
Memory Hierarchy
Reducing Hit Time

Main Memory
and

Examples

Soner Onder

Michigan Technological University

Randy Katz & David A. Patterson

University of California, Berkeley

2

Review: Reducing Misses

3 Cs: Compulsory, Capacity, Conflict
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

Remember danger of concentrating on just one
parameter when evaluating performance

CPUtime IC CPIExecution
Memory accesses

Instruction
Miss rate Miss penalty

Clock cycle time

3

Reducing Miss Penalty Summary

Five techniques
 Read priority over write on miss
 Subblock placement
 Early Restart and Critical Word First on miss
 Non-blocking Caches (Hit under Miss, Miss under Miss)
 Second Level Cache

Can be applied recursively to Multilevel Caches
 Danger is that time to DRAM will grow with multiple levels in between
 First attempts at L2 caches can make things worse, since increased

worst case is worse

Out-of-order CPU can hide L1 data cache miss (3–5 clocks), but stall
on L2 miss (40–100 clocks)?

CPUtime IC CPIExecution
Memory accesses

Instruction
Miss rate Miss penalty

Clock cycle time

4
Review: Improving Cache Performance

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

5

1. Fast Hit times via Small and Simple
Caches

Why Alpha 21164 has 8KB Instruction and
8KB data cache + 96KB second level cache?

 Small data cache and clock rate

Direct Mapped, on chip

6

2. Fast hits by Avoiding Address Translation

Send virtual address to cache? Called Virtually
Addressed Cache or just Virtual Cache vs. Physical Cache

 Every time process is switched logically must flush the cache;
otherwise get false hits

 Cost is time to flush + “compulsory” misses from empty cache
 Dealing with aliases (sometimes called synonyms);

Two different virtual addresses map to same physical address
 I/O must interact with cache, so need virtual address

Solution to aliases
 HW guarantees covers index field & direct mapped, they must be

unique;
called page coloring

Solution to cache flush
 Add process identifier tag that identifies process as well as address

within process: can’t get a hit if wrong process

7

Virtually Addressed Caches

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA
Tags

PA

Overlap $ access
with VA translation:
requires $ index to

remain invariant
across translation

VA
Tags

L2 $

8

2. Fast Cache Hits by Avoiding Translation:
Process ID impact

Black is uniprocess

Light Gray is multiprocess
when flush cache

Dark Gray is multiprocess
when use Process ID tag

Y axis: Miss Rates up to 20%

X axis: Cache size from 2 KB
to 1024 KB

9

2. Fast Cache Hits by Avoiding Translation:
Index with Physical Portion of Address

If index is physical part of address, can start
tag access in parallel with translation so that can
compare to physical tag

Limits cache to page size: what if want bigger
caches and uses same trick?

 Higher associativity moves barrier to right
 Page coloring

Page Address Page Offset

Address Tag Index Block Offset

10

Pipeline Tag Check and Update Cache as separate stages;
current write tag check & previous write cache update

Only STORES in the pipeline; empty during a miss

Store r2, (r1) Check r1
Add --
Sub --
Store r4, (r3) M[r1]<-
r2& check r3

In shade is “Delayed Write Buffer”; must be checked on
reads; either complete write or read from buffer

3. Fast Hit Times Via Pipelined Writes

11

4. Fast Writes on Misses Via Small Subblocks

If most writes are 1 word, subblock size is 1 word, &
write through then always write subblock & tag
immediately

 Tag match and valid bit already set: Writing the block was proper, &
nothing lost by setting valid bit on again.

 Tag match and valid bit not set: The tag match means that this is the
proper block; writing the data into the subblock makes it appropriate to
turn the valid bit on.

 Tag mismatch: This is a miss and will modify the data portion of the
block. Since write-through cache, no harm was done; memory still has
an up-to-date copy of the old value. Only the tag to the address of the
write and the valid bits of the other subblock need be changed because
the valid bit for this subblock has already been set

Doesn’t work with write back due to last case

12

Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0

Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2

Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1

m
is

s
ra

te
h

it
 t

im
e

m
is

s
p

e
n

al
ty

13

What is the Impact of What You’ve
Learned About Caches?

