Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor

o Multithreaded processor

Recall: Array vs. Vector Processors

Instruction Stream

LD VR € A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR VECTOR PROCESSOR

Same op @ same time

Different ops @ time
bo| LDt [LD2 D3] LDO
S
ADO| AD1 |AD2 AD3 LD1 | ADO
MUO| MU1 IMU2 MU3 LD2 | AD1 (MUO
STO| ST1 |ST2 ST3 LD3 | AD2 [MU1 STO|
—
Different ops @ same space AD3 |[MU2 ST1
 Z MU3 ST2
Time Same op @ space ST3

<——Space—> <——Space—>

Recall: Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to reduce memory chip pins)

Can start and complete one bank access per cycle
Can sustain N concurrent accesses if all N go to different banks

Bank Bank Bank = |sssssssssssssssssssssssns Bank

0 1 2 15

MDR| | MAR || MDR|| MAR || MDR| | MAR MDR| | MAR
Data bus

Address bus

CPU

Picture credit: Derek Chiou

Recall: Vector Instruction Execution

VADD A,B > C

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6] BI[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[5] BI[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[4] BI[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[3] BI[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
Lo Lo Lo Lo Lo

|] |]] T I 1

\ C[2] / \ C[8] / \ C[9] / \C[lO] / \C[ll] /

)ooem) em [as de - an]
C[O0] C[O0] C[1] C[2] C[3]

<€ Space >

Slide credit: Krste Asanovic

Recall: Vector Unit Structure

Functional Unit
/

[

—4 %

Partitionaad_
Vector
Register

Elements O,
4,8, ..

Elements 1,
5,9, ..

Elements 2,
6, 10, ...

Elements 3,
7,11, ..

Lane

Memory Subsystem

Slide credit: Krste Asanovic

Recall: Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Example with 24 operations/cycle (steady state) while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit
oooooﬁ-ﬁﬂ
OOOOOLn-wL[AAAAA#A.
time ©e0o0e o0 d|aaiairjikdd aenEEEEE
—T e eeeeee AAAaddAssAlln e EmE
O|0]0]0|0|q===NA A AAAAAA|EEEEEEENN
@@@@@(L—n-;‘iLg'AAAAA4..A. EEEEEEEN
0|0|0]|0|0|0|0 AAAAALaideIIIIIII
olojlolololololoja|aAlaAlAlalalaAl|lmEEmmEEE
AAAAAAA AN EEEEEEE
_ EEEEEEEN
Instruction

issue

Slide credit: Krste Asanovic 6

Recall: Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
low-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the

subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. /

Recall: Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[i];
Scalar Sequential Code Vectorized Code

1 2 Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 8

Recall: Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism

o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

o Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include SIMD operations

o Intel MMX/SSEn/AVX/AMX, PowerPC AltiVec, ARM Advanced
SIMD, MIPS SIMD, ...

Recall: Amdahl’s Law

Amdahl’s Law

a f: Parallelizable fraction of a program
a N: Number of processors

Speedup = -

N

1-f +

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

All parallel machines “suffer from” the serial bottleneck

10

SIMD Operations in Modern ISAs

SIMD ISA Extensions
Single Instruction Multiple Data (SIMD) extension

instructions

a Single instruction acts on multiple pieces of data at once
o Common application: graphics, multimedia, image processing
o Perform short arithmetic operations (also called packed

arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $sl

32

24 23

16 15

8 7

0 Bit position

$s0

$s1

$s2

12

Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

o A la array processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63 8 7

0

(a)

63 16 15

(b)

63 . -32 31

(c)
63

(d)

Figure 1. MMX technology data types: packed byte (a),

packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
I[EEE Micro, 1996.

13

Intel Penttum MMX Operations (II)

51 3 5 23
> > > >
73 2 5 6

000+ 0]111 -+ 1[000 0[111 - 1

Figure 3. Packed compare greater-than word.

