
Recall: Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element
 SIMD: Single instruction operates on multiple data elements

 Array processor
 Vector processor

 MISD: Multiple instructions operate on single data element
 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
 Multiprocessor
 Multithreaded processor

1

Recall: Array vs. Vector Processors

2

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR  A[3:0]
ADD VR  VR, 1
MUL VR  VR, 2
ST A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Recall: Memory Banking
 Memory is divided into banks that can be accessed independently;

banks share address and data buses (to reduce memory chip pins)
 Can start and complete one bank access per cycle
 Can sustain N concurrent accesses if all N go to different banks

3

Bank
0

Bank
1

MDR MAR

Bank
2

Bank
15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU
Picture credit: Derek Chiou

Recall: Vector Instruction Execution

4

VADD A,B  C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Recall: Vector Unit Structure

5

Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

Slide credit: Krste Asanovic

Recall: Vector Instruction Level Parallelism
Can overlap execution of multiple vector instructions

 Example machine has 32 elements per vector register and 8 lanes
 Example with 24 operations/cycle (steady state) while issuing 1 vector instruction/cycle

6

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Recall: Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

7Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Recall: Automatic Code Vectorization

8

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
⇒ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Ti
m

e

Slide credit: Krste Asanovic

Recall: Vector/SIMD Processing Summary
 Vector/SIMD machines are good at exploiting regular data-

level parallelism
 Same operation performed on many data elements
 Improve performance, simplify design (no intra-vector

dependencies)

 Performance improvement limited by vectorizability of code
 Scalar operations limit vector machine performance
 Remember Amdahl’s Law
 CRAY-1 was the fastest SCALAR machine at its time!

 Many existing ISAs include SIMD operations
 Intel MMX/SSEn/AVX/AMX, PowerPC AltiVec, ARM Advanced

SIMD, MIPS SIMD, …
9

Recall: Amdahl’s Law
 Amdahl’s Law

 f: Parallelizable fraction of a program
 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 All parallel machines “suffer from” the serial bottleneck

10

Speedup =
1

+1 - f f
N

SIMD Operations in Modern ISAs

SIMD ISA Extensions
 Single Instruction Multiple Data (SIMD) extension

instructions
 Single instruction acts on multiple pieces of data at once
 Common application: graphics, multimedia, image processing
 Perform short arithmetic operations (also called packed

arithmetic)
 For example: add four 8-bit numbers
 Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+

12

Intel Pentium MMX Operations
 Idea: One instruction operates on multiple data elements

simultaneously
 À la array processing (yet much more limited)
 Designed with multimedia (graphics) operations in mind

13

Peleg and Weiser, “MMX Technology
Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register
Opcode determines data type:
8 8-bit bytes
4 16-bit words
2 32-bit doublewords
1 64-bit quadword

Stride is always equal to 1.

Intel Pentium MMX Operations (II)

14Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Intel Pentium MMX Operations (II)

15

MMX Example: Image Overlaying (I)
 Goal: Overlay the human in image x on top of the background in image y

16Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Image x[]

Image y[] Image new_image[]

Blue
background

Image x[]

Bit mask

Blossom
background

MMX Example: Image Overlaying (II)
 Goal: Overlay the human in image x on top of the background in image y

17Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Image x[]

Image y[] Image new_image[]

Blue
background

Image x[]

Bit mask

Blossom
background

MMX Example: Image Overlaying (III)

18Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image

Intel Pentium MMX Operations

19Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

From MMX to AMX in x86 ISA
 MMX

 64-bit MMX registers for integers
 SSE (Streaming SIMD Extensions)

 SSE-1: 128-bit XMM registers for integers and single-precision
floating point

 SSE-2: Double-precision floating point
 SSE-3, SSSE-3 (supplemental): New instructions
 SSE-4: New instructions (not multimedia specific), shuffle operations

 AVX (Advanced Vector Extensions)
 AVX: 256-bit floating point
 AVX2: 256-bit floating point with FMA (Fused Multiply Add)
 AVX-512: 512-bit

 AMX (Advanced Matrix Extensions)
 Designed for AI/ML workloads
 2-dimensional registers
 Tiled matrix multiply unit (TMUL)

20https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssg/Intel_Processor_Architecture_SIMD_Instructions.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf

https://en.wikipedia.org/wiki/Advanced_Matrix_Extensions

https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssg/Intel_Processor_Architecture_SIMD_Instructions.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf
https://en.wikipedia.org/wiki/Advanced_Matrix_Extensions

SIMD Operations in
Modern (Machine Learning) Accelerators

Cerebras’s Wafer Scale Engine (2019)

22

Cerebras WSE
1.2 Trillion transistors

46,225 mm2

Largest GPU
21.1 Billion transistors

815 mm2

 The largest ML
accelerator chip (2019)

 400,000 cores

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Wafer Scale Engine-2 (2021)

23

Cerebras WSE-2
2.6 Trillion transistors

46,225 mm2

Largest GPU
54.2 Billion transistors

826 mm2

 The largest ML
accelerator chip (2021)

 850,000 cores

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Size, Place, and Route in Cerebras’s WSE
 Neural network mapping onto the whole wafer is a

challenge

24James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator.”

