, and extends the analysis to predict
cache misses for each instruction, and identifycritical instructions, those which pro-
duce most of the L2 cache misses. We find that a significant number of instructions,
especially critical instructions, have multiple localitypatterns. In this paper, we investi-
gate the relationship between branch history and the occurrence of multiple locality pat-
terns. To this end, we extend our reuse-distance analysis framework to path/instruction
pairs to predict the path-based reuse distances across program inputs.

Previous research in path profiling usually aims at collecting accurate dynamic paths
and execution frequencies for helping optimizing frequentpaths [2, 3, 15]. Ammons and
Larus use path profiles to identifyhotpaths and improve data flow analysis [2]. Ball and
Larus present a fast path profiling algorithm that identifieseach path with a unique num-
ber. Larus represents a stream of whole program paths as a context-free grammar which
describes a program’s entire control flow including loop iteration and interprocedural
paths [15]. All of the aforementioned work takes basic blockpaths. We instead track
only branch history since many modern superscalar processors already record branch
history for branch prediction, allowing us to use the reuse-distance analysis in a dy-
namic optimization framework in the future.

With the intention of applying latency tolerating techniques to the specific set of
dynamic load instructions that suffer cache misses, Mowry and Luk [19] propose a pro-
filing approach to correlate cache misses to paths. While correlation profiling motivates
our work, we focus on path-based reuse distance analysis. Reuse distance analysis ex-
poses not only the results of hits or misses of cache accessing, but also the relevant



reasons. Further, our analysis can predict locality changeon paths across program in-
puts, which is not mentioned in Mowry and Luk’s paper [19].

3 Analysis

In this section we first describe previous work on whole-program and instruction-based
reuse distance analysis. We then relate branch history to locality patterns at the in-
struction level. We further discuss locality pattern prediction with respect to the branch
history of each instruction.

3.1 Reuse Distance Analysis

Reuse distanceis defined as the number of distinct memory references between two
accesses to the same memory location. In terms of memory locations, reuse distance
has different levels of granularity, e.g. per memory address or per cache line. With
the intention of analyzing data locality, this work focuseson cache-line based reuse
distance. According to the access order of a reuse pair, reuse distance has two forms:
backwardreuse distance andforward reuse distance. Backward reuse distance is the
reuse distance from the current access to the previous one addressing the same memory
location. Similarly, forward reuse distance measures the distance from the current to the
next access of the same memory location. In this paper, we report only backward reuse
distances. The results for forward reuse distance are similar.

Ding et al. [10] show that the reuse distance distribution ofeach memory location
accessed in a whole program is predictable with respect to the program input size. They
define thedata sizeof an input as the largest reuse distance and use a histogram de-
scribing reuse distance distribution. Each bar in the histogram consists of the portion
of memory references whose reuse distance falls into the same range. Given two his-
tograms with different data sizes, they predict the histogram of a third data size and find
that those histograms are predictable in a selected set of benchmarks. Typically, one can
use this method to predict reuse distance for a large data input of a program based on
training runs of a pair of small inputs.

Previously, we have extended Ding et al.’s work to predict reuse distance for each
instruction rather than memory location. We map the reuse distances for a memory lo-
cation to the instructions that cause the access and show that the reuse distances of each
memory instruction are also predictable across program inputs for both floating-point
and integer programs [11, 12]. In our approach, the reuse distances for each instruction
are collected and distributed in logarithmic scaled bins for distances less than 1K and
in 1K-sized bins for distances greater than 1K. The minimum,maximum, and mean
reuse distances together with the access frequency are recorded for each bin. We scan
the original bins from the smallest distance to largest distance and iteratively merge any
pair of adjacent binsi andi +1 if

mini+1−maxi ≤ maxi −mini.

This inequality is true if the difference between the minimum distance in bini + 1
and the maximum distance in bini is no greater than the length of bini. The merging



process stops when it reaches a minimum frequency and startsa new pattern for the
next bin. We call the merged binslocality patterns, which accurately and efficiently
represent the reuse distance distribution on a per instruction basis. Furthermore, we
have shown that locality patterns can be predicted accurately for a third input using two
small training inputs and curve fitting, and can be used to predict cache misses for fully
and set associative caches. These results show that locality patterns are an effective
abstraction for data locality analysis.