PCMPEQ(b,w,d), Equal or greater than 1 Compares packed 8 bytes, four 16-bit words, or two 32-bit
PCMPGT(b,w,d) elements in parallel. Result is mask of 15 if true or Os if false.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 14

Intel Penttum MMX Operations (II)

A3 A2 A1 AO
X X X X
B3 B2 B1 BO
~ A3xB3 - A2xB2 A1xBt1 A0OxBO

A3xB3+A2xB2 | A1xB1+A0xB0

Figure 2. Packed multiply-add word to doubleword.
CPMADDWD Wordtodoubleword latency:3; Multiplies four packed, signed 16-bit words and adds
conversion throughput: 1 together adjacent pairs of 32-bit results in parallel. Result

pmapDWD! Vo [vi [vo [vi [v2 [v3 | v2 | V3 |
X X X X X X X X
Moo | Mo1 | Mi0 | M11 | [mMo2 | mM03 | Mi2 | M13 |

V0><M00+V1><M01 VOxM10+VixM11| | V2xM02+VY3xMO03 | V2xM12+V3xM13
PADDD ™ t -
First result Second resuit

Figure 7. Flow diagram of matrix-vector multiply.

15

MMX Example: Image Overlaying (I)

= Goal: Overlay the human in image X on top of the background in image y
-

Image new_image|

for (i=0; i<image siwe; i+
if (x[i] == Blue) new_imagcli] =y[il;
clse new imageli] = x[il;

Figure 8. Chroma keying: image overlay using a background color.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 16

MMX Example: Image Overlaying (11

= Goal: Overlay the human in image X on top of the background in image y

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

Image new_image|

if (xli] == Blue) new _imagcli] =vylil;

MM1

Image x| | MMm3

Bit mask mm1

Blue Blue Blue Blue Blue | Biue Blue Blue
X7!=blue | X6!=blue | X5=blue | Xd4=blue | X3!=blue|X2!=blue | X1=blue | X0O=blue
0x0000 | Ox0000 | OxFFFF | OxFFFF | Ox0000 | 0x0000 | OxFFFF OXFFFF

for (i=0; i<image siwe; i+

clse new imageii] = x[il;

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 17

MMX Example: Image Overlaying (111)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X =Woman'’s image
MM4[B Y, 8[8Y, af Y. @ Y.aP YR V8P Y@ Y,a] MM1[0x0000]0x0000[0xFFFF [0xFFFF [0x0000]0x0000]0xFFFFJ0xFFFF|
MM1 [0x0000 | 0x0000 [0xFFFF [xFFFF [0<0000[0x0000OxFFFF[OxFFFF] MM3[_ X7 | Xo [X5 | X4 | X3 | X | % 1 % |
M4 [0x0000]0x0000]% Y5 92 Y, &]0x0000[0x0000(% Y148 Yod mm1[X, [X; Joxo000jox0000] X; [X, [0x0000|0x000b|

\ POR MM4, MM1

MMA] X, | X DY 8P Y8 X | X [P YR Yod]

rode opaoration s

for (i=0; i<image sire i++) 1
if (xli] == Blue) new_imagclil =v[il;
clse new imageli] = xlil;

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.
Movg ~ mm3, memi /* Load eight pixels from
. womansimage -
‘Movg mmd4, mem2 /" Load eight pixels from the
o S ‘blossom image
~ Pompeqb mm1, mm3- ' -

Pand mm4, mm1 .
Pandn mm1, mm3

Por - mm4, mm1

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 18

Intel Penttum MMX Operations

MMX technology enhances applications that benefit from
SIMD architecture and parallelism. MMX speeds up compu-
tationally intensive inner loops or subroutines on average
between three to five times. When these are applied to the
full application, that application typically runs on the same
processor 1.5 to 2 times faster than the same application with-
out MMX technology.

For example, a certain MPEG-1 video decoding application
on a Pentium class processor with MMX technology executes
1.5 times faster than the same application on the same
processor not using MMX technology. An assortment of
image filters in an image-processing application execute just
over four times faster.

INTEL PLANS TO IMPLEMENT MMX technology on
future Pentium and Intel architecture processors. It will make
MMX technology a base capability on all company CPUs to
allow existing and new applications to run faster. We believe
the performance gains from this technology will scale well
with the CPU operating frequency and future Intel microar-
chitecture generations. |8

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 19

From MMX to AMX in x86 ISA

MMX
o 64-bit MMX registers for integers

SSE (Streaming SIMD Extensions)

o SSE-1: 128-bit XMM registers for integers and single-precision
floating point

o SSE-2: Double-precision floating point
o SSE-3, SSSE-3 (supplemental): New instructions
o SSE-4: New instructions (not multimedia specific), shuffle operations

