MICROPROGRAMMING SOFTWARE

SECTION

Two sets of programs are provided to assemble, debug,
and implement microprograms. One set operates in the
BCS (Basic Control System) environment and the other
operates in the DOS-III (Disc Operating System)
environment,

5-1. MICROPROGRAMMING SOFT-
WARE SUMMARY

The following microprogramming software is provided:

e A two-pass micro-assembler, which converts the user’s
source microprogram record into an object tape and
microcode listing.

® A Micro Debug Editor, which reads the object tape into
Main Memory, outputs it to Writable Control Store
(WCS), and allows the user to run the microprogram
in WCS. The user can set breakpoints, change micro-
instructions, change registers, etc. This program also
provides the ability to punch the paper tapes that are
used to create (“burn’’) programs into the ROM.

e A WCS I/O Utility subroutine, callable from FOR-
TRAN and ALGOL libraries, that allows a micropro-
gram, stored in a regular FORTRAN, ALGOL, or
Assembler program buffer (in Main Memory), to be
written into WCS,

Refer to table 6-2 for a summary of microprogramming
software part numbers.

5-2. MICRO-ASSEMBLER

The Micro-assembler accepts 80-character fixed-field card
format records from a card reader, paper tape reader, or
disc (using the DOS-III JFILE directive). Each record
contains one micro-instruction coded in mnemonic format
as described in Section IV of this manual. The
micro-assembler processes input records and produces an
object program paper tape which contains micro-
instructions in binary format. Optionally output is a
microprogram listing in both mnemonic and binary
format, a symbol table, and error messages.

5-3. HARDWARE ENVIRONMENT

-

The BCS version requires the following as the minimum
hardware:

a. An HP 2105 or HP 2108 Processor with 8K of Main
Memory.

b. A Teleprinter.
This minimum system means that the assembly of the

microprogram will be slow, since all input, listing, and
punching must take place on the teleprinter.

The following additional hardware is supported:

a. Paper Tape Reader for source microprogram input.
b. Paper Tape Punch for binary object tape output.

¢. Card Reader for source microprogram input.

£

Line Printer for microprogram assembly listing and

symbol table listing.

e. 7970 or 3030 Magnetic Tape Unit for temporary stor-
age of source microprogram that is input to Pass 2 of
the micro-assembler,

The DOS-III version of the micro-assembler requires the
same hardware as the DOS-III system.

5-4. MICRO-INSTRUCTION SOURCE RECORD

A micro-instruction source record has the following
characteristics:

a. Length <80 characters.

b. If not on a punched card, terminated by RETURN
and LINE FEED.

¢. Seven fields with the starting column of each fielcl as
follows:

Field Number Character Column

ity 2k
10
15
20
25
30
40

=1 O O W LD DD

Figure 5-1 shows a card record.

Refer to Section IV, ““Microprogramming Language,” for
a description of the micro-orders appropfiate to the seven
fields.

51

Microprogramming Soflware

21MX

|
Card ' 1 T I |
Column: 1/ 10 15 20 25
| |

FIELD FIELE | FLELD FIELD
1 ? o 4 5]

FiEL D

FIELD FIELD
6 !

Figure 5-1.

5-5. MICRO-ASSEMBLER CONTROL RECORD

Control statements are interspersed with micro-assembler
language statements and specify control over the
assembly process. For example, they may define the
logical unit number of an input or output device or
suppress listings,

"There is one control statement per Control Record. If not
on a card, it must be terminated by RETURN and LINE
FEED.

Two control statements are required for every micropro-
gram:

a. $3ORIGIN statement
b. $END statement

All control statements start with a “$" (Dollar character)
in column 1. No intervening spaces are allowed in any
control statement other than as specified. Details on each
stalemscat text and meaning are given below.

$END

General Form: $END

Meaning: End of microprogram
Purpose: Required as the last statement in
every microprogram
Example: SEND
SEXTERNALS

General Form: $EXTERNALS = namelbaddressl,
bname2baddress2,
b. . .namenbaddressn

5-2

Micro-instruction Card Source Record

A comma and a - pace (b) separate each external name and
address pair. Each ‘“‘name’’ conforms to the Label defini-
tion in Section 4-1 and “‘address’’ means an octal address
in the range 0 - 7T777.

Define the following label names:
namel refers to addressl
name? refers to address2

Meaning:

namen refers to addressn

Each $EXTERNALS control state-
ment provides for one or more branch
(JMP or JSB) target addresses out-
side of the microprogram.

SEXTERNALS = OUTPUT 1012, *
CHAR 736.

Purpose:

Example:

SFILE

(Used by DOS-III systems only)

General Form: S$FILE = filename

The filename must be in accordance
with DOS-III filehame requirements.

Meaning: The object output file name for this
microprogram is ‘‘filename."”
Purpose: Provides the DOS-III micro-
assembler with the name of the disc
file into which the binary object code
is to be stored.
Example: $SFILE=MOBJ
Note: Prior to assembling a microprogram with

a $FILE control statement, the user must
have reserved a disc file using the DOS-
II1 *“:ST,B, ...” directive.

21IMX

’ SINPUT

General Form:

Meaning:

Purpose:

Example:

SLIST

General Form:

Meaning:

Purpose:

Example:

$NOPUNCH

General Form:

Meaning:
Purpose:

Example:

$ORIGIN

General Form:

Meaning:

(Used by BCS systems only)

$INPUT = lun

The logical unit number, lun, must be
octal and in the range 1 - 74.

The logical unit number of the device
through which all subsequent input
(to the next $END statement) is to be
read is “lun.”

When the assembly process is begun
in BCS systems, the micro-assembler
expects the first source statement to
be entered through the system con-
sole device. The user may enter the
whole source program through the
system console device. Normally,
however, the user enters a $INPUT
command specifying the logical unit
number of the card reader or paper
tape reader from which the rest of the
source program is to be read.

SINPUT = 12

$LIST = lun
The logical unit number, lun, must be
octal and in the range 1 - 74.

The logical unit number of the listing
device is “‘lun”.

To cause the assembly listing to be
printed on the device having the spec-
ified unit number. If omitted, logical
unit number is assumed to be 6
(standard list device).

SLIST = 16

$NOPUNCH

Suppress punching of binary object
tape.

To perform a micro-assembly for
listing and ‘diagnosis only.
$NOPUNCH

$ORIGIN = nnn

The origin, nnn, must be octal and in
the range 0 - 7777.

Set microprogram origin at octal
address nnn in Control Store.

Purpose:

Example:

$RCASE

General Form:

Meaning:

Purpose:

Example:

SOUTPUT

General Form:

Meaning:

Purpose:

Example:

$PASS 2

General Form:

Meaning:

Purpose:

Microprogramming Software

Every microprogram must have its
program address origin defined. New
origins may be specified within the
microprogram,

$ORIGIN = 427

$RCASE

Punch a special 32-micro-instruc-
tions/record object tape.