1960-1985: Speed
= ƒ(no. operations)

1990

 Pipelined
Execution &
Fast Clock Rate

 Out-of-Order
execution

 Superscalar
Instruction Issue

1998: Speed =
ƒ(non-cached memory accesses)

What does this mean for

 Compilers?,Operating Systems?, Algorithms?
Data Structures?

1

10

100

1000

19
8

0

19
8

1

19
8

2

19
8

3

19
8

4

19
8

5

19
8

6

19
8

7

19
8

8

19
8

9

19
9

0

19
9

1

19
9

2

19
9

3

19
9

4

19
9

5

19
9

6

19
9

7

19
9

8

19
9

9

2
0

0
0

DRAM

CPU

14
Main Memory Background

Performance of Main Memory:
 Latency: Cache Miss Penalty

 Access Time: time between request and word arrives
 Cycle Time: time between requests

 Bandwidth: I/O & Large Block Miss Penalty (L2)

Main Memory is DRAM: Dynamic Random Access Memory
 Dynamic since needs to be refreshed periodically (8 ms, 1% time)
 Addresses divided into 2 halves (Memory as a 2D matrix):

 RAS or Row Access Strobe
 CAS or Column Access Strobe

Cache uses SRAM: Static Random Access Memory
 No refresh (6 transistors/bit vs. 1 transistorSize: DRAM/SRAM 4-8,

Cost/Cycle time: SRAM/DRAM 8-16

15

Main Memory Deep Background

“Out-of-Core”, “In-Core,” “Core Dump”?

“Core memory”?

Non-volatile, magnetic

Lost to 4 Kbit DRAM (today using 64Kbit DRAM)

Access time 750 ns, cycle time 1500-3000 ns

16

DRAM logical organization (4 Mbit)

Square root of bits per RAS/CAS

Column Decoder

Sense amps & I/O

Memory Array
(2048 x 2048)

A0…A10

…

11 D

Q

Word line

Storage cell

17DRAM physical organization (4 Mbit)

Block
Row Dec.

9 : 512

Row
Block

Row Dec.
9 : 512

Column Address

… Block
Row Dec.

9 : 512

Block
Row Dec.

9 : 512

…

Block 0 Block 3…

I/O
I/O

I/O
I/O

I/O
I/O

I/O
I/O

D

Q

Address

2

8 I/Os

8 I/Os

184 Key DRAM Timing Parameters
tRAC: minimum time from RAS line falling to the valid
data output.

 Quoted as the speed of a DRAM when buy
 A typical 4Mb DRAM tRAC = 60 ns
 Speed of DRAM since on purchase sheet?

tRC: minimum time from the start of one row access to
the start of the next.

 tRC = 110 ns for a 4Mbit DRAM with a tRAC of 60 ns

tCAC: minimum time from CAS line falling to valid data
output.

 15 ns for a 4Mbit DRAM with a tRAC of 60 ns

tPC: minimum time from the start of one column access
to the start of the next.

 35 ns for a 4Mbit DRAM with a tRAC of 60 ns

19

DRAM Performance

A 60 ns (tRAC) DRAM can
 perform a row access only every 110 ns (tRC)

 perform column access (tCAC) in 15 ns, but time between
column accesses is at least 35 ns (tPC).

 In practice, external address delays and turning
around buses make it 40 to 50 ns

These times do not include the time to drive the
addresses off the microprocessor nor the
memory controller overhead!

20DRAM History
DRAMs: capacity +60%/yr, cost –30%/yr

 2.5X cells/area, 1.5X die size in 3 years

‘98 DRAM fab line costs $2B
 DRAM only: density, leakage v. speed

Rely on increasing no. of computers & memory per
computer (60% market)

 SIMM or DIMM is replaceable unit
=> computers use any generation DRAM

Commodity, second source industry
=> high volume, low profit, conservative

 Little organization innovation in 20 years

Order of importance: 1) Cost/bit 2) Capacity
 First RAMBUS: 10X BW, +30% cost => little impact

21

DRAM Future: 1 Gbit DRAM (ISSCC ‘96;
production ‘02?)

 Mitsubishi Samsung
Blocks 512 x 2 Mbit 1024 x 1 Mbit
Clock 200 MHz 250 MHz
Data Pins 64 16
Die Size 24 x 24 mm 31 x 21 mm

 Sizes will be much smaller in production

Metal Layers 3 4
Technology 0.15 micron 0.16 micron

Wish could do this for Microprocessors!

