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Review: Reducing Misses

3 Cs: Compulsory, Capacity, Conflict
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

Remember danger of concentrating on just one 
parameter when evaluating performance

CPUtime  IC  CPIExecution 
Memory   accesses

Instruction
Miss rate  Miss   penalty



Clock   cycle   time



3

Reducing Miss Penalty Summary

Five techniques
 Read priority over write on miss
 Subblock placement
 Early Restart and Critical Word First on miss
 Non-blocking Caches (Hit under Miss, Miss under Miss)
 Second Level Cache

Can be applied recursively to Multilevel Caches
 Danger is that time to DRAM will grow with multiple levels in between
 First attempts at L2 caches can make things worse, since increased 

worst case is worse

Out-of-order CPU can hide L1 data cache miss (3–5 clocks), but stall 
on L2 miss (40–100 clocks)?
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Review: Improving Cache Performance

1. Reduce the miss rate, 

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache. 
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1. Fast Hit times via Small and Simple 
Caches

Why Alpha 21164 has 8KB Instruction and 
8KB data cache + 96KB second level cache?

 Small data cache and clock rate

Direct Mapped, on chip
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2. Fast hits by Avoiding Address Translation

Send virtual address to cache? Called Virtually 
Addressed Cache or just Virtual Cache vs.  Physical Cache

 Every time process is switched logically must flush the cache; 
otherwise get false hits

 Cost is time to flush + “compulsory” misses from empty cache
 Dealing with aliases (sometimes called synonyms); 

Two different virtual addresses map  to same physical address
 I/O must interact with cache, so need virtual address

Solution to aliases
 HW guarantees covers index field & direct mapped, they must be 

unique;
called page coloring

Solution to cache flush
 Add process identifier tag that identifies process as well as address 

within process: can’t get a hit if wrong process
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Virtually Addressed Caches
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2. Fast Cache Hits by Avoiding Translation: 
Process ID impact

Black is uniprocess

Light Gray is multiprocess 
when flush cache

Dark Gray is multiprocess 
when use Process ID tag

Y axis: Miss Rates up to 20%

X axis: Cache size from 2 KB 
to 1024 KB
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2. Fast Cache Hits by Avoiding Translation: 
Index with Physical Portion of Address

If index is physical part of address, can start 
tag access in parallel with translation so that can 
compare to physical tag

Limits cache to page size: what if want bigger 
caches and uses same trick?

 Higher associativity moves barrier to right
 Page coloring

Page Address Page Offset

Address Tag Index Block Offset
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Pipeline Tag Check and Update Cache as separate stages; 
current write tag check & previous write cache update 

Only STORES in the pipeline; empty during a miss

Store r2, (r1) Check r1
Add --
Sub --
Store r4, (r3) M[r1]<-
r2& check r3

In shade is “Delayed Write Buffer”; must be checked on 
reads; either complete write or read from buffer

3. Fast Hit Times Via Pipelined Writes
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4. Fast Writes on Misses Via Small Subblocks

If most writes are 1 word, subblock size is 1 word,  & 
write through then always write subblock & tag 
immediately 

 Tag match and valid bit already set: Writing the block was proper, & 
nothing lost by setting valid bit on again.

 Tag match and valid bit not set: The tag match means that this is the 
proper block; writing the data into the subblock makes it appropriate to 
turn the valid bit on.

 Tag mismatch: This is a miss and will modify the data portion of the 
block. Since write-through cache, no harm was done; memory still has 
an up-to-date copy of the old value. Only the tag to the address of the 
write and the valid bits of the other subblock need be changed because 
the valid bit for this subblock has already been set

Doesn’t work with write back due to last case
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Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0

Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2

Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1
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What is the Impact of What You’ve 
Learned About Caches?

1960-1985: Speed 
= ƒ(no. operations)

1990

 Pipelined 
Execution & 
Fast Clock Rate

 Out-of-Order 
execution

 Superscalar 
Instruction Issue

1998: Speed = 
ƒ(non-cached memory accesses)

What does this mean for

 Compilers?,Operating Systems?, Algorithms? 
Data Structures?
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Main Memory Background

Performance of Main Memory: 
 Latency: Cache Miss Penalty

 Access Time: time between request and word arrives
 Cycle Time: time between requests

 Bandwidth: I/O & Large Block Miss Penalty (L2)

Main Memory is DRAM: Dynamic Random Access Memory
 Dynamic since needs to be refreshed periodically (8 ms, 1% time)
 Addresses divided into 2 halves (Memory as a 2D matrix):

 RAS or Row Access Strobe
 CAS or Column Access Strobe

Cache uses SRAM: Static Random Access Memory
 No refresh (6 transistors/bit vs. 1 transistorSize: DRAM/SRAM  4-8, 

Cost/Cycle time: SRAM/DRAM  8-16
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Main Memory Deep Background

“Out-of-Core”, “In-Core,” “Core Dump”?

“Core memory”?