Multiple possible mappings

An example mapping

Different dies of the wafer work
on different layers of the neural
network: MIMD machine

Recall: Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element
 SIMD: Single instruction operates on multiple data elements

 Array processor
 Vector processor

 MISD: Multiple instructions operate on single data element
 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
 Multiprocessor
 Multithreaded processor

25

A MIMD Machine with SIMD Processors (I)
 MIMD machine

 Distributed memory (no shared memory)
 2D-mesh interconnection fabric

26Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

84 dies4539 tiles

A MIMD Machine with SIMD Processors (II)
 SIMD processors

 4-way SIMD for 16-bit floating point operands
 48 KB of local SRAM

27Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

4-way SIMD fused-multiply
accumulate (FMAC) units.
AXPY: y = a * x + y

Address registers

Local memory

More on the Cerebras WSE
https://www.youtube.com/watch?v=x2-qB0J7KHw

28

https://www.youtube.com/watch?v=x2-qB0J7KHw

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath
 The instruction pipeline operates like a SIMD pipeline (e.g.,

an array processor)

 However, the programming is done using threads, NOT
SIMD instructions

 To understand this, let’s go back to our parallelizable code
example

 But, before that, let’s distinguish between
 Programming Model (Software)

vs.
 Execution Model (Hardware)

30

Programming Model vs. Hardware Execution Model

 Programming Model refers to how the programmer expresses
the code
 E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,

Multi-threaded (MIMD, SPMD), …

 Execution Model refers to how the hardware executes the
code underneath
 E.g., Out-of-order execution, Vector processor, Array processor,

Dataflow processor, Multiprocessor, Multithreaded processor, …

 Execution Model can be very different from the Programming
Model
 E.g., von Neumann model implemented by an OoO processor
 E.g., SPMD model implemented by a SIMD processor (a GPU)

31

How Can You Exploit Parallelism Here?

32

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level

parallelism present in this
sequential code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

Prog. Model 1: Sequential (SISD)

33

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code  Can be executed on a:

 Pipelined processor
 Out-of-order execution processor

 Independent instructions executed
when ready

 Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

 In other words, the loop is dynamically
unrolled by the hardware

 Superscalar or VLIW processor
 Can fetch and execute multiple

instructions per cycle

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

34

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A  V1

VLD B  V2

VADD V1 + V2  V3

VST V3  C

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

35

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

Prog. Model 3: Multithreaded

36

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine
Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine
 Except it is not programmed using SIMD instructions

 It is programmed using threads (SPMD programming model)
 Each thread executes the same code but operates a different

piece of data
 Each thread has its own context (i.e., can be

treated/restarted/executed independently)

 A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware
 A warp is essentially a SIMD operation formed by hardware!

37

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

38

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:
Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute
the same instruction (i.e., at the same PC)

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model
 SIMD: A single sequential instruction stream of SIMD

instructions  each instruction specifies multiple data inputs
 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions 
threads grouped dynamically into warps
 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages:
 Can treat each thread separately  i.e., can execute each thread

independently (on any type of scalar pipeline)  MIMD processing
 Can group threads into warps flexibly  i.e., can group threads

that are supposed to truly execute the same instruction 
dynamically obtain and maximize benefits of SIMD processing

40

Fine-Grained Multithreading
of Warps

41

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
0

Iter.
1

Warp 0 at PC X

 Assume a warp consists of 32 threads
 If you have 32K iterations, and 1 iteration/thread  1K warps
 Warps can be interleaved on the same pipeline  Fine grained

multithreading of warps

Warp 1 at PC X

Iter.
32

Iter.
33

Warp 20 at PC X+2

Iter.
20*32

Iter.
20*32 + 1

Fine-Grained Multithreading
of Warps

42

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store
Iterations 0-31
Warp 0 at PC X+3

 Assume a warp consists of 32 threads
 If you have 32K iterations, and 1 iteration/thread  1K warps
 Warps can be interleaved on the same pipeline  Fine grained

multithreading of warps

Warp 1 at PC X+2

Warp 2 at PC X+1

Warp 3 at PC X

Iterations 32-63

Iterations 64-95

Iterations 96-127

All threads in a warp are independent of each other
 They be executed seamlessly in a fine-grained multithreaded pipeline

Lecture on Fine-Grained Multithreading

43https://youtu.be/XaW_O9nKPe0?t=5070

https://youtu.be/XaW_O9nKPe0?t=5070

Warps and Warp-Level FGMT
 Warp: A set of threads that execute the same instruction