22

Main Memory Performance

Simple:
 CPU, Cache, Bus, Memory

same width
(32 or 64 bits)

Wide:
 CPU/Mux 1 word;

Mux/Cache, Bus, Memory
N words (Alpha: 64 bits &
256 bits; UtraSPARC 512)

Interleaved:
 CPU, Cache, Bus 1 word:

Memory N Modules
(4 Modules); example is
word interleaved

23

Main Memory Performance

Timing model (word size is 32 bits)
 1 to send address,
 6 access time, 1 to send data
 Cache Block is 4 words

Simple M.P. = 4 x (1+6+1) = 32
Wide M.P. = 1 + 6 + 1 = 8
Interleaved M.P. = 1 + 6 + 4x1 = 11

24Independent Memory Banks

Memory banks for independent accesses
vs. faster sequential accesses

 Multiprocessor
 I/O
 CPU with Hit under n Misses, Non-blocking Cache

Superbank: all memory active on one block transfer (or
Bank)
Bank: portion within a superbank that is word interleaved
(or Subbank)

Superbank Bank

…

25Independent Memory Banks

How many banks?
number banks number clocks to access word in bank

 For sequential accesses, otherwise will return to original bank
before it has next word ready

 (like in vector case)

Increasing DRAM => fewer chips => harder to have
banks

26
DRAMs per PC over Time

M
in

im
um

 M
em

or
y

S
iz

e

DRAM generation
‘86 ‘89 ‘92 ‘96 ‘99 ‘02
1 Mb 4 Mb 16 Mb 64 Mb 256 Mb 1 Gb

4 MB

8 MB

16 MB

32 MB

64 MB

128 MB

256 MB

32 8

16 4

8 2

4 1

8 2

4 1

8 2

27

Fast Memory Systems: DRAM specific

Multiple CAS accesses: several names (page mode)
 Extended Data Out (EDO): 30% faster in page mode

New DRAMs to address gap;
what will they cost, will they survive?

 RAMBUS: startup company; reinvent DRAM interface
 Each Chip a module vs. slice of memory
 Short bus between CPU and chips
 Does own refresh
 Variable amount of data returned
 1 byte / 2 ns (500 MB/s per chip)

 Synchronous DRAM: 2 banks on chip, a clock signal to DRAM, transfer
synchronous to system clock (66 - 150 MHz)

 Intel claims RAMBUS Direct (16 b wide) is future PC memory

Niche memory or main memory?
 e.g., Video RAM for frame buffers, DRAM + fast serial output

28

DRAM Latency >> BW

More App Bandwidth =>
Cache misses
=> DRAM RAS/CAS

Application BW =>
Lower DRAM Latency

RAMBUS, Synch DRAM
increase BW but higher
latency

EDO DRAM < 5% in PC

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

Bus

I$ D$

Proc

L2$

29

Potential DRAM Crossroads?

After 20 years of 4X every 3 years, running into
wall? (64Mb - 1 Gb)

How can keep $1B fab lines full if buy fewer
DRAMs per computer?

Cost/bit –30%/yr if stop 4X/3 yr?

What will happen to $40B/yr DRAM industry?

30

Main Memory Summary

Wider Memory

Interleaved Memory: for sequential or independent
accesses

Avoiding bank conflicts: SW & HW

DRAM specific optimizations: page mode & Specialty
DRAM

DRAM future less rosy?

31

 Cache Cross Cutting Issues

Superscalar CPU & Number Cache Ports must
match: number memory accesses/cycle?

Speculative Execution and non-faulting option on
memory/TLB

Parallel Execution vs. Cache locality
 Want far separation to find independent operations vs.

want reuse of data accesses to avoid misses

I/O and consistencyCaches => multiple copies of
data

 Consistency

32
Alpha 21064
Separate Instr & Data

TLB & Caches

TLBs fully associative

TLB updates in SW
(“Priv Arch Libr”)

Caches 8KB direct
mapped, write thru

Critical 8 bytes first

Prefetch instr. stream
buffer

2 MB L2 cache, direct
mapped, WB (off-chip)

256 bit path to main
memory, 4 x 64-bit
modules

Victim Buffer: to give
read priority over
write

4 entry write buffer
between D$ & L2$

Stream
Buffer

Write
Buffer

Victim Buffer

Instr Data

33

Alpha 21264 Memory Hierarchy

1• 48 Bit virtual address & 44 bit physical address or
• 44 bit virtual address & 41 bit physical address.