This special object tape is reserved for

~ system maintenance, Refer to Section

5-6 Micro-Assembler Output for a
description of this special object tape.

$RCASE

$OUTPUT = lun

The logical unit number, lun, must be
octal and in the range 1 - 74. This
statement may come anywhere before
the SEND statement.

lun is the logical unit number of the
output device.

To specify the device on which the
micro-assembler object code is to be
output. If this statement is omitted,
logical unit of 4 is assumed.

$OUTPUT = 10
(Used by BCS systems only)

$PASS2 = lun

The logical unit number, lun, must be
octal and in the range 1 - 74. If present,
this must be the first statement in the
source deck or tape.

lun is the logical unit number of the
magnetic tape unit onto which all sub-
sequent micro-assembler input is to be
written. -

To cause all source input to be
recorded on magnetic tape for use as
input to Pass 2 of the micro-assem-
bler. If this control statement is
omitted, the computer halts at the end
of Pass 1 to allow the operator to re-
load the microprogram source into
the “$INPUT" device.

Note: The only magnetic tape units supported

by the micro-assembler are the HP 3030
and HP 7970. -

Example:

$PASS2 = 23

Microprogramming Software

$SUPPRESS

General Form: $SUPPRESS

Meaning: Suppress all warning error messages.
Purpose: To cut down the volume of messages
to the console device. Fatal error mes-
sages will still be printed.
Example: $SUPPRESS
$SYMTAB
General Form: $SYMTAB

Meaning: Print symbol table

Purpose: To provide the user with label names
and corresponding octal addresses
used in his microprogram.

Example: $SYMTAB

5-6. MICRO-ASSEMBLER OUTPUT

This section describes all forms of output from the micro-
assembler. They are:

e Binary Object
e Symbol Table

e Source and Binary Microprogram Listing
e lirror Messages

5-7. BINARY OBJECT OUTPUT

The Standard Object Tape output by the micro-assembler
to paper tape or a disc file consists of one or more
Instruction Records, the format of which is shown in
Appendix A, Figure A-1. One Instruction Record holds up
to 27 micro-instructions and five words of header
information. Each micro-instruction requires 32 bits or two
words in the format: an eight bit address and 24 bits for the
micro-instruction. Hence the length of the record =

5 words of header

2n words for n micro-instructions (2 words for each
micro-instruction)

5+2n words for one Instruction Record

No more than 27 micro-instructions are written into an
Instruction Record. Hence the maximum length =
5+(2x27)=59 words. The last object record is a four word
End Record. When the microprogram consists of more
than 27 micro-instructions, a series of Instruction Records
are produced with the last one holding 27 or less micro-
instructions. For example, if 57 micrc-instructions have
been assembled, three Instruction Records and an End
. Record are required consisting of the following:

5-4

21IMX

a. Instruction Record 1 holds 27 micro-instructions and
consists of

5 words of header
54 words for 27 micro-instructions
59 words

b. Instruction Record 2 holds 27 micro-instructions and
consists of

5 words of header
54 words for 27 micro-instructions
59 words

¢. Instruction Record 3 holds 3 micro-instructions and
consists of

5 words of header
6 words for 3 micro-instructions
11 words

d. The End Record consists of

4 words
133 words for the entire microprogram Binary Object.

The Standard Object format is accepted by all programs
which accept standard relocatable format. Thus a
Standard Object tape can be stored in a DOS-III file using
the *:STORE,R,..."” directive. However, if the DOS-I11
user wants the Binary Object stored automatically in a
disc file by the micro-assembler, the DOS-III directive
“STORE,B,..."” must have previously been used to
reserve a disc file.

The Micro-assembler can also produce a non-standard
object as the result of the inclusion of the $RCASE control
statement. This optional object is the HP ROM Simulator-
Object tape. The format of this tape is shown in Appendix
A, Figure A-2.

5-8. SYMBOL TABLE LISTING”

If the user has a $SYMTAB control statement in his
microprogram source input, then the micro-assembler will
print a symbol table on the device with logical unit number
6 or on the device defined by the 3LIST control statement,
if present.

An example of a symbol table is shown in Figure 5-2.

On the left are the symbols or labels in the microprogram.
On the right is the value of the symbol; that is the six digit
absolute octal address of the symbol. Where X-follows the
address, the symbol has been defined by a SEXTERNAL
control statement.

21MX

SYMROL TARLE

MOVE OUg4l?X
GOTO 0034214
RET 002427X
LAST 00eT17X
ouT 002011
ERK1 002012

Figure 5-2. Symbol Table

5-9. MICROASSEMBLY LISTING

Unless suppressed by the SNOLIST control statement, the
micro-assembler provides a listing like the one shown in
Figure 5-3. This listing is associated with the symbol table
illustrated in Figure 5-2.

5-10. MICRO-ASSEMBLER ERROR MESSAGES
During the assembly process the micro-assembler checks
each instruction for errors. If an error is detected, an error
message of the following general form is printed in the
Micro-assembly Listing.

**ERROR eeee IN LINE nnnn

Microprogramming Software

where
eeee
is an Error Code defined in Table 5-1 and
nnnn
is a line number in the Micro-assembly Listing.

Table 5-1 gives the meaning of each error code and the
recovery procedure. Note that Figure 5-2 holds examples
of two error messages in lines 9 and 11.

5:11. DOS-III OPERATION OF MICRO-
ASSEMBLER

Before using the DOS-III version of the Micro-assembler,
the following items must be available.

a. A current DOS-III system.

b. A source microprogram, on cards, paper tape, or in a
source file on disc,

c. The Micro-assembler program named MICRO stored
in the DOS-III user library. If MICRO still is on re-
locatable object paper tape (HP 12978-160001), it can
be loaded in the same way as any other relocatable
object program.

For the detailed description of DOS-III operation, see HP
243078 DOS-III Reference Manual (HP 24307-90006).