AVX (Advanced Vector Extensions)

o AVX: 256-bit floating point

o AVX2: 256-bit floating point with FMA (Fused Multiply Add)
o AVX-512: 512-bit

AMX (Advanced Matrix Extensions)
o Designed for AI/ML workloads

TMUL unit supports BF16 and INT8 input types.[®! AMX-FP16 also adds support for FP mbers and AMX-COMPLEX - for FP16 plex numbers,
2 d H m n M n I M t where a pair of adjacent FP16 numbers represent real and imaginary parts of the compl mber. The register file of 8 tiles, each with 1 s of
D I e s I O a reg I S e rS size of 64 bytes (32 BF16/FP16 or 64 INT8 elements). The only supported operation as for now is matrix multiplication Cyp+ = Z A 1 Brm
Ops/cycle per

Q Tlled matrlx mU|t|p|y unlt (TMUL) o Intel AMX-INT8: 2048 (=16 * 64 * 2) https://en.wikipedia.org/wiki/Advanced_Matrix_Extensions

o Intel AMX-BF16: 1024 (=16 * 32 * 2)

https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssq/lntel Processor Architecture SIMD Instructions.pdf 20
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14 AVX-512 Vector ISA Kirill Yukhin 20140711.pdf

https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssg/Intel_Processor_Architecture_SIMD_Instructions.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf
https://en.wikipedia.org/wiki/Advanced_Matrix_Extensions

SIMD Operations in
Modern (Machine Learning) Accelerators

Cerebras’s Wafer Scale Engine (2019)

LUy

= The largest ML
accelerator chip (2019

= 400,000 cores

A

T TAIWAN 1723A1

PFBYB2.M00" &1/

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm? 815 mm?

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/ 22

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Water Scale Engine-2 (2021)

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm? 826 mm?
NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/ 23

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Size, Place, and Route in Cerebras’s WSE

Neural network mapping onto the whole wafer is a

Cha”enge An example mapping

Kernel graph with layers

™)
I o~ =+
= L3l m v} =t o
e x x * el —
x | ® e 0 <+ e < x = x
~ ~ 2 = ~ © bess
> = = 2] x x s T] O
« 3 =t x| ™~ m ~ “
A N (o] E_EN < = o 2
il [i e =
=
g
=1
\ \
\ |
\ \
3 |
\ |

Multiple possible mappings
LT L

Softmax

T
.m@
[T
1111111
T
-
FCN (D) 256
|

Different dies of the wafer work
on different layers of the neural
network: MIMD machine

Layers mapped on Wafer Scale Engine

James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator.”

Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor

o Multithreaded processor

25

A MIMD Machine with SIMD Processors (1)

MIMD machine
o Distributed memory (no shared memory)
o 2D-mesh interconnection fabric

Single tile Single die Wafer Scale Engine
A A
[__ :I _____________ |
l W—
! l
I
I
I
1 | Control [; Df,SIR !
| LU~ e . :
Router : ,[I.]_ :
[}
! X _{Memory|, o
I : :
1 FMAC ! =
: Scheduler 2 | © \
I (. !
I y |
! I
I
I
e L —
l I Core ///
P/ v
hiaMd 51 tiles * 12 dies g
4539 tiles 84 dies

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020. 26

A MIMD Machine with SIMD Processors (II)

SIMD processors
o 4-way SIMD for 16-bit floating point operands
o 48 KB of local SRAM

hislT\lN Single tile
HHI— I‘ Address registers
—l T T T T T T |
i — :
|
: Control | ; DfﬁeR :
| B il '
Router I P |
i b Tvemon| L—"" Local memory
| W '
I ! FMAC ;
: Schedulen ry\ :
| - !
| y .
| . .
! DL 4-way SIMD fused-multiply
LT Core accumulate (FMAC) units.
AXPY.y=a*x+y

NSEW

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020. 27

More on the Cerebras WSE

https:/ /www.youtube.com/watch?v=x2-qB0J7KHw

Thinking Outside the Die:

Architecting the ML Accelerator of the Future

Sean Lie
Co-founder & Chief HW Architect, Cerebras

SAFARI Live Seminar - Thinking Outside the Die: Architecting the ML Accelerator of the Future
iti eduled for Feb 28, 2022

waitin
@ Onur Mutlu Lectures
&> 22.6K subscribers

https://www.youtube.com/watch?v=x2-qB0J7KHw

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath

= The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= To understand this, let’s go back to our parallelizable code
example

= But, before that, let’s distinguish between
a Programming Model (Software)
VS.
a Execution Model (Hardware)