(on different data elements)  SIMT (Nvidia-speak)
 All threads run the same code
 Warp: The threads that run lengthwise in a woven fabric …

Thread Warp 3
Thread Warp 8

Thread Warp 7
Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

High-Level View of a GPU

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Latency Hiding via Warp-Level FGMT
 Warp: A set of threads that

execute the same instruction
(on different data elements)

 Fine-grained multithreading
 One instruction per thread in

pipeline at a time (No
interlocking)

 Interleave warp execution to
hide latencies

 Register values of all threads stay
in register file

 FGMT enables simple pipeline &
long latency tolerance
 Millions of threads operating on the

same large image/video
46

Decode

RF RFRF

ALU

ALU

ALU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Recall: Vector Instruction Execution

47

VADD A,B  C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Warp Execution (Recall the Previous Slide)

48

32-thread warp executing ADD A[tid],B[tid]  C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Recall: Vector Unit Structure

49

Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10,
…

Elements
3, 7, 11,
…

Slide credit: Krste Asanovic

50

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

GPU SIMD Execution Unit Structure

Recall: Vector Instruction Level Parallelism
Can overlap execution of multiple vector instructions

 Example machine has 32 elements per vector register and 8 lanes
 Example with 24 operations/cycle (steady state) while issuing 1 vector instruction/cycle

51

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Warp Instruction Level Parallelism
Can overlap execution of multiple instructions

 Example machine has 32 threads per warp and 8 lanes
 Completes 24 operations/cycle (steady state) while issuing 1 warp/cycle

52

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

 Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access (Loads and Stores)

Let’s assume N=16, 4 threads per warp  4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

53

For maximum performance, memory should provide enough bandwidth
(i.e., elements per cycle throughput to match computation unit throughput)

 CPU threads and GPU kernels
 Sequential or modestly parallel sections on CPU
 Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

54

Slide credit: Hwu & Kirk

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {

int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 55

Sample GPU Program (Less Simplified)

56Slide credit: Hyesoon Kim

From Blocks to Warps
 GPU core: A SIMD pipeline

 Streaming Processor (SP)
 Many such SIMD Processors

 Streaming Multiprocessor (SM)

 Blocks are divided into warps
 SIMD/SIMT unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…
Block 2’s warps

57

NVIDIA Fermi architecture

Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread

 Sequential instruction execution; lock-step operations in a SIMD instruction
 Programming model is SIMD (no extra threads)  SW needs to know

vector length
 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)
 Does not have to be lock step
 Each thread can be treated individually (i.e., placed in a different warp)
 programming model not SIMD
 SW does not need to know vector length
 Enables multithreading and flexible dynamic grouping of threads

 ISA is scalar  SIMD operations can be formed dynamically
 Essentially, it is SPMD programming model implemented on SIMD

hardware
58

SPMD
 Single procedure/program, multiple data

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on
different data elements
 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same
program
 Each program/procedure 1) works on different data, 2) can execute a

different control-flow path, at run-time
 Many scientific applications are programmed this way and run on MIMD

hardware (multiprocessors)
 Modern GPUs programmed in a similar way on a SIMD hardware

59

SIMD vs. SIMT Execution Model
 SIMD: A single sequential instruction stream of SIMD

instructions  each instruction specifies multiple data inputs
 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions 
threads grouped dynamically into warps
 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages:
 Can treat each thread separately  i.e., can execute each thread

independently on any type of scalar pipeline  MIMD processing
 Can group threads into warps flexibly  i.e., can group threads

that are supposed to truly execute the same instruction 
dynamically obtain and maximize benefits of SIMD processing

60

Threads Can Take Different Paths in Warp-based SIMD

 Each thread can have conditional control flow instructions
 Threads can execute different control flow paths

61

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT
 A GPU uses a SIMD

pipeline to save area
on control logic
 Groups scalar threads

into warps

 Branch divergence
occurs when threads
inside warps branch to
different execution
paths

62

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations

Remember: Each Thread Is Independent
 Two Major SIMT Advantages:

 Can treat each thread separately  i.e., can execute each thread
independently on any type of scalar pipeline  MIMD processing

 Can group threads into warps flexibly  i.e., can group threads
that are supposed to truly execute the same instruction 
dynamically obtain and maximize benefits of SIMD processing

 If we have many threads
 We can find individual threads that are at the same PC
 And, group them together into a single warp dynamically
 This reduces “divergence”  improves SIMD utilization

 SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

63

Dynamic Warp Formation/Merging
 Idea: Dynamically merge threads executing the same

instruction, i.e., at the same PC (after branch divergence)
 Form new warps from warps that are waiting