Currently, if MICRO is included in the system area dur-
ing DOS system generation, base page linking must be

ouol BORIGIN=2000R FIHST ADDRESS OF MODULE 4
voope $SYMTAR PRINT SYMHOL TABLF
0003 SEATERNAL=MOVE 2412+ GOTO 3421¢ RET 2427+ LAST 2717
V004 & PZ=ARP]
UouS 2000 220 074457 READ INC M P RFAD ADDEND P
0006 2001 01T 12A157 PASS L a PUT AUGEND IN L AND ENARBLE E & 0
0007 2002 264 101557 FMNVE ADD S12 TAR ADD MEMORY TO L AND STUHE IN 512
0008 2003 324 140531 JMP CNDX € ERR1 IF E SETs GO TO ERR1
@«#FHROR 000B IN LINE 0009
0009 2004 320 000030 JMP CNDX OVFL ERRZ IF O SETe GO TQ ERR2
0010 2005 000 075717 INC P P BUMP P FOH NEAT PARAMETER
sefRROR D003 IN LINE 0011
0ull 2006 017 136757 RF AN INC M P HFEAD NEST PARAMETER P2 ADDRESS
bole 2007 000 NOD&HL MPCK INC M TaR PUT IN M AND CHECKX FOR M P ERR
uol3 2010 177 166017 WRTE PASS TAB 512 PUT ADD HESULT INTO MEM ADD P2
Uple 2011 017 135776 oOuUT HTN THE RETURN
Vols 2012 344 001757 ERRHI I MM LOW S 4] SET UPPER RYTE FOR E ERK
001¢ ~d13 320 100470 . JMP ouT RETURN
0017 2014 340 001757 ERRe ImMM HIGH S 0 SET LOWER BYTE FOR 0O ERR
0018 2015 320 100470 JMP ouT HETURN
0019 BEND
0002 FRHORS®#
T p— ———— e i e, e s e e e e p—
Line ROM Bits Bits Field Field Field Field Field Field Field
Number Address 23-16 150 1 2 3 4 5 6 7
[—
Binary
Micro-instruction
Figure 5-3. Micro-Assembly Listing

5-5

Microprogramming Software 21MX

specified. Thus, when generating the system, the answer When an executable version of the micro-assembler is
to the question properly included in the DOS system, perform the follow-
ENTER PROG PARAMETERS ing steps to assemble the microprogram.

must include ; . :
If there is a $FILE control statement in the micropro-

MICRO3,1 gram source, a binary file must be reserved on the disc
where the 1 indicates base page linking. This is necessary before beginning the micro-assembly process to hold
because the distributed version of the micro-assembler is the relocatable object. The name of the reserved disc
set to ¢ rrent page linking and does not executed properly file must be the same as the one specified in the $FILE
in the system area. control statement.

Table 5-1. Micro-assembly Error Messages

Error Code Meaning/Recovery

1 Duplicate Label. The statement label of the micro-instruction in line nnnn is the same
as another statement in the microprogram or the same as a declared $EXTERNAL
symbol. Assign a new statement label and reassemble.

2 Illegal Control Statement. Correct control statement in line nnnn and reassemble.

3 Illegal Field 2 Micro-order. A NOP is inserted i in field 2 and assembly continues. Cor-
rect line nnnn and reassemble.

4 Illegal Field 3 Micro-order. A NOP is inserted in field 3 and assembly continues. Cor-
rect line nnnn and reassemble.

5 Illegal Field 4 Micro-order. A NOP is inserted in field 4 and assembly continues. Cor-
rect line nnnn and reassemble.

6 Illegal Field 5 Micro-order. A NOP is inserted in field 5 and assembly continues. Cor-
rect line nnnn and reassemble.

7 Illegal Field 6 Micro-order. A NOP is inserted in field 6 and assembly continues. Cor-
rect line nnnn and reassemble.

8 Illegal JMP or JSB Address. Address is outside permitted range, or target label
address is undefined. A value of 0 will be inserted into address field of line nnnn and
assembly continues. Redefine address and reassemble.

9 Microprogram Too Large. The last relative acddress in the program is 400 or greater. A
8ORIGIN statement must be changed or the program broken up into smaller parts
before reassembly.

10 Missing $ORIGIN Control Statement. At least one $ORIGIN control _statement is
required. Insert 3ORIGIN statement and reassemble,

11 Illegal Word Type 2 Operand. Operand of the IMM micro-instruction is outside the
permitted range. A value of 0 is inserted into the operand and assembly continues.
Correct line nnnn and reassemble.

OR aaaa Insufficient DOS-I11 File Space Reserved. Reserve a binary file with more sectors for
storage of the file named in the $FILE control statement (aaaa is an address in the
micro-assembler and can be disregarded). See DOS-III manual section 15 under
Error Conditions.

. ABORT! An irrecoverable error has occurred; correct error and reassemble,

5-6

21IMX

b. Place the microprogram source in the input device;
turn the deviee on; turn on the paper tape punch and
the list device.

¢. Summon the Micro-assembler with statement
:PR,MICRO,[pl,p2,p3,p4,99]

where
pl = the input device logical unit number
p2 = list device logical unit number
p3 = paper tape punch device logical unit number
p4 = maximum number of lines-per-page on the list
device.

If 99 is entered for any of the above parameters, that
parameter and all those that follow are defaulted to
“standard’ values.

d. The program title
MICRO-ASSEMBLER

is printed and Pass 1 begins. If a $SYMTAB control
statement is in the source microprogram, the symbol
table is printed at the conclusion of Pass 1. Pass 2
begins immediately (from disc) and the listing and
relocatable object tape are output. Micro-assembly is
complete.

Note: If Pass 2 fails to begin, check that the
paper tape punch is turned on. The micro-
assembler will cycle in a loop until the
punch is turned on.

5-12. BCS OPERATION OF MICRO-ASSEMBLER
Before proceeding, the following items must be available:

e An absolute BCS binary tape.

@ A reloctable object tape of the Micro-assembler pro-
gram MICRO (HP 12978-160003).

® A source microprogram either on cards or paper tape.

For a detailed description of BCS usage, see the Basic Con-
trol System manual (HP 02116-9017).

The following procedure need be performed only once.
When an absolute binary tape of the Micro-assembler is
punched, it is used as described in the procedure
“Executing the Micro-assembler.”

Making an Absolute Micro-assembler tape:

a. Load the absolute BCS binary tape using the Basic
. Binary Loader.

b. Set the P-register to 2. Set bit 14 of the Switch Register
and clear all other Switch Register bits.

Microprogramming Software

¢. Place the MICRO relocatable object tape in the paper
Lupe reader, Choek that the papoer Lape render nnd the
console device are on. Turn on the paper tape punch.
Press PRESET and RUN on the CPU front panel,
MICRO reads in and absolute binary tape is punched.

d. The message
*LOAD

is printed and the computer waits. Set Switch Register
bits 2 and 14 leaving all others clear. Load BCS
Library tape into the paper tape reader. Press RUN.

e. The BCS Library tape reads in and the rest of the abso-
lute binary tape is punched. Linkage information is
printed on the console device.

This is the absolute binary tape of MICRO, used for input
to the next step.