30

Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model

a E.g., von Neumann model implemented by an OoO processor
o E.g., SPMD model implemented by a SIMD processor (a GPU)

31

How Can You Exploit Parallelism Here?

for (i=0; i < N; i++)
Scalar Sequential Code C[il = A[1] + B[1];

Let's examine three programming
options to exploit instruction-level
parallelism present in this
sequential code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

32

Prog. Model 1: Sequential (SISD) ™™ &1} = ata) + i1

Scalar Sequential Code = Can be executed on a:

= Pipelined processor

= Out-of-order execution processor

o Independent instructions executed
when ready

a Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

= Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

33

Prog. Model 2: Data Parallel (SIMDJ™ iy = ata) + ati1s

Vectorized Code

Scalar Sequential Code

VLD A->V1

VLD B->V2

VADD V1+V2->V3

VST V3->C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
34

for (i=0; i < N; i++)

Prog. Model 3: Multithreaded — crar = atsr + a1,

Sca/ar Sequential Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

35

i < N; i++)

Prog. Model 3: Multithreaded T ola) = ari) + BEA1;

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

37

i < N; i++)

SPMD on SIMT Machine T Ll = Ari] + BlA1;

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Graphics Processing Units

SIMD not |

“xposed to Programmer (SIM'T

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads Into warps flexibly = I.e., can group threads
that are supposed to fruly execute the same instruction -2

dynamically obtain and maximize benefits of SIMD processing
40

Fine-Grained Multithreading for (i=0; i < N; i++)
C[i] = A[i] + BI[i];
of Warps

L

= Assume a warp consists of 32 threads
= If you have 32K iterations, and 1 iteration/thread = 1K warps

= Warps can be interleaved on the same pipeline - Fine grained
multithreading of warps

Warp 20 at PC X+2

Iter. Iter.

41

Fine-Grained Multithreading

for (i=0; i < N; i++)
C[i] = A[i] + BI[1i];

of Warps

= Assume a warp consists of 32 threads
= If you have 32K iterations, and 1 iteration/thread - 1K warps

= Warps can be interleaved on the same pipeline = Fine grained
multithreading of warps

Vs

_

~

J

\\

~

J

All threads in a warp are independent of each other

Iterations 96-127

Iterations 64-95

Iterations 32-63

] Iterations 0-31

- They be executed seamlessly in a fine-grained multithreaded pipeline

42

Lecture on Fine-Grained Multithreading

Fine-Grained Multithreading .

Idea: Fetch from a different thread every cycle such that ndaSSs "
two instructions from a thread are in the pipeline concurrently
2 Hardware has multiple thread contexts (PC+registers per thread)
2 Threads are completely independent

2 No instruction is fetched from the same thread until the prior
branch/instruction from the thread completes

Instruction Operands

v
+ No logic needed for handling control and ~ [Stream 3 instruetion
nstruction Fetch
data dependences within a thread b
+ High thread-level throughput S
2 8 Instructi
-- Single thread performance suffers Eractatioh Prasecs
-- Extra logic for keeping thread contexts :
-- Throughput loss when there are not tream 4 Instruction
Result Store

Sl ot
enouah threads to keep the pipeline full

prET e O)

> Ml

Digital Design & Computer Architecture - Lecture 14: Pipelined Processor Design (Spring 2022)

1,066 views * Streamed live on Apr 8, 2022 0y 51 GP DISLIKE > SHARE $¢ CLIP =+ SAVE
@ Onur Mutlu Lectures SUBSCRIBED Q
&> 24.5K subscribers ¥

Digital Design and Computer Architecture, ETH Ziirich, Spring 2022 (
https://safari.ethz.ch/digitaltechnik...)

Lecture 14: Pipelined Processor Design

Lecturer: Professor Onur Mutlu (https://people.inf.ethz.ch/omutlu/)
Date: April 8, 2022

https://youtu.be/XaW O9nKPe0?t=5070 43

https://youtu.be/XaW_O9nKPe0?t=5070

Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) - SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

_.~7| | _Thread Warp 3
- y_Thread Warp 8
Thread Warp Common PC .," :
Scalar| Scalar| Scalar Scalar ,-' Thread Warp 7
ThreaqThreaqThread: * « |Thread | , v
W X Y Z ' - .
R SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