Non-volatile, magnetic

Lost to 4 Kbit DRAM (today using 64Kbit DRAM)

Access time 750 ns, cycle time 1500-3000 ns
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DRAM logical organization (4 Mbit)

Square root of bits per RAS/CAS

Column Decoder

Sense amps & I/O 

Memory Array
(2048 x 2048) 

A0…A10

…

11 D

Q

Word line

Storage cell 



17DRAM physical organization (4 Mbit)

Block 
Row Dec.

9 : 512

Row
Block

Row Dec.
9 : 512

Column Address

… Block
Row Dec.

9 : 512

Block
Row Dec.

9 : 512

…

Block 0 Block 3…

I/O
I/O

I/O
I/O
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I/O
I/O

D

Q

Address

2

8 I/Os

8 I/Os



184 Key DRAM Timing Parameters
tRAC: minimum time from RAS line falling to the valid 
data output. 

 Quoted as the speed of a DRAM when buy
 A typical 4Mb DRAM tRAC  = 60 ns
 Speed of DRAM since on purchase sheet?

tRC: minimum time from the start of one row access to 
the start of the next. 

 tRC  = 110 ns for a 4Mbit DRAM with a tRAC of 60 ns

tCAC: minimum time from CAS line falling to valid data 
output. 

 15 ns for a 4Mbit DRAM with a tRAC of 60 ns

tPC: minimum time from the start of one column access 
to the start of the next. 

 35 ns for a 4Mbit DRAM with a tRAC of 60 ns
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DRAM Performance

A 60 ns (tRAC) DRAM can 
 perform a row access only every 110 ns (tRC) 

 perform column access (tCAC) in 15 ns, but time between 
column accesses is at least 35 ns (tPC). 

 In practice, external address delays and turning 
around buses make it 40 to 50 ns

These times do not include the time to drive the 
addresses off the microprocessor nor the 
memory controller overhead!



20DRAM History
DRAMs: capacity +60%/yr, cost –30%/yr

 2.5X cells/area, 1.5X die size in 3 years

‘98 DRAM fab line costs $2B
 DRAM only: density, leakage v. speed

Rely on increasing no. of computers & memory per 
computer (60% market)

 SIMM or DIMM is replaceable unit 
=> computers use any generation DRAM

Commodity, second source industry 
=> high volume, low profit, conservative

 Little organization innovation in 20 years

Order of importance: 1) Cost/bit 2) Capacity
 First RAMBUS: 10X BW, +30% cost => little impact
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DRAM Future: 1 Gbit DRAM (ISSCC ‘96; 
production ‘02?)

 Mitsubishi  Samsung
Blocks 512 x 2 Mbit  1024 x 1 Mbit
Clock 200 MHz 250 MHz
Data Pins 64 16
Die Size 24 x 24 mm 31 x 21 mm

 Sizes will be much smaller in production

Metal Layers 3 4
Technology 0.15 micron  0.16 micron

Wish could do this for Microprocessors!
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Main Memory Performance

Simple: 
 CPU, Cache, Bus, Memory 

same width 
(32 or 64 bits)

Wide: 
 CPU/Mux 1 word; 

Mux/Cache, Bus, Memory 
N words (Alpha: 64 bits & 
256 bits; UtraSPARC 512)

Interleaved: 
 CPU, Cache, Bus 1 word: 

Memory N Modules
(4 Modules); example is 
word interleaved
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Main Memory Performance

Timing model (word size is 32 bits)
 1 to send address, 
 6 access time, 1 to send data
 Cache Block is 4 words

Simple M.P.         = 4 x (1+6+1) = 32
Wide M.P.           = 1 + 6 + 1    = 8
Interleaved M.P. = 1 + 6 + 4x1 = 11



24Independent Memory Banks

Memory banks for independent accesses 
vs. faster sequential accesses

 Multiprocessor
 I/O
 CPU with Hit under n Misses, Non-blocking Cache

Superbank: all memory active on one block transfer (or 
Bank)
Bank: portion within a superbank that is word interleaved 
(or Subbank)

Superbank Bank

…



25Independent Memory Banks

How many banks?
number banks  number clocks to access word in bank

 For sequential accesses, otherwise will return to original bank 
before it has next word ready

 (like in vector case)

Increasing DRAM => fewer chips => harder to have 
banks
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DRAMs per PC over Time
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Fast Memory Systems: DRAM specific

Multiple CAS accesses: several names (page mode)
 Extended Data Out (EDO): 30% faster in page mode

New DRAMs to address gap; 
what will they cost, will they survive?