Executing the Micro-assembler:

a. Load the MICRO absolute binary tape using the Basic
Binary Loader.

b. When loading is complete, set P-register to 2. Press
PRESET and RUN. The message

MICRO-ASSEMBLER

is printed followed by a request for the logical unit
number of the source input device

INPUT=

c. Enter the logical unit number followed by carriage
return/line feed. Pass 1 now begins, If a $SYMTAB
control statement is in the microprogram source, the
symbol table is printed at the conclusion of Pass 1.
(See Section 5-5 for a description of the $SYMTAB
control statement.)

d. Turn on the paper tape punch.

e. Pass 2 begins immediately. If no $PASS2 control
statement was included in the source, the message

RELOAD SOURCE, PRESS RUN

is printed. Reload the source microprogram into the
input device and then press RUN on the front panel of
the computer,

Note: If Pass 2 fails to begin, check that the
paper tape punch is turned on. The micro-
assembler will cycle in a loop until the
punch is turned on.

If a teletype is used for both listing and punching, the
computer halts (T -register = 102052) so that the oper-
ator can press the paper tape punch ON button to

5-7

Microprogramming Software

punch the microprogram object tape. The operator
then presses RUN on the computer front panel.

When the paper tape is punched, another halt (T-
register = 102053) occurs, so that the paper tape punch
button can be set to OFF. Press RUN on the computer
front panel.

f. Pass 2 completes micro-assembly. The microprogram
object tape is complete. To assemble another micro-
program proceed from step b.

5-13. MICRO DEBUG EDITOR

The Micro Debug Editor (I 1K) makes it possible to load
the object microprograms output from the Micro-
assembler into a Writable Control Store module, It also
provides the ability to debug microcode stored in the WCS
and to “burn” microprograms into ROM chips.

Before using the Micro Debug Editor to debug micro-
programs, the Writable Control Store PCAs must be set to
the required control store module numbers. This is
" accomplished by the installation of a module selection
Jumper Assembly (HP Part Number 5060-8342). Refer to

21MX

Section 6 of this manual for installation of the module
selection Jumper Assembly and the WCS PCAs.

5-14. HARDWARE ENVIRONMENT

The BCS version requires the following minimum
hardware:

a. HP 21MX Series Computer with 8K of Main Memory
b. A console device
c. A paper tape reader

d. One or more WCS PCA's, depending on che size of the
microprogram to be debugged.

e. Ifa ROM program tape is to be punched, a paper tape
punch is also required.

The DOS-I11I version of the MDE requires the same mini-
mum hardware as the DOS-III system.
5-15. INITIALIZATION PROGRAM

When the Micro Debug Fditor is to be run for debugging
purposes (as opposed to being run merely to punch ROM

ASMB,R,B,L,T

NAM TEXT,7

ENT TEST,MACRO
TEST NOP

MACRO OCT 105xxx

BEE P1
DEE P2

DEF Px
JMP TEST, T

P1 (parameter 1 value)
P2 (parameter 2 value)

Px (parameter x value)

r END

Asscuwl)y parameters
Program name
Entry points

Any initialization procedure re-
quired by the microprogram

(or 101xxx) Instruction that calls
the user microprogram

Parameter addresses required by
the microprogram

Return to calling program (MDE)

Parameler values

Figure 5-4. General Format of the Initialization Program

21MX

program tapes), the user must supply an initialization
program. The inilialization program is an assembly lan-
guage program that prepares the necessary parameters in
Main Memory and then executes a 101xxx or 105xxx
macro-instruction.

The name of the initialization program must be TEST
{required in BCS systems, is a NAM TEST statement; in
DOS-III systems a NAM TEST, 6 statement). The
program must also have the symbol “MACRO"” declared
as an entry point where MACRO is the symbolic address
(label) of the macro-instruction (101xxx or 105xxx) which
calls the microprogram under test. Note that there must
only be one such macro-instruction in the TEST
initialization program,

Figure 5-4 holds the general structure of the initialization
program.

This initialization program is called as a relocatable sub-

routine by MDE. Thus, its name is one of the references
that must be satisfied when loading MDE.

An example of a short initialization program is shown in
Figure 5-5.

5-16. USING TI'E MICRO DEBUG EDITOR

Section 5-37 describes how to execute MDE using the

Microprogramming Software

DOS-11I operating system. Section 5-38 describes how to
execute MDE using the BCS operating system.

Before using the Micro Debug Editor to debug a mi-
croprogram, the Writable Control Store PCAs must have
the correct terminal board plugged in, to establish the
Control Store module number. Refer to the WCS Refer-
ence manual (12978-90007) for a description of setting
module numbers in a Writable Control Store PCA.

When the module number has been set in the Writable
Control Store PCA and it is plugged into the correct 1/0
slot, the user loads the microprogram object tape
(produced by the Micro-assembler) using the Micro Debug
Editor LOAD command. The microprogram is then output
to the Writable Control Store using the WRITE
command.

When the user is ready to execute his microprogram, the
EXECUTE command is used. For the microprogram to
execute properly, the following conditions must hold:

a. The module that the microprogram was written into
matches the range of addresses used by the micropro-
gram. For example, a microprogram whose addresses
are in the octal range 2400 to 2777 must be stored in
a Writable Control Store PCA which has been set to
module 5.

Macroprogram in Main Memory

ASMB. L Microprogram to be executed in WCS
3
NAM TEST, 7 ; 3 iy St o
ENT TEST MACRO LABEL 0P sPRE AT AL " qlaRr T stRiS
TEST NOP B oA
MACRO OCT 105200 $ORIGIN=20008 it
ks " TMP START
- z $ORIGIN=20208B
START NOP CLFL INC ~M P
RTN A S12
$END

Figure 5-5. Test Program Call to Microprogram

5-9

Microprograraming Software

b. The macro-instruction in the TEST program must ini-
tiate entry into Control Store at the proper address of
the microprogram to be tested.

Micro Debug Editor results are unpredictable if either of
the above conditions are not met.

When MDE is executed, it prints the input prompt
COMMAND?
on the system teleprinter,

Respond by entering one of the input, edit, output, or
debug commands described in Table 5-2 and the following
pages. In most cases, the first letter of the command is
sufficient to specify it to MDE. The two commands,
“MOVE" and “*MODIFY", rc ire at least three letters to
identify the command. After MDE has performed the
specified operation, it again print- COMMAND? to repeat
the cycle.

Terminate an MDE run by entering the FINISH
command.

There are 13 MDE commands which are summarized in
Table 5-2. A detailed description of each command follows.
Whenever a logical unit number (lun) is called for, it must
be entered in octal,

Note that the last octal 45 words of the lowest numbered

"WCS module loaded with a microprogram are used by
Micro Debug Editor for its own resident microcode. If
these locations are required by the user microprogram
under test, use the MOVE command to relocate the MDE
microcode before loading the user microprogram.

The Micro Debug Editor uses a Main Memory buffer to
hold the microprogram object code. When the micropro-
gram is loaded from an object tape, it is stored into this
buffer. Mo<t MDE commands make modifications o
transfers to and from this buffer.