High-Level View ot a GPU

!;’ (PC, Mask) JJ

f
f *
¥

’ -Cache |
Shader| | Shader| Shader| ,,, | Shader *
Core Core Core Core
l Decode

bt IR o e
. \ I
Interconnection Network | : & & & & :
¢ t t \ 1ERRERRERE LR
A |
Memory | | Memory Memory | el gl e |le]
Controller| |Controller Controller] '\ | ' |&| (2| &[]
$ s 4 SHEEREE
\| 1 _SIMD Execution _ |
GDDR3 | | GDDR3 GDDR3 | m=ooo=sese

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables simple pipeline &

long latency tolerance

o Millions of threads operating on the
same large image/video

Slide credit: Tor Aamodt

2
Thread Warp 3
Thread Warp 8

| ThreadIWarp 7 |

2
| I-Fetch |
2

| Decode |

NNV <€ 3 9

NV ¢ 3 1€
NV ¢ 3 1€

v
| D-Cache |-

Al Hit?l [Dam
%/

Thread Warp 1
Thread Warp 2

| Writeback |

Warps available
for scheduling

SIMD Pipeline

Warps accessing

memory hierarchy
Miss?

| Thread Warp 6 |

46

Time

Recall: Vector Instruction Execution

VADD A,B > C

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6] B[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[5] BI[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[4] B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[3] B[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
Lo Lo Lo Lo Lo
> L > T T T J
\ C[2] / \ C[8] / \ C[9] / \C[lO] / \C[ll] /
cm) ew) em) de] an]
o Tme p
C[O] C[O] C[1] C[2] C[3]
<€ Space >

Slide credit: Krste Asanovic

47

Warp Execution (Recall the Previous Slide)

A[6]
A[5]
Al4]
A[3]

|
\

Execution using
one pipelined
functional unit

B[6]
B[5]
B[4]
B[3]

|
/

<

L]

<

Lo

<

Time

-

C[O0]

Slide credit: Krste Asanovic

Execution using
four pipelined
functional units

32-thread warp executing ADD A[tid],B[tid] 2> C[tid]

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
Lo Lo Lo Lo

|]] T I 1

\ C[8] / \ C[9] / \C[lO] / \C[ll] /

| ew s ae an]
C[O0] C[1] C[2] C[3]

<€ Space >

Recall: Vector Unit Structure

Functional Unit
/

[

—4 %

Partitioned |
Vector | —
Registe

Elements

| | | | 1 1
Elements Elements Elements
0, 4.8, .. 1,5,09, ...

Lane

2, 6, 10,

3,7, 11,

Memory Subsystem

Slide credit: Krste Asanovic

49

GPU SIMD Execution Unit Structure

Registe
for each
Thread

Lane

Functional Unit
/

Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0, 4,8, .. 1,5,9, ... 2, 6,10, ... 3,7, 11, ...

Memory Subsystem

Slide credit: Krste Asanovic

Recall: Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Example with 24 operations/cycle (steady state) while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit
oooooﬁ-ﬁﬂ
OOOOOLn-wL[AAAAA#A.
time ©e0o0e o0 d|aaiairjikdd aenEEEEE
—T e eeeeee AAAaddAssAlln e EmE
O|0]0]0|0|q===NA A AAAAAA|EEEEEEENN
@@@@@(L—n-;‘iLg'AAAAA4..A. EEEEEEEN
0|0|0]|0|0|0|0 AAAAALaideIIIIIII
olojlolololololoja|aAlaAlAlalalaAl|lmEEmmEEE
AAAAAAA AN EEEEEEE
_ EEEEEEEN
Instruction

issue

Slide credit: Krste Asanovic 51

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle (steady state) while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
oooooq‘mjﬂ
OOOOOLv-{AAAAA
time @00 000 0blaaiaalV faaemEnnm
s Jeeeeeee AAAAAAALEEEEEEEE
CIO[C[O[O/faNAAAAAAA AN E EEEEEE
OOOOO(L—-E--KAAAAAQ--A- EEEEEEEE
ololololojo/oD]alalalalaliWS An/m/m/m/E/EEE
olololojo|lolololala AlAAlA A KEEEEEEE®ER
AAAAAAA AN EEEEEEE
EEEEEEEE

| Warp issue >

Slide credit: Krste Asanovic 52

SIMT Memory Access (L.oads and Stores)

= Same instruction in different threads uses thread id to
index and access different data elements