3.2 Using Paths to Disambiguate Reuse Patterns

Although previous results show that over half of the instructions in SPEC CPU2000
contain only one pattern, a significant number of instructions exhibit two or more lo-
cality patterns. For the purposes of memory-hierarchy optimization, the compiler may
need to know when each locality pattern occurs in order to tailor optimization to the
pattern exhibiting little cache reuse.

Typically two backward reuse distance locality patterns ofa load come either from
different sources which meet at the current load through different paths (otherwise,
one access will override the other) as shown in Figure 1(a), or a single source that
reaches the current load through distinct paths as shown in Figure 1(b). This suggests
that a dynamic basic block history plus the source block can uniquely identify each
reuse. However, it is expensive to track a basic block trace at run time and apply it to
memory optimizations. Branch history is a close approximation to basic block history
and available on most modern superscalar architectures.

... X ... ... X ...

... X ...

(a)

...

... X ...

... X ...

...

(b)

Fig. 1. Path-related reuses, (a) from two separate sources, (b) from a single source

In this work, we use a stack to keep track of the branch historyduring profiling and
collect reuse distances for each distinct branch history ofan instruction. During a load,
our reuse distance collection tool calculates reuse distance and records the distance with
respect to the current branch history. If an instruction hasmultiple locality patterns and
the reuse distances for each branch history form at most one pattern, the branch history
can differentiate the multiple patterns and make it possible to determine when each
pattern will occur.



Due to the existence of loops in a program, the history stack tends to be quickly
saturated, making it difficult to track the reuses from outside the loops. To solve this
problem, we detect loop back-edges during profiling and keepthe branch history for up
to t iterations of a loop, wheret is the number of data elements that fit in one cache-line.
Note that we chooset based on the cache-line size to differentiate between spatial (ref-
erences within the same cache line) and temporal reuse patterns (references to the same
memory location). Aftert iterations or at the exit of a loop, the branch history in the
loop is squashed with all corresponding history bits cleared from the stack. In this way,
we efficiently use a small number of history bits to representlong paths. Furthermore,
by squashing loops, the branch histories to an instruction tend to be consistent across
program inputs, making it feasible to predict reuse distances along execution paths.

if (...)
for (i = 0; i < n; i++) // loop 1
...A[i]...

else
for(i = 0; i < n; i++) // loop 2
...A[i]...

for(i = 0; i < n; i++) // loop 3
...A[i]...

Fig. 2. Multiple reuses

As an example, consider the program shown in Figure 2.A[i] in the third loop has
spatial reuse from within the loopl −1 out of everyl iterations, wherel is the cache-line
size. Additionally,A[i] has temporal reuse once everyl iterations from either loop 1 or
loop 2, depending on the condition of theif-statement. For this case, a history oft +1
bits are enough to differentiate all reuse patterns –t bits for reuse from within the loop
and one bit for reuse from outside the loop.

After the reuse distances for all paths of each instruction are collected, the patterns
are formulated following the merging process discussed in Section 3.1. We then exam-
ine whether the path history can help to uniquely identify a pattern and whether the
path-based patterns can be predicted for a third input.

3.3 Path-based Reuse Distance Prediction

Previous work has shown that reuse distances are likely to change across program in-
puts. To make the above analysis useful for optimizations, it is essential to predict reuse
distances along execution paths. Our path-based reuse distance prediction is very sim-
ilar to that for whole programs [10] and instructions [11, 12], except that we form pat-
terns for each path in the two training runs and predict the patterns for the path in the
validation run.

In the two training runs, the reuse patterns of each instruction are created for each
profiled path. If a path does not occur in both of the two training runs, the reuse pat-



terns for that path are not predictable. Our prediction alsoassumes a path has an equal
number of patterns in the two training runs. We define thecoverageof the prediction as
the percentage of dynamic paths whose reuse distances are predictable based upon the
above assumptions.