Use of the PREPARE command to punch the six ROM
microprogram mask tapes has the following restriction.
This buffer must have been loaded using an object tape
produced by the micro-assembler and the buffer must not
have been modified.

5-17. INPUT COMMANDS
5-18. LOADI,X]

. Meaning:Load the object microprogram produced by the
Micro-assembler from disc or paper tape into the MDE
buffer. The logical unit number (lun) of the input device is
X.

Usagg: The Micro-assembler control statement $FILE can
be used to specify (during assembly) t'e name of the
DOS-III file into which the object code is to be stored. In
the DOS-1II version of MDE, if the logical unit number

5-10

21MX

entered is that of the disc, MDE will respond with a
request for the name of the file in which the object code is
to be stored:

FILENAME?

Enter the file name given to the object code by the $FILE
control statement.

Note: When loading the object microprogram for
ouiput to WCS (instead of punching pROM
tapes), the LOAD command must be fol-
lowed immediately by a WRITE command
to the appropriate WCS PCA. No interven-
ing commands are allowed. This allows the
Micro Debug Editor to build a table relat-
ing microprogram addresses to WCS logi-
cal unit numbers.

Table 5-2. Micro Debug Editor Commands

INPUT
Commands: LOADI[X]
READ. X
EDIT
Commands: SHOW xxxx[,yyyy]
MODIFY xxxx[,yyyy]
OUTPUT
Commands: DUMP[,X]
WRITE, X
PREPARE[,X]
VERIFY[,X]
TERMINATION
Command: FINISH
DEBUG
Commands: BREAK,yyyy

CHANGE[,mnemonic]
EXECUTELO0 or yyyyl

RELOCATE MDE WCS-RESIDENT
MICROCODE

Command: MOVE,yyyy

Note

The brackets indicate that the parameter may be
omitted. £

21IMX

H-19. READ,X

Meaning: Read the contents of a WCS into the Micro
Debug Editor buffer. X is the logical unit number of the
WCS.

Usage: If no WCS is on the specified logical unit, the
MDE buffer is unchanged. No notification is made to the
user that the buffer is unchanged or that no WCS is on the
logical unit specified. Thus, if READ or SHOW is being
used to insure that a previous WRITE exccuted properly
to the same (non-WCS) logical unit, the MDE buffer will
still hold the data thal was assumed to be writlen to that
logical unit. The user could incorrectly assume that the
non-existent WCS holds the proper data.

Note that a READ requires a prior WRITE command to
establish the relationship between logical unit and mod-
ule number.

5-20. EDIT COMMANDS

5-21. SHOW,xxxx[,yyyy]

Meaning: Display the WCS contents on the console
device, where xxxx is the beginning address and yyyy is
the ending address. Only the contents of the address xxxx
are displayed, if yyyy is omitted.

Usage: See Usage under 5-19, READ,X.
The display format of each 24-bit word is:
aaa mmm nnnnnn

where aaa is the control store address of the location being
displayed, mmm is the octal representation of bits 23-16 of
the location, and nnnnnn is the octal representation of bits
15-0 of the location.

5-22. MODIFY xxxx[yyyy]

Meaning: Change the contents of the MDE buffer and the
WCS where xxxx is the beginning absolute WCS address
and yyyy is the ending absolute WCS address. Change
WCS address xxxx if yyyy is omitted.

Usage: See Usage under 5-25, WRITE X.

“MOD" is the minimum input required to initiate the
modify command. xxxx and yyyy must be absolute WCS
addresses in a single WCS module. One at a time, the
contents of each location are printed on the console device
in the same format as the SHOW command above.
Following the location contents, the operator enters the
new location contents followed by a CARRIAGE
RETURN and LINE FEED.

[f fewer than 3 digits are entered for mmm or fewer than 6
digits are entered for nnnnnn, the number entered is right

Microprogramming Software

justified with zeros automatically filled to the left. To
specify that no change is to be made, enter an asterisk (*),
instead of mmm or nnonnnn.

Example (underlined characters indicate operator input):

MOD,4000,4003
4000 123 456777 *,123456

leaves bits 23-16 unchanged and sets bits 15-0 to 123456 in
WCS location 4000.

4001 123 456777 6,123

is equivalent to entering 006,000123; bits 23-16 are set to
006 and bits 15-0 are set to 000123 in location 4001.

4002 123 456777 123,*

sets bits 23-16 to 123 and leaves bits 15-0 unchanged in
location 4002.

4003 123 456777 **
makes no change to location 4003.

5-23. OUTPUT COMMANDS

5-24. DUMP[,X]

Meaning: Punch the entire contents of the MDE buffer on
the paper tape punch. X is the logical unit number of the
paper lape punch. If X is omitted, it is assumed to be 4.

Usage: The DUMP command must be preceded by a
READ or LOAD command to fill the MDE buffer. The
tape produced is in the same format as the object tape
produced by the Micro-assembler. If the tape is reloaded
into the MDE buffer, the buffer cannot be used to punch
(PREPARE command) a set of six pROM mask tapes.
The primary use of this tape is to enable the user to.save
the results of a microprogram debug _session for
resumption later.

5-25. WRITE,X

Iiieaning: Write the contents of the MDE buffer into the
WCS. X is the logical unit number of the WCS.

Usage: Since the Micro Debug Editor addresses the WCS
by logical unit number, it is the responsibility of the user
to insure that a WCS is installed with logical unit number
X and that it is set to the proper module for the micro-
code to be stored. If no WCS is on the specified logical
unit, no notification is given to the user that a WRITE or
MODIFY command failed to transmit data to the non-
existent WCS.

5-26. PREPARE[X]

Meaning: Punch a set of six pROM mask tapes each
headed by three lines of I.D. and a checksum on the paper

5-11

Microprogramming Software

tape punch. X is the logical unit number of the device. If X
is omited, it is assunicd to be 4.

Usage: Following entry of the PREPARE command, a
eycele of dialogue is initiated between the operator and the
console device. In the following procedure, the underlined
characters indicate operator input is required at the
console device. Each entry must be followed by a

CARRIAGE RETURN and LINE FEED.

a. Turn on the paper tape punch. The message cycle
starts with:

GENERATION OF MASK BITS 23-20

where 23-20 represents the 4 bit range of bits to be
punched into the first mask tape. {(Underlined charac-
ters indicate operator input.)

ENTER 3 LINES OF 1.D. INFORMATION

LINE 1 — key in first line of tape I.D.
LINE 2 — key in second line of tape I.D.
LINE 3 — key in third line of tape I.D.

Enter up to 72 characters of identification information
in each line,

b. Following entry of the third I.D. line, the mask tape is
punched for mask bits 23 to 20. This is for ROM chip
number 6. The following cycle of dialogue is repeated
for each of the remaining five mask tapes:
GENERATION OF MASK BITS UU-LL
UU - LL is the range of bits to be punched.