 RAMBUS: startup company; reinvent DRAM interface
 Each Chip a module vs. slice of memory
 Short bus between CPU and chips
 Does own refresh
 Variable amount of data returned
 1 byte / 2 ns (500 MB/s per chip)

 Synchronous DRAM: 2 banks on chip, a clock signal to DRAM, transfer 
synchronous to system clock (66 - 150 MHz)

 Intel claims RAMBUS Direct (16 b wide) is future PC memory

Niche memory or main memory?
 e.g., Video RAM for frame buffers, DRAM + fast serial output
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DRAM Latency >> BW

More App Bandwidth => 
Cache misses 
=> DRAM RAS/CAS

Application BW => 
Lower DRAM Latency

RAMBUS, Synch DRAM 
increase BW but higher 
latency

EDO DRAM < 5% in PC
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Potential DRAM Crossroads?

After 20 years of 4X every 3 years, running into 
wall? (64Mb - 1 Gb)

How can keep $1B fab lines full if buy fewer 
DRAMs per computer?

Cost/bit –30%/yr if stop 4X/3 yr?

What will happen to $40B/yr DRAM industry?
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Main Memory Summary

Wider Memory

Interleaved Memory: for sequential or independent 
accesses

Avoiding bank conflicts: SW & HW

DRAM specific optimizations: page mode & Specialty 
DRAM

DRAM future less rosy?
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 Cache Cross Cutting Issues

Superscalar CPU & Number Cache Ports must 
match: number memory accesses/cycle?

Speculative Execution and non-faulting option on 
memory/TLB

Parallel Execution vs. Cache locality
 Want far separation to find independent operations vs. 

want reuse of data accesses to avoid misses

I/O and consistencyCaches => multiple copies of 
data

 Consistency
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Alpha 21064
Separate Instr & Data 

TLB & Caches

TLBs fully associative

TLB updates in SW
(“Priv Arch Libr”)

Caches 8KB direct 
mapped, write thru

Critical 8 bytes first

Prefetch instr. stream 
buffer

2 MB L2 cache, direct 
mapped, WB (off-chip)

256 bit path to main 
memory,  4 x 64-bit 
modules

Victim Buffer: to give 
read priority over 
write

4 entry write buffer 
between D$ & L2$

Stream
Buffer

Write
Buffer

Victim Buffer

Instr Data
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Alpha 21264 Memory Hierarchy 

1• 48 Bit virtual address & 44 bit physical address or
• 44 bit virtual address & 41 bit physical address.

•Physical address space is halved, lower half memory 
addresses and upper half I/O addresses.
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Alpha 21264 Memory Hierarchy 

1
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Alpha 21264 Memory Hierarchy 

2
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Alpha 21264 Memory Hierarchy 

3
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Alpha 21264 Memory Hierarchy 

4
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Alpha 21264 Memory Hierarchy - 1

ASN : Address space number.

Instruction cache interface

Store queue out

Data cache interface 



39

Alpha 21264 Memory Hierarchy

•Virtually indexed and virtually 
tagged

•8 bit ASN
•I TLB access only on a miss.

•Uses way prediction
•A way predict is prepended to 9 
bit index -> 10 bit index
•The cache looks like a 64 KB 
cache with 1024 blocks.

•Instruction cache tag = 48-9-6 = 33
•11 bits to predict the next group of 
16 bytes, updated:

•Address of next sequential 
group on a cache miss
•Non-sequential address by a 
dynamic branch predictor.
•Called “Line prediction”.
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Alpha 21264 Memory Hierarchy

•The index field of the PC is 
compared with the predicted block 
address;
•The tag field is compared to the 
address from the tag portion of the 
cache;
•8 bit asn to the asn field.
•Valid bit is checked.

•Any of the above is wrong: cache 
miss.

•An instruction cache miss causes:
•Check the instruction TLB
•Instruction prefetcher.
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Alpha 21264 Memory Hierarchy

•Data cache is virtually 
indexed and physically 
tagged:

•9-bit index + 3 bits to 
select the appropriate 8 
bytes are sent to the 
data cache;
•Page frame of the 
address is sent to the 
TLB.

•Data TLB fully associative 
128 PTEs.



42

Alpha 21264 Memory Hierarchy
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Pitfall: Predicting Cache Performance from 
Different Prog. (ISA, compiler, ...)

4KB Data cache miss 
rate 8%,12%, or 28%?

1KB Instr cache miss 
rate 0%,3%,or 10%?

Alpha vs. MIPS
 for 8KB Data $:
17% vs. 10%

Why 2X Alpha v. MIPS?
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Cache Size (KB)

Miss 
Rate
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I: gcc
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D$, Tom
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D$, esp

I$, gcc

I$, esp

I$, Tom
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Main Memory Summary

Wider Memory

Interleaved Memory: for sequential or independent 
accesses

Avoiding bank conflicts: SW & HW

DRAM specific optimizations: page mode & Specialty 
DRAM

DRAM future less rosy?
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Practical Memory Hierarchy

Issue is NOT inventing new mechanisms

Issue is taste in selecting between many 
alternatives in putting together a memory 
hierarchy that fit well together

 e.g., L1 Data cache write through, L2 Write back
 e.g., L1 small for fast hit time/clock cycle, 
 e.g., L2 big enough to avoid going to DRAM?