Let's assume N=16, 4 threads per warp = 4 warps

10 11 12 13 14 15 Threads

10 11 12 13 14 15 Data elements

Warp 0 Warp 1 Warp 2 Warp 3

For maximum performance, memory should provide enough bandwidth
(i.e., elements per cycle throughput to match computation unit throughput)

Slide credit: Hyesoon Kim 53

Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels
o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU: Blocks of threads

Serial Code (host) g
Parallel Kernel (device) 5 3 3 33
KernelA<<<nBlk, nThr>>>(args); Wﬁg ‘ugiﬁ(;“ﬁ;(;(ﬁ;“|ﬁ;(ﬁ;(ﬁg e | SS58S
Serial Code (host) g
Parallel Kernel (device) S5 S5 55 S

KernelB<<<nBlk, nThr>>>(args) ;|| 2222 | Ses .. W

Slide credit: Hwu & Kirk

54

Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; ii < 100000; ++ii) {
Clii] = A[ii] + Blii];

b
CUDA code I

[// there are 100000 threads
__global__ void KernelFunction(...) {

~

int tid = blockDim.x * blockIdx.x + threadIdx.x;

int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

g

J

Slide credit: Hyesoon Kim

55

Sample GPU Program (L.ess Simplified)

CPU Program GPU Program

__global __ add_matrix

(float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int] = blockldx.y * blockDim.y + threadldx.y;
intindex =1+ j*N;
if(i<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

Slide credit: Hyesoon Kim 56

From Blocks to Warps

= GPU core: A SIMD pipeline
o Streaming Processor (SP)

o Many such SIMD Processors
= Streaming Multiprocessor (SM)

= Blocks are divided into warps
o SIMD/SIMT unit (32 threads)

Block O’s warps
]

Block 1’s warps

t0Otlt2 ... t31
NOXCRNERENY
)

Block 2’s warps

t0Otlt2...t31
NOXCRNERENY
)

t0Otlt2 ... t31
EOXERNERENT

(O]
=
@
()
3
S
Q
=<
c
=
S
o
o
o}
»
173
o
=

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit

A
(9]
S
(%]
@ L]
g
o

NVIDIA Fermi architecture

Ul

7

Warp-based SIMD vs. Traditional SIMD

= Traditional SIMD contains a single thread
o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) - SW needs to know
vector length

o ISA contains vector/SIMD instructions

= Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

= SW does not need to know vector length
= Enables multithreading and flexible dynamic grouping of threads
o ISA is scalar &> SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD
hardware

58

SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

59

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

a Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction -2

dynamically obtain and maximize benefits of SIMD processing

Threads Can Take Different Paths in Warp-based SIM

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

—/‘ ~—
4
~- Thread Warp Common PC
& N \ Thread| Thread | Thread | Thread
(’ F: 1 2 3 4

Slide credit: Tor Aamodt 61

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1 1 1

o Groups scalar threads

into warps Brangh 1 1 1 1 1 1 1 1
Path A
Branch divergence i 1 1 1 1
occurs when threads Path\Ej 1 1 1 l

inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations

Slide credit: Tor Aamodt 62

Remember: Each Thread Is Independent

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

a Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction -2

dynamically obtain and maximize benefits of SIMD processing

If we have many threads
We can find individual threads that are at the same PC
And, group them together into a single warp dynamically

This reduces “divergence” - improves SIMD utilization

o SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)
63

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction, i.e., at the same PC (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

Warp X § ¢ 4 Y - Yy vl L) wapz
Warp Y J ! 3

64

Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction, i.e., at the same PC (after branch divergence)

RN
AERERAY

RN

SRR RAE

TIE R
e by T '

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

05

An Example GPU

NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
a “SIMT execution”

Generic speak:
o 30 cores
a 8 SIMD functional units per core

NVIDIA, “*NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 67

Evolution of NVIDIA GPUs

#Functional Units

8000

7000

6000

5000

4000

3000

2000

1000

=l=Functional units (stream processors)

-8=GFLOPS

GTX 285 GTX 480 GTX 780 GTX980 P100(2016) V100 (2017) A100 (2020)
(2009) (2010) (2013) (2014)

25000.0

20000.0

15000.0

10000.0

5000.0

0.0

GFLOPS

08

NVIDIA V100

NVIDIA-speak:
o 5120 stream processors
a “SIMT execution”

Generic speak:
o 80 cores
a 64 SIMD functional units per core

o Tensor cores for Machine Learning

NVIDIA, “*NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

69

NVIDIA A100

= NVIDIA-speak:
0 6912 stream processors
a “SIMT execution”