ANY CIHHANGE OF 1.D. INFO IN LINE 1? key in N
(no) or Y(yes) and new line 1 I.D.

LINE 2? key in N or Y and new line 2 1.D.
LINE 3? key in N or Y and new line 3 1.D.

¢. The next mask tape is punched. When all six mask
tapes have been punched, the following message is
output:
GENERATION OF TAPES COMPLETED

"I e six mask tapes have the following characteristics:

For Module ROM

UU-LL Punch Sequence Chip No.
23-20 First tape 6

19-16 Second tape 5

15-12 Third tape 4

11-08 Fourth tape 3

07-04 Fifth tape 2

03-00 Sixth tape 1

Conventions: Line 1 I.D. holds module number, ROM chip
number, number of bits {4), ROM size, and other 1.D.
information.

512

21IMX

For example:

LINE 1-1,005, 4, 10256 REENTRY FACTOR

Line 2 1.D. holds part number or other central reference
number. For example:

LINE 2-MT 38-0226 HEVISION C

Line 3 1.D. holds date and any other I.D. information. For
example:

LINE 3-04/01/75 PVT. D.M. BULMAN

527. VERIFY[,X]

Meaning: Compare the contents of the pROM mask tapes
to the contents of the MDE buffer. The logical unit
number of the paper tape reader is X.

Usage: Following entry of the command, the console
device requests the range of bits in the pROM mask tape
to be compared to the MDE buffer (underlined characters
indicate operator entry).

TAPE NUMBER: uull

Enter CARRIAGE RETURN and LINE FEED after the
bit range uu (upperlimit) and 1l (lowerlimit). Refer to 5-26
PREPARE[,X] for valid bit ranges.

For example, the entry ‘“2320" specifies verification of bits
23 to 20. The paper tape then reads the mask tape and
compares its contents to the specified bits in the MDE
buffer. As the tape is being read, the three lines of 1.D. (see
PREPARE command) and < :ecksum are printed on the
console device.

Note: If the DOS-III operating system is being
used, and no errors were encountered, an
1/0 “error’’ message is printed at the con-
sole d¢ ice:

I/0 ERR ET EQT #n

Where n is the EQT number of the paper
tape reader. This message notes a charac-
teristic of the mask tape that DOS-III
normally interprets as an error condition,
but the message in fact, connotes no error.

If no errors were detected, the message
TAPE VERIFIED
is printed. Enter another bit range as before, The VERIFY

command completes only after the bit range 03 ot 00 has
been entered and wverified.

21MX

Irrors: If errors are detected, dialogue belween the
- console device and the operator is initiated. Follow each
operator entry with CARRIAGE RETURN and LINE
FEED.

a. The message CHECKSUM ERROR OR BAD MASK
TAPE is printed followed by a tape repunch
request:

DO YOU WANT TO REPUNCH THIS TAPE?
enter Y or N

b. If N is entered, another bit range request with the
message

TAPE NUMBER?
Enter another bit range as before. The VERIFY com-
mand completes only after the bit range 03 to 00 has

been entered and verified.

c. If Y is entered, the following request is made:

ENTER PUNCH LOGICAL UNIT # enter octal

logical unit number of paper tape punch

The message

ENTER THREE LINES OF I.D. INFORMATION
is printed.

Enter up to 3 lines of tape I.D. information according
to the procedure given in 5-26, PREPARE[,X]. The

new mask tape is punched, headed by the I.D.
information.

Special DOS-III operation: When a series of bit ranges are
being verified, specification of each successive range at the
console device (as a result of the message TAPE
NUMBER?) will bring about the prompt character “@ *.
To verify the specified bit range on paper tape:
a. Enter the following command

:UP,n

where n is the EQT number of the paper tape reader.
b. Then enter:

:GO

The next tape to be verified will read in as above.

Verify sequence: The mask tapes may be verified in any
order with exception that the last tape verified must have
the bit range 03 to 00.

5-28. TERMINATION COMMAND

Microprogramming Software

529, FINISH

Meaning: Terminate the current MDE run.

5-30. DEBUG COMMANDS

5-31. BREAK,yyyy

Meaning: Set a Breakpoint at location yyyy and clear the
previous one. If yyyy = 0, no breakpoint is set and the
previous one is cleared.

Usage: Microcode execution is initiated by an EXECUTE
command, When the Breakpoint address yyyy is reached,

REG’'S?

is printed and microprogram execution ceases (breaks).
Enter the mnemonics of the flags or registers that are to be
displayed, separated by commas. The mnemonics are
described under the CHANGLE -ommand. The entry is of
the form (underlined characters indicate operator entry)

REG'S? m1,m2,m3, ... mn

where ml through mn are register and flag mnemonics.
The resulting display is of the form

ml =c¢l, m2=c¢2, mid=c¢3,...... , Imn = ¢n

when cl through cn are octal contents of the requested
registers and flags.

Example of a display request:
REG'S A,B,1,2,3,4,14

The resulting display:

A = 00004, B = 103005, 1 = 000447,
2 = 00012, 3 = 00000, 4 = 00000,
14 = 034716

Enter “!” to display all registers and flags. Enter “/" to
return to command entry mode.

Restrictions: Do not set a breakpoint
a. in the WCS entry point address of the microprogram

b. in a microprogram subroutine (within the JSB... RTN
code limits)

c. in an address wherc the micro-instruction passes
information to or from the T-register immediately fol-
lowing a WRITE or READ micro-order,

d. at a WRITE micro-order

e. ata READ micro-order if the M-register is not loaded
in the same micro-instruction,

5-13

Microprogramming Software

5-32. CHANGE[,m]

Meamng: Alter the contents of one or more registers and
flags. If the mnemonic m is specified, alter the contents of
the register or flag which it specifies. It not specified, all
registers and flags are displayed in sequence to prompt the
user to make required changes.

Mnemonics: The list of register and flag mnemonics
follows:

Mnemaonic Stands For Mnemonic Stands For
A A-register g S9-register
B B-rugistar 10 S510-reqistoer
S S-register 11 S11-register
P P-register 12 S12-register
1 *51-register X X-register
2 S2-register Y -register
3 S3-register (6] Overflow Register bit
4 S54-register E Extend Register bit
5 S5-register F CPU Flag bit
6 SB-register CN Counter Register
7 S7-register 8 L-register
8 SB-register

*Scratch Pad Register 1; similarly for 2, §3, etc.

Usage: Upon entry of the command, the message
m XXXXXX =

- is printed, where m is the register or flag mnemonic and
xxxxxx is the octal representation of the contents. Enter
the new contents or an asterisk (*) if no change is to be
made.

Example of a CHANGE request:

CHANGE,b
6 173777 = 173770

This is a request for a change to S6-register (Scratch Pad
Register 6). The original contents were octal 173777. The
new contents are octal 173770.