Given the reuse patterns of the same path in two runs, the predicted patterns for the
path in the validation run can be predicted using curve fitting as proposed by Ding et
al. [10]. The predictionaccuracyis computed by comparing the predicted patterns with
the observed ones in the validation run. Here accuracy is defined as the percentage of
the covered paths whose reuse distances are correctly predicted. A path’s reuse distance
distribution is said to be correctly predicted if and only ifall of its patterns are correctly
predicted. The prediction of a reuse pattern is said to becorrect if the predicted pattern
and the observed pattern fall into the same set of bins, or they overlap by at least 90%.
Given two patternsA andB such thatB.min < A.max≤ B.max, we say thatA andB
overlap by at least 90% if

A.max−max(A.min,B.min)
max(B.max−B.min,A.max−A.min)

≥ 0.9.

4 Experiment

In this section, we report the results of our experimental evaluation of the relationship
between locality patterns and execution paths. We begin with a discussion of our exper-
imental methodology and then, we discuss the effectivenessof using path information
in differentiating multiple locality patterns of an instruction. Finally, we report the pre-
dictability of the reuse distance distribution along execution paths.

4.1 Methodology

In this work, we execute our benchmark suite on the SimpleScalar Alpha simulator [7].
We modifysim-cacheto generate the branch history and collect the data addresses and
reuse distances of all memory instructions. Ding and Zhong’s reuse-distance collection
tool [10, 25] is used to calculate the reuse distance for eachmemory access. During pro-
filing, our analysis records a 32-byte cache-line-based backward reuse distance for each
individual memory instruction with the current branch history of varying lengths. Given
the 32-byte cache-line size, we squash the branch history for loops every 4 iterations to
help differentiate spatial and temporal reuse.

Our benchmark suite consists of 10 of the 14 floating-point programs and 11 of the
12 integer programs from SPEC CPU2000, as shown in Figure 3. The remaining five
benchmarks (178.galgel, 187.facerec, 191.fma3d, 200.sixtrack and 252.eon) in SPEC
CPU2000 are not included because we could not get them to compile correctly with
version 5.5 of the Alpha compiler using optimization level -O3. For all benchmarks
we use thetest and train input sets for the training runs. For floating-point programs,
we use thereference input sets for verification. However, for integer programs,we use
the MinneSpec workload [14] in order to save profiling time due to the large memory
requirements of thereference input set. We collect the reuse distance distribution by
running all programs to completion.



4.2 Differentiating Multiple Locality Patterns
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Fig. 3. % instructions having multiple reuse patterns

In this section, we experimentally analyze the ability of using branch history to dif-
ferentiate between multiple locality patterns for a singleinstructions on our benchmark
suite. We examine branch histories of length 1, 2, 4, 8, 16 and32 bits using the history
collection described in Section 3.2.

Figure 3 presents the percentage of instructions that have multiple locality pat-
terns in a program. On average, 39.1% of the instructions in floating-point programs
and 30.2% of the instructions in integer programs have more than one locality pattern.
Floating-point programs, especially 168.wupwise, 171.swim, 172.mgrid and 301.apsi,
tend to have diverse locality patterns. Many instructions in these programs have both
temporal reuse from outside the loop that corresponds to large reuse distances, and spa-
tial reuse from within the loop that normally has short reusedistances. In integer pro-
grams, a high number of conditional branches tends to cause multiple locality patterns.
This phenomenon occurs often in 164.gzip, 186.crafty, 254.gap and 300.twolf.

Figures 4 and 5 show the percentage of multiple locality patterns that can be dif-
ferentiated using branch histories with various lengths. The bars labeled ”pathn” show
the differentiation results for a path withn bits of history. We see from these two fig-
ures that, for both floating-point and integer programs, using execution path context
can differentiate a significant percentage of multiple patterns for an instruction. This
percentage increases with the increase in the number of history bits used. On average,
paths with 8-bit history can disambiguate over 50% of the multiple patterns. Whereas
paths with 32 bits of history can disambiguate over 70% of themultiple patterns.