= (Generic speak:
o 108 cores
a 64 SIMD functional units per core

o Tensor cores for Machine Learning
= Support for sparsity
= New floating point data type (TF32)

s https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 70

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Evolution of NVIDIA GPUs (Updated)

16000

14000

12000

10000

8000
6000

#Functional Units

4000
2000

=D=Functional Units (Stream Processors)

=0-GFLOPS

GTX 285 GTX480 GTX780 GTX980

(2009)

(2010)

(2013)

(2014)

P100
(2016)

V100
(2017)

A100
(2020)

H100
(2022)

60000

50000

40000

30000

GFLOPS

20000

10000

71

Clarification of Some GPU Terms

Vector length

Pipelined
functional unit /
Scalar pipeline

SIMD functional
unit /
SIMD pipeline

GPU core

Warp size

Streaming
processor /
CUDA core

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Streaming
multiprocessor

Wavefront size

Vector ALU

Compute unit

Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Functional unit that executes instructions for one
GPU thread

SIMD functional unit that executes instructions for
an entire warp

It contains one or more warp schedulers and one
or several SIMD pipelines

72

	Recall: Flynn’s Taxonomy of Computers
	Recall: Array vs. Vector Processors
	Recall: Memory Banking
	Recall: Vector Instruction Execution
	Recall: Vector Unit Structure
	Recall: Vector Instruction Level Parallelism
	Recall: Vector Processor Disadvantages
	Recall: Automatic Code Vectorization
	Recall: Vector/SIMD Processing Summary
	Recall: Amdahl’s Law
	SIMD Operations in Modern ISAs
	SIMD ISA Extensions
	Intel Pentium MMX Operations
	Intel Pentium MMX Operations (II)
	Intel Pentium MMX Operations (II)
	MMX Example: Image Overlaying (I)
	MMX Example: Image Overlaying (II)
	MMX Example: Image Overlaying (III)
	Intel Pentium MMX Operations
	From MMX to AMX in x86 ISA
	SIMD Operations in �Modern (Machine Learning) Accelerators
	Cerebras’s Wafer Scale Engine (2019)
	Cerebras’s Wafer Scale Engine-2 (2021)
	Size, Place, and Route in Cerebras’s WSE
	Recall: Flynn’s Taxonomy of Computers
	A MIMD Machine with SIMD Processors (I)
	A MIMD Machine with SIMD Processors (II)
	More on the Cerebras WSE
	GPUs (Graphics Processing Units)
	GPUs are SIMD Engines Underneath
	Programming Model vs. Hardware Execution Model
	How Can You Exploit Parallelism Here?
	Prog. Model 1: Sequential (SISD)
	Prog. Model 2: Data Parallel (SIMD)
	Prog. Model 3: Multithreaded
	Prog. Model 3: Multithreaded
	A GPU is a SIMD (SIMT) Machine
	SPMD on SIMT Machine
	Graphics Processing Units�SIMD not Exposed to Programmer (SIMT)
	SIMD vs. SIMT Execution Model
	Fine-Grained Multithreading �of Warps
	Fine-Grained Multithreading �of Warps
	Lecture on Fine-Grained Multithreading
	Warps and Warp-Level FGMT
	High-Level View of a GPU
	Latency Hiding via Warp-Level FGMT
	Recall: Vector Instruction Execution
	Warp Execution (Recall the Previous Slide)
	Recall: Vector Unit Structure
	Slide Number 50
	Recall: Vector Instruction Level Parallelism
	Warp Instruction Level Parallelism
	SIMT Memory Access (Loads and Stores)
	Warps not Exposed to GPU Programmers
	Sample GPU SIMT Code (Simplified)
	Sample GPU Program (Less Simplified)
	From Blocks to Warps
	Warp-based SIMD vs. Traditional SIMD
	SPMD
	SIMD vs. SIMT Execution Model
	Threads Can Take Different Paths in Warp-based SIMD
	Control Flow Problem in GPUs/SIMT
	Remember: Each Thread Is Independent
	Dynamic Warp Formation/Merging
	Dynamic Warp Formation/Merging
	An Example GPU
	NVIDIA GeForce GTX 285
	Evolution of NVIDIA GPUs
	NVIDIA V100
	NVIDIA A100
	Evolution of NVIDIA GPUs (Updated)
	Clarification of Some GPU Terms