5-33. EXECUTE[,yyyy]
Meaning: Execute microprogram.

If yyyy = 0, the TEST initialization program is run,
which carries execution to the microcode in WCS. This is
the normal mode of initiating microcode execution.

If the entire system goes dead after
entering an EXECUTE,0, the reason may

be that the WCS with the correct module
number is not plugged into the correct

slot

If yyyy = an absolute WCS address, execution of micro-
code begins at that address,

"5-14

Note:

21MX

If yyyy is omitted, execution resumes from the last break-
point with registers and flags set

a. according to their setting when the breakpoint was
encountered, or

b. modified by the CHANGE command.

Usage: Execution will continue until a breakpoint is
encountered or until the microprogram is completed.
When complete, the command entry mode is repeated.

Before initiating a microprogram execute (other than
EXECUTE,0), make sure that all registers and flags are
preset using the CHANGE command, if necessary.

5-34. RELOCATE MDE WCS-RESIDENT
MICROCODE

5-35. MOVE,yyyy

Meaning: Move the octal 45 word WCS-resident
microprogram portion of MDE from the usually resident
locations to locations beginning with yyyy.

Usage: “MOV"” is the minimum input required to initiate
the move operation. MDE requires a portion of WCS for
register dump and register restore microprograms. These
MDE microprograms are initially stored in relative octal
locations 333 to 377 of the first WCS loaded. If the user
requires these locations in Writable Control Store, he can
move this resident MDE microcode elsewhere.

No check is made to see if a portion of the user microcode
has been overlayed. The reason is that the user may
actually want to situate the dump and restore
microprograms on top of his own microcode as he debugs
another portion of his code.

The actual relocation of the MDE microcode does not
occur until the EXECUTE command is given.

5-36. MDE ERROR MESSAGES

During the use of MDE, commands; parameters, and
processing functions are monitored. If an error condition is
detected, an appropriate message is printed. Table 5-3
holds the list of MDE error messages plus their meaning
and the recovery procedure.

5-37. DOS-IIT OPERATION OF MDE

Before using the DOS-III version of the Micro Debug
Editor (MDE), the following items must be available.

a. A current DOS-III system

’

h. A relocatable object tape of MDE (HP 12978-16002).

21MX

{ o}

d.

A relocatable object tape of the TEST initialization
program if a debug run is to be made,

A microprogram object tape output by the Micro-
assembler,

The following is an example of how the user can proceed.
For details on additional DOS-II1 options, see DOS-I11
manual (HP 24307-90006).

d.

Store the two tapes, MDE and TEST, on the disc using

Microprogramming Software

Respond as follows:
MDE filename, TEST filename, /E

where MDE filename and TEST filename are the
chosen file names used with the “ST" store command
(step A), and /E specifies end of entry.

If MDE is being used only to load WCS with a micro-
program, the TEST filename may be omitted. The
loader then reads the two files into main memory.
If the TEST initialization program has been omitted,

the DOS-III store command

:ST,R, filename, lun

where filename is any suitable label and lun is the log-
ical unit number of the paper tape reader from which

the tapes are entered.

the message

UNDEFINED EXTS

external to the MDE program.

To proceed, enter

b. Make sure the list device is on. At the console device

enter
:PR,LOADR,2
DOS-ITI responds with

ENTER FILE NAMES OR /E

Table 5-3.

:GO,1
When loading is finished, the message
LOADER COMPLETE

is printed.

Alphabetical List of MDE Error Messages

is printed indicating TEST or MACRO is an undefined

Message

Meaning/Recovery

CAN'T FILL MORE THAN
16 MODULES!

ILLEGAL COMMAND

ILLEGAL DIGIT

ILLEGAL PARAMETER

ILLEGAL REG.

MNEMONIC

ILLEGAL TAPE #

MISSING PARAMETER

NO BREAKPOINT HAS

BEEN SET!

WCS NOT LOADED

User has tried to write microprograms to more than the maximum of
16 WCS modules. The user can debug no more than 16 WCS modules
at a time.

Command just entered is not an MDE command; re-enter command.

An “8” or 9" was entered in the previous command that called for

an octal digit; re-issue the entire command.

An unacceptable parameter was entered in the previous command:
re-issue command.

Register or flag mnemonic just entered is not one of those listed under
the CHANGE command (section 5-32); enter ¢drrect mnemonic.

Bit range entered is not one of those listed under PREPARE command
(section 5-26).

A required parameter was omitted from the previous command;
re-issue command.

An EXECUTE-from-breakpoint command was given without having
set a breakpoint logically beyond the execute address.

The Writable Control Store PCA corresponding to the logical unit
specified in the command just entered, has not been loaded with a
microprogram during this MDE session; load the WCS.,

5-15

Microprogramming Software

d. Save the loaded MDE program with
:ST,P
To summon MDE from now on, enter
:PR,MDE

e. The program title is then printed followed by command
request:

MICRO-DEBUG EDITOR
COMMAND?

Now enter the MDE commands required as described
beginning in Section 5-16.
5-38. BCS OPERATION OF MDE
Before proceeding, the following items must be available:
a. An absolute BCS binary tape.
b. A relocatable object tape of MDE (I1P 12978-16004).

¢. A relocatable object tape of the TEST initialization
program, if a debug run is to be made.

d. A microprogram object tape.

" e. A BCS Library tape (HP 24145-60001), Revision B.

The following is an example of how the user can proceed.
For details on additional BCS options, see the Basic
Control System manual (HP 02116-9017).

a. Load the absolute BCS binary tape using the Basic
Binary Loader.

b. Set the P-register to 2. Set bit 14 of the Switch Reg-
ister and clear all other Switch Register bits.

¢. Place MDE relocatable object tape in the paper tape
reader and insure that the paper tape reader and the
console device are on. Turn on paper tape punch. Press
PRESET and RUN on the CPU Front Panel.

The MDE tape is read and an absolute binary tape is
punched.

d. The message
*LOAD
is printed on the console device and the program halts.

If required, load the relocatable TEST Initi.' sation
Program tape into the paper tape reader. Press RUN.

The TEST tape is read and another absolute binary
tape is punched.

5-16

21MX

e. The message
*LOAD
is printed on the teleprinter and the program halts.

Set Switch Register bits 2 and 14 leaving all others
clear, Load BCS Library tape into the paper tape
reader. Press RUN.

f. Library tape is read and more absolute binary tape is
punched.

Linkage information is printed on the Teleprinter.
Remove paper tape from punch. This is the complete
absolute binary tape of the Micro Debug Editor in-
cluding the TEST Initialization Program.

g. Load this tape using the Basic Binary Loader.

h. Wi n loading is complete, set P-register to 2. Press
PRESET and RUN. The message

MICRO-DEBUG EDITOR
COMMAND?

is printed.

i. Now enter the required MDE commands as described
beginning in Section 5-16.