There are still some multiple patterns that cannot be differentiated by our approach
even though a 32-bit history is used. Several factors have been observed to be respon-
sible for this non-differentiability. The first is branch history aliasing, where different
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Fig. 4. % multiple patterns differentiable by paths for CFP2000

execution paths have the same branch history. Branch history aliasing occurs when ex-
ecutions from different block traces share the last severalbits of the branch history, as
shown in Figure 6. In this case, when using a 2-bit history both paths have the history
of 01. However, a 3-bit history will solve the problem.

To examine the effect of branch history aliasing on our scheme, we report the per-
centage of multiple patterns that cannot be differentiatedbecause of history aliasing, as
listed in Tables 1 and 2. We identify whether or not a particular history is an aliased one
by tracking the block trace associated with this history. Weexperimentally collect the
data forpath16. Forpathnwheren< 16, the non-differentiable multiple patterns due to
aliasing are those forpath16 plus all patterns that can be differentiated by a 16-bit his-
tory but not then-bit history. We see from Tables 1 and 2 that the branch history aliasing

Benchmark path1 path2 path4 path8 path16
168.wupwise 62.6 53.7 42.9 23.4 5.4
171.swim 70.3 69.8 68.7 36.0 5.4
172.mgrid 51.1 50.9 46.9 31.7 9.6
173.applu 52.3 48.7 29.5 21.4 2.4
177.mesa 76.4 67.1 54.9 35.3 18.6
179.art 40.8 38.0 30.9 24.9 24.1
183.equake 74.9 64.0 50.1 29.8 16.2
188.ammp 51.4 42.7 30.1 9.2 6.7
189.lucas 51.9 47.8 37.4 28.0 20.1
301.apsi 60.0 48.3 36.2 27.5 21.4
average 59.2 53.1 42.7 26.7 13.0

Table 1. % multiple patterns that are non-differentiable because ofhistory aliasing for CFP2000
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Fig. 5. % multiple patterns differentiable by paths for CINT2000

problem is more severe in integer programs than in floating-point programs, and in-
creasing the number of history bits can greatly reduce the number of non-differentiable
patterns.

We have observed that, branch history aliasing most commonly occurs when all
locality patterns represent short reuse distances. This isnot a severe problem for de-
termining cache misses. There are two ways to reduce the influence of the branch his-
tory aliasing problem. We can use more history bits and focusonly on those critical
instructions which produce most of the cache misses. Or, forthose applications consid-
ering only short reuse distances, a block trace can be used instead of branch history for
path representation. If only short reuse distances are involved, the memory requirement
needed for basic block traces will not be excessive.
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Fig. 6. Branch history aliasing



Benchmark path1 path2 path4 path8 path16
164.gzip 74.0 64.6 52.6 37.7 23.4
175.vpr 81.3 71.8 48.2 24.0 12.0
176.gcc 65.0 58.7 48.5 37.9 21.7
181.mcf 91.8 83.0 56.5 44.3 33.3
186.crafty 87.6 75.9 52.7 27.3 13.9
197.parser 82.8 74.0 59.0 46.7 32.8
253.perlbmk 89.1 74.8 61.6 34.4 8.0
254.gap 73.6 66.2 53.5 40.1 28.6
255.vortex 70.1 66.5 58.1 51.4 42.4
256.bzip2 59.6 52.9 44.5 43.2 40.2
300.twolf 74.9 63.0 50.3 28.2 17.4
average 77.3 68.3 53.2 37.7 24.9

Table 2. % multiple patterns that are non-differentiable because ofhistory aliasing for CINT2000

CFP2000 path4 path8 path16 CINT2000 path4 path8 path16
168.wupwise 28.5 24.3 17.5 164.gzip 36.5 28.7 21.9
171.swim 37.1 21.5 7.2 175.vpr 0.3 0.2 0.2
172.mgrid 10.4 8.2 6.1 176.gcc 0.3 0.3 0.2
173.applu 11.5 10.8 6.6 181.mcf 16.8 16.7 13.9
177.mesa 4.8 4.6 4.6 186.crafty 0.0 0.0 0.0
179.art 18.3 12.1 11.5 197.parser 0.1 0.1 0.0
183.equake 4.6 4.2 4.1 253.perlbmk 1.4 0.0 0.8
188.ammp 0.4 0.3 0.2 254.gap 1.5 1.2 1.1
189.lucas 42.6 37.1 30.2 255.vortex 0.4 0.3 0.3
301.apsi 5.2 4.6 3.8 256.bzip2 14.0 14.0 11.2

300.twolf 6.8 5.0 4.2
average 16.3 12.8 9.2 average 7.0 6.1 4.9

Table 3. % multiple patterns that cannot be differentiated and have both short and long distances

In addition to branch history aliasing, cache line alignment causes some multiple
patterns to be not differentiable using our scheme. The following code occurs in the
functionfullGtu(Int32 i1, Int32 i2) in program 256.bzip2.