•Physical address space is halved, lower half memory
addresses and upper half I/O addresses.

34

Alpha 21264 Memory Hierarchy

1

35

Alpha 21264 Memory Hierarchy

2

36

Alpha 21264 Memory Hierarchy

3

37

Alpha 21264 Memory Hierarchy

4

38

Alpha 21264 Memory Hierarchy - 1

ASN : Address space number.

Instruction cache interface

Store queue out

Data cache interface

39

Alpha 21264 Memory Hierarchy

•Virtually indexed and virtually
tagged

•8 bit ASN
•I TLB access only on a miss.

•Uses way prediction
•A way predict is prepended to 9
bit index -> 10 bit index
•The cache looks like a 64 KB
cache with 1024 blocks.

•Instruction cache tag = 48-9-6 = 33
•11 bits to predict the next group of
16 bytes, updated:

•Address of next sequential
group on a cache miss
•Non-sequential address by a
dynamic branch predictor.
•Called “Line prediction”.

40

Alpha 21264 Memory Hierarchy

•The index field of the PC is
compared with the predicted block
address;
•The tag field is compared to the
address from the tag portion of the
cache;
•8 bit asn to the asn field.
•Valid bit is checked.

•Any of the above is wrong: cache
miss.

•An instruction cache miss causes:
•Check the instruction TLB
•Instruction prefetcher.

41

Alpha 21264 Memory Hierarchy

•Data cache is virtually
indexed and physically
tagged:

•9-bit index + 3 bits to
select the appropriate 8
bytes are sent to the
data cache;
•Page frame of the
address is sent to the
TLB.

•Data TLB fully associative
128 PTEs.

42

Alpha 21264 Memory Hierarchy

43

0.01%

0.10%

1.00%

10.00%

100.00%
AlphaSort Espresso Sc Mdljsp2 Ear Alvinn Mdljp2 Nasa7

M
is

s
R
at

e

I $

D $

L2

Alpha Memory Performance: Miss
Rates of SPEC92 (21064)

8K

8K

2M

I$ miss = 2%
D$ miss = 13%
L2 miss =
0.6%

I$ miss = 1%
D$ miss = 21%
L2 miss = 0.3%

I$ miss = 6%
D$ miss = 32%
L2 miss = 10%

44

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

AlphaSort Espresso Sc Mdljsp2 Ear Alvinn Mdljp2

C
P
I

L2

I$

D$

I Stall

Other

Alpha CPI Components
Instruction stall: branch mispredict (green);

Data cache (blue); Instruction cache (yellow); L2$ (pink)
Other: compute + reg conflicts, structural conflicts

45

Pitfall: Predicting Cache Performance from
Different Prog. (ISA, compiler, ...)

4KB Data cache miss
rate 8%,12%, or 28%?

1KB Instr cache miss
rate 0%,3%,or 10%?

Alpha vs. MIPS
 for 8KB Data $:
17% vs. 10%

Why 2X Alpha v. MIPS?

0%

5%

10%

15%

20%

25%

30%

35%

1 2 4 8 16 32 64 128
Cache Size (KB)

Miss
Rate

D: tomcatv

D: gcc

D: espresso

I: gcc

I: espresso

I: tomcatv

D$, Tom

D$, gcc

D$, esp

I$, gcc

I$, esp

I$, Tom

46

Main Memory Summary

Wider Memory

Interleaved Memory: for sequential or independent
accesses

Avoiding bank conflicts: SW & HW

DRAM specific optimizations: page mode & Specialty
DRAM

DRAM future less rosy?

47

Practical Memory Hierarchy

Issue is NOT inventing new mechanisms

Issue is taste in selecting between many
alternatives in putting together a memory
hierarchy that fit well together

 e.g., L1 Data cache write through, L2 Write back
 e.g., L1 small for fast hit time/clock cycle,
 e.g., L2 big enough to avoid going to DRAM?