 Enough threads branching to each path enables the creation
of full new warps

64

Warp X
Warp Y

Warp Z

Dynamic Warp Formation/Merging
 Idea: Dynamically merge threads executing the same

instruction, i.e., at the same PC (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

65

Branch

Path A

Path B

Branch

Path A

An Example GPU

NVIDIA GeForce GTX 285
 NVIDIA-speak:

 240 stream processors
 “SIMT execution”

 Generic speak:
 30 cores
 8 SIMD functional units per core

 NVIDIA, “NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 67

Evolution of NVIDIA GPUs

68

NVIDIA V100
 NVIDIA-speak:

 5120 stream processors
 “SIMT execution”

 Generic speak:
 80 cores
 64 SIMD functional units per core

 Tensor cores for Machine Learning

 NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

69

NVIDIA A100
 NVIDIA-speak:

 6912 stream processors
 “SIMT execution”

 Generic speak:
 108 cores
 64 SIMD functional units per core

 Tensor cores for Machine Learning
 Support for sparsity
 New floating point data type (TF32)

 https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 70

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Evolution of NVIDIA GPUs (Updated)

71

Clarification of Some GPU Terms

72

Generic Term NVIDIA Term AMD Term Comments

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Pipelined
functional unit /
Scalar pipeline

Streaming
processor /
CUDA core

- Functional unit that executes instructions for one
GPU thread

SIMD functional
unit /
SIMD pipeline

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Vector ALU SIMD functional unit that executes instructions for
an entire warp

GPU core Streaming
multiprocessor

Compute unit It contains one or more warp schedulers and one
or several SIMD pipelines

	Recall: Flynn’s Taxonomy of Computers
	Recall: Array vs. Vector Processors
	Recall: Memory Banking
	Recall: Vector Instruction Execution
	Recall: Vector Unit Structure
	Recall: Vector Instruction Level Parallelism
	Recall: Vector Processor Disadvantages
	Recall: Automatic Code Vectorization
	Recall: Vector/SIMD Processing Summary
	Recall: Amdahl’s Law
	SIMD Operations in Modern ISAs
	SIMD ISA Extensions
	Intel Pentium MMX Operations
	Intel Pentium MMX Operations (II)
	Intel Pentium MMX Operations (II)
	MMX Example: Image Overlaying (I)
	MMX Example: Image Overlaying (II)
	MMX Example: Image Overlaying (III)
	Intel Pentium MMX Operations
	From MMX to AMX in x86 ISA
	SIMD Operations in �Modern (Machine Learning) Accelerators
	Cerebras’s Wafer Scale Engine (2019)
	Cerebras’s Wafer Scale Engine-2 (2021)
	Size, Place, and Route in Cerebras’s WSE
	Recall: Flynn’s Taxonomy of Computers
	A MIMD Machine with SIMD Processors (I)
	A MIMD Machine with SIMD Processors (II)
	More on the Cerebras WSE
	GPUs (Graphics Processing Units)
	GPUs are SIMD Engines Underneath
	Programming Model vs. Hardware Execution Model
	How Can You Exploit Parallelism Here?
	Prog. Model 1: Sequential (SISD)
	Prog. Model 2: Data Parallel (SIMD)
	Prog. Model 3: Multithreaded
	Prog. Model 3: Multithreaded
	A GPU is a SIMD (SIMT) Machine
	SPMD on SIMT Machine
	Graphics Processing Units�SIMD not Exposed to Programmer (SIMT)
	SIMD vs. SIMT Execution Model
	Fine-Grained Multithreading �of Warps
	Fine-Grained Multithreading �of Warps
	Lecture on Fine-Grained Multithreading
	Warps and Warp-Level FGMT
	High-Level View of a GPU
	Latency Hiding via Warp-Level FGMT
	Recall: Vector Instruction Execution
	Warp Execution (Recall the Previous Slide)
	Recall: Vector Unit Structure
	Slide Number 50
	Recall: Vector Instruction Level Parallelism
	Warp Instruction Level Parallelism
	SIMT Memory Access (Loads and Stores)
	Warps not Exposed to GPU Programmers
	Sample GPU SIMT Code (Simplified)
	Sample GPU Program (Less Simplified)
	From Blocks to Warps
	Warp-based SIMD vs. Traditional SIMD
	SPMD
	SIMD vs. SIMT Execution Model
	Threads Can Take Different Paths in Warp-based SIMD
	Control Flow Problem in GPUs/SIMT
	Remember: Each Thread Is Independent
	Dynamic Warp Formation/Merging
	Dynamic Warp Formation/Merging
	An Example GPU
	NVIDIA GeForce GTX 285
	Evolution of NVIDIA GPUs
	NVIDIA V100
	NVIDIA A100
	Evolution of NVIDIA GPUs (Updated)
	Clarification of Some GPU Terms