1. c1=block[i1];
2. c2=block[i2];
3. if(c1!=c2) return(c1>c2);
4. i1++;i2++;

5. c1=block[i1];
6. c2=block[i2];
7. if(c1!=c2) return(c1>c2);
8. i1++;i2++;

Depending on the value ofi1, block[i1] at line 5 may reuse the data touched at line
2 having a short reuse distance, or data from beyond the function having a long reuse



distance. The change in the value ofi1 may cause the load at line 5 to be in a different
cache line from the load at line 1. In this case, our scheme cannot differentiate between
the two patterns. Notice that this piece of code is similar toan unrolled loop, which sug-
gests that compile-time loop unrolling may also influence our scheme. Indeed, we have
found cases of loop unrolling that cause some multiple patterns to be not differentiable
by paths in floating-point programs such as 168.wupwise and 173.applu.

For cache-related optimization, it is important to differentiate multiple patterns of an
instruction having both short and long reuse distances. This would allow the compiler to
optimize the long reuse distance that is likely a cache miss and ignore the path where the
reuse distance is short and a cache hit is likely. Table 3 lists the percentage of multiple
patterns that cannot be differentiated and have both short and long patterns. Here we
use a threshold of 1K, which corresponds to the size of a 32K-byte L1 cache, to classify
reuse distances as short or long. We can see that non-differentiable multiple patterns
with both short and long reuse distances only account for a small portion of the total
number of the multiple patterns in a program, and on average,integer programs have a
lower percentage than floating-point programs.

4.3 Path Based Reuse Distance Prediction

Tables 4 and 5 list the path-based reuse distance predictioncoverage and accuracy
for floating-point and integer programs, respectively. Forcomparison, we also list the
instruction-based reuse distance prediction results in the columns labeled ”inst”. Due to
the excessive memory requirements of simulation via SimpleScalar and profile collec-
tion, we cannot generate the prediction results for the path32 for integer programs.

coverage (%) accuracy(%)
Benchmark inst path inst path

1 2 4 8 16 32 1 2 4 8 16 32
168.wupwise92.994.293.794.996.6 97.5 98.5 98.199.099.199.499.499.599.7
171.swim 95.598.698.798.999.2 99.7 99.8 89.093.693.593.695.995.795.7
172.mgrid 96.697.997.397.796.6 97.1 94.1 91.994.895.095.896.496.596.2
173.applu 96.494.092.292.391.9 87.8 77.0 96.097.096.296.296.196.397.1
177.mesa 96.997.097.199.299.2 99.9 99.8 98.698.699.399.399.398.998.9
179.art 94.696.296.297.399.5 99.5 99.5 96.595.695.695.794.694.694.7
183.equake 99.299.699.699.699.2 98.9 98.0 98.398.698.698.898.699.098.9
188.ammp 99.999.999.999.999.9 99.8 99.4 89.692.892.893.994.094.194.3
189.lucas 71.766.565.363.362.4 60.1 59.3 94.197.598.698.698.398.898.8
301.apsi 96.696.696.897.196.1 91.4 85.9 93.096.597.097.296.997.297.7
average 94.094.193.794.094.193.1791.1 94.596.496.696.997.097.197.2