5-39. WCS 1/0 UTILITY SUBROUTINE

This library subroutine provides the capability of writing a
microprogram into and reading a microprogram from a
WCS using a buffer in an Assembly Language,
FORTRAN, or ALGOL program and operating in a BCS
or DOS-III environment. This avoids the necessity of
running MDE every time it is necessary to access a WCS.
This subroutine is in the standard BCS and DOS-I1I
libraries for 21MX Series Computers.

Unlike a ROM chip, whenever the computer power is
turned off, the WCS contents are lost. Thus the WCS must
be loaded before access can be madé to microprograms.
This WCS 1/0 utility has been provided to serve that
purpose.

Besides the calling sequence, a buffer is required in the
calling program large enough to hold the number of micro-
instructions being transferred in or out.

Initially, the microprogram is stored on an object paper
tape, in an object file on disc, or as octal data stored in the
Main Memory program. In the case where the micro-
program is in the form of octal data in the Main Memory
program, the octal data area serves as the buffer when the
WCS 170 Utility is used to write the microprogram into
the WCS.

21MX

In the case where the microprogram resides on dise or
paper tape, the control system (BCS or DOS- T mugt be
used to read the tape or disc file into a buffer in the Main
Memory program. It must be remembered that the
microprogram object contains heac. : and end record infor-
mation that must be deleted before storing the micropro-
gram in the buffer, (Header and end record information
must not be written into the WCS.)

Refer to Section 5-7 for a description of the Binary object
tape output by the micro-assembler. Appendix A illus-
trates the binary object tape format.

When the microprogram has been stored in the Main
Memory program buffer, a WCS I/O Utility calling sequ-
ence is used to write the microprogram into the WCS.

To read the contents of the WCS, another WCS 1/0 Utility
READ calling sequence is used.

The assembly language calling sequences are the
following:

Microprogramming Software

READ
JSB WREAD Branch to WCS read subroutine
DEF *+5 Return address

DEF lun

DEF BUFF
DEF LENGTH
DEF ADRS

Logical unit number of WCS
Address of microprogram buffer
Number of words of transfer

WCS relative address

WRITE

JSB WWRIT Branch to the WCS write sub-

routine
DEF *+44 Return address
DEF lun
DEF BUFF
DEF LENGTH

Logical unit number of WCS
Address of microprogram buffer

Number of words of transfer

Where lun contains the logical unit number of the WCS
being accessed and BUFF contains the first word of a
word pair that holds a micro-instruction. LENGTH
contains the octal number of words in the transfer; if
LENGTH is positive, the number of 24 bit words is
specified; if LENGTII is negative, the number of 16 bit
words is specified. ADRS contains the WCS relative
address (between octal addresses 0 and 377) of where to
start reading,

5-17

R w-r-v-wmwrmw"“'f? e “i? *d

||il 'q

MAIN MEMORY SECTION

. e o
¢ = [1R
| FTCH,
JTAB o 2 : INCig,
RTN
pla— | SAVE = |
. : Memory
v = : Protect
. Option
Increment . RAR
Address 458, : Mesn Memory 5 -
- nhibnt
) WHIF
Maps Address to e
- y Control Store Data Address AEAD
— o — — E
WRTE,
Micro- ROM
instruction :;;2::
Clock el
Cycle Selection ‘
y READ,, 7 '
Address Four
JSB CRnE(RIR i L»;dar T M
A5 ROMS Register Register
IMP,
! MPCK,,,
LOR,
Decoxde ADR \
Instruction TAB'.SI M “ :
MM, Execute 5.5 :
Control Ts,&t PMNM 3
CM, :
i Y W S-bus
i’ wi; \ iy ?S o ([&]]
s
-.I.;nmpdnaln i')ata CMHI, i L. NN N DRt U S, . T L S| S S | B Uy N e b
HIGH, :
LUW, :
CMLO, :
e Interrupt TAK :
, Acknowledge :
Dhsplay P s
Heqiter DSPL, d fi
" ==1/0-bus
NOTES : 3
: 4 :
=—__—{> = Data path : :
= Teleprinter
——————% - Connrol parn Doy | -. INT,
Indheator Shoest h c
Underlined characters Micro order 3 :
Subscripts: ¥ L:!:dr ::;“
s = S bus field . Line Printer
st = Store field NE 1
¢ % Jump Condition field HUN, BUNE,)
W > Special tinld N,
o = Op held 3”"”"“. 4
i immedhate Modiher fie SHL lq: Central
% Interrupt Cl FI,L
Example: i Reqister
CNTR, 4 —> Micro orden "CNTR™ :
‘ i S bus or Store hields :
: 0FF &

FRONT PAN

EL SECTION

I_UNm

=

Other
Peripherals

I/0 SECTION

"._‘ o
[
i omat Lo D g hefAl)
e Pl
-
™
1]
5
— o
i hgm-
*]q G e o
. h—— — -
hdla-l!nb v
heeat & n
_ et m_ﬁ -y '
1 ’ Mﬂu—ﬂ.q
I'., K Uﬂﬂ‘ " -
I —'lﬂh" g fe— -
Tm
e i o= = “mm
et ol il %
I
- |
0t | B |
- 1
3 i'ﬁv.j
- -
RGITITE 1HRAS TRDAA

i =

S 1

Appendin U
+ 2
E 51 o=
Scratch :
52 [pad
bl 53 g ROOSE
: T
: <= 55 jai
: b= 56 e
: [57 < T-bus
L % - == e = e =
: ekl ce 2
: TAB,,
: s el s IS CAB,q o,
: lied S10 | Bar MPY, :
: v LGS, :
5 o= BESREN o Cﬂ?-;u :
bld 517 G B . ARS, 14 A :
b 5 K 1 Heqister o = ! Reqister .
ji v | :
P Register t<imi P {<led PNM :
Switch ket o e :
Reqister :
TAB, TAB, :
CAB, CAB, i
Es A A
Rotate/Shifter 5
S-bus X Ll, ARS, DIV, T-bus ;
¥ : e S 4N Rig, CRS, LWE, e !
: i AsG, L4y, LGS,
: ueY, :
g ket :
: L Register Extend Register
: ICNT,
= CNT4
: il i o
: Counter CNT:_;C UﬂEﬁc
; CNTR, o ALU
: Ones
L Orverflow Reqister
: £
: sov,, STFLy,
: OVFL, CLFLg,
: FLAG,

Figure D-1. Functional Block Diagram

D-3/D-4

L

-
A
'-Z-u“ii
W—
~

s
- i

TR
R SR

af g
By == ».r.»..:m m.._ e

e~

... B m,”_ .d_ﬂﬁ.—ﬁ.-,.w—l_.n