Table 4. CFP2000 path-based reuse-distance prediction

For floating-point programs, on average, our mechanism can predict reuse distances
for over 91% of the paths with accuracies all above 96%, with the number of history
bits ranging from 1 up to 32. With less than or equal to 8 bits ofbranch history, the path-
based prediction coverage compares well with using no branch history. When more than



coverage (%) accuracy(%)
Benchmark inst path inst path

1 2 4 8 16 1 2 4 8 16
164.gzip 99.299.299.299.099.298.8 95.195.595.897.297.097.5
175.vpr 97.799.298.998.395.890.0 93.993.793.993.494.295.6
176.gcc 95.696.796.896.493.690.2 93.395.295.294.995.394.8
181.mcf 94.595.095.095.094.692.7 88.989.990.689.390.090.6
186.crafty 97.798.599.099.299.197.9 93.293.394.493.894.494.6
197.parser 83.385.587.184.879.166.4 84.984.485.288.591.697.0
253.perlbmk99.899.899.899.899.899.2 97.297.297.297.298.097.9
254.gap 86.886.686.985.282.177.5 91.592.692.794.797.099.6
255.vortex 99.799.799.899.899.899.7 97.397.397.397.497.296.4
256.bzip2 99.999.999.999.999.999.9 98.097.897.897.898.197.9
300.twolf 95.696.296.195.494.190.1 93.393.393.494.094.095.0
average 95.496.096.295.794.391.1 93.393.794.094.495.296.1

Table 5. CINT2000 path-based reuse-distance prediction

8 bits are used, the prediction coverage decreases slightly. The rightmost part of Table 4
shows that using branch history improves the accuracy of reuse-distance prediction.

Integer programs exhibit similar coverage and accuracy results, as listed in Table 5.
On average, we can predict reuse distances for over 91% of thepaths with accuracies
above 93.5%. While the coverage decreases with the increasein the number of bits used,
the path-based reuse distance prediction coverage is higher than the instruction-based
one when less than 8 bits are used. With a single-bit history,the average prediction
accuracy is 93.7%, while the accuracy for a 16-bit history improves to 96.1% of the
covered paths.

We have observed two major factors that influence the prediction coverage. First,
our prediction assumes all paths appear in both training runs. However, some paths may
only occur when using thereference input set (we call these pathsmissing paths). For
example, a conditional branch may be taken when thereference input is used but not
when thetest input is used. Long execution paths will experience this phenomenon
more than short paths. Another factor determining the predictability is pattern match-
ing. For a path or instruction, if the number of locality patterns is not equal in the two
training runs, we cannot accurately match the corresponding patterns and thus cannot
predict the reuse distances. For this case, relating reuse distances to paths has an advan-
tage because most paths tend to have a single locality pattern.

For 168.wupwise, 171.swim and 179.art, the pattern matching problem dominates
the cases where we do not predict reuse correctly. Thus, the coverage monotonically
increases with the increase in the number of history bits used. When missing paths
are the major factor, the prediction coverage decreases with the path length, as is the
case for 173.applu and 189.lucas. For 173.applu, 22.8% of the paths are missing in the
training runs for the 32-bit history, leading to a low coverage. For 189.lucas, 197.parser
and 254.gap, there is a significant number of instructions that do not appear in the two
training runs. Thus, the corresponding paths do not occur inboth training runs, resulting
in a low coverage for all evaluation cases.



5 Conclusions and Future Work

In this paper, we have proposed a novel approach for path-based reuse-distance anal-
ysis. We use execution-path history to disambiguate the reuse distances of memory
instructions. Specifically, we relate branch history to particular locality patterns in or-
der to determine exactly when a particular reuse distance will be exhibited by a memory
operation.

Our experiments show that given sufficient branch history, multiple locality patterns
for a single instruction can be disambiguated via branch history for most instructions
that exhibit such locality patterns. On average, over 70% ofthe multiple patterns for
static instructions can be differentiated by execution paths with a 32-bit branch history,
for both floating-point and integer programs. In addition, we also show that the path
based reuse distances can be more accurately predicted thanthe instruction based reuse
distances across program inputs, without a significant decrease in prediction coverage.

Being able to determine when a particular locality pattern will occur for a memory
instruction allows the compiler and architecture to cooperate in targeting when to apply
memory optimizations. Our next step is to apply the analysisfor optimizations like
prefetching. Specifically, we are developing software/hardware cooperative approaches
to invoke prefetches only when certain paths with large reuse distances are executed.
These approaches aim to avoid useless prefetches while achieving high performance.
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