
Memory Hierarchy
3 Cs
and

6 Ways to Reduce Misses

Soner Onder

Michigan Technological University

Randy Katz & David A. Patterson

University of California, Berkeley

2

Four Questions for Memory
Hierarchy Designers

Q1: Where can a block be placed in the upper level?
(Block placement)

 Fully Associative, Set Associative, Direct Mapped

Q2: How is a block found if it is in the upper level?
 (Block identification)

 Tag/Block

Q3: Which block should be replaced on a miss?
(Block replacement)

 Random, LRU

Q4: What happens on a write?
(Write strategy)

 Write Back or Write Through (with Write Buffer)

3Cache Performance

CPU time = (CPU execution clock cycles +
Memory stall clock cycles) x clock cycle time

Memory stall clock cycles =

(Reads x Read miss rate x Read miss penalty
+ Writes x Write miss rate x Write miss
penalty)

Memory stall clock cycles =
Memory accesses x Miss rate x Miss penalty

4Cache Performance

CPUtime = Instruction Count x (CPIexecution +
Mem accesses per instruction x Miss rate x
Miss penalty) x Clock cycle time

Misses per instruction = Memory accesses per
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per
instruction x Miss penalty) x Clock cycle time

5Improving Cache Performance

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

6Reducing Misses

Classifying Misses: 3 Cs
 Compulsory—The first access to a block is not in the cache, so

the block must be brought into the cache. Also called cold start
misses or first reference misses.
(Misses in even an Infinite Cache)

 Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur due to
blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

 Conflict—If block-placement strategy is set associative or
direct mapped, conflict misses (in addition to compulsory &
capacity misses) will occur because a block can be discarded and
later retrieved if too many blocks map to its set. Also called
collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

7

Cache Size (KB)

M
is

s
 R

a
te

 p
e
r

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate (SPEC92)

Conflict

Compulsory vanishingly
small

8

Cache Size (KB)

M
is

s
 R

a
te

 p
e
r

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

2:1 Cache Rule

Conflict

miss rate 1-way associative cache size X = miss rate 2-way
associative cache size X/2

93Cs Relative Miss Rate

Cache Size (KB)

M
is

s
 R

a
te

 p
e
r

T
y
p
e

0%

20%

40%

60%

80%

100%
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size
Good: insight => invention

10How Can Reduce Misses?
3 Cs: Compulsory, Capacity, Conflict

In all cases, assume total cache size not changed:

What happens if:

1) Change Block Size:
Which of 3Cs is obviously affected?

2) Change Associativity:
Which of 3Cs is obviously affected?

3) Change Compiler:
Which of 3Cs is obviously affected?

11

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2
8

2
5
6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger Block Size

12

Effect of Block size on Average
Memory Access time

1.4701.9793.6598.46996128
1.4491.9333.3237.1608864

2.288

2.134
2.673

64K

1.5495.68511.651112256

1.5883.4117.0828432
1.8944.2318.0278216

256K16K4KMiss PenaltyBlock Size
Cache Size

Block sizes 32 and 64 bytes dominate
Longer hit times?
Higher cost?

13
2. Make Caches Bigger

Bigger caches have lower miss rates.

Bigger caches cost more.

Bigger caches are slower to access.

It is the average memory access time and
the cost of the cache that ultimately
determines the cache size.

14

3. Reduce Misses via Higher
Associativity

2:1 Cache Rule:
 Miss Rate Direct Mapped cache size N Miss Rate 2-

way cache size N/2

Beware: Execution time is only final measure!
 Will Clock Cycle time increase?
 Hill [1988] suggested hit time for 2-way vs. 1-way

external cache +10%,
internal + 2%

15

Example: Avg. Memory Access Time vs
Associativity

Example: assume CCT = 1.36 for 2-way, 1.44 for 4-way, 1.52 for 8-
way vs. CCT direct mapped. Miss penalty is 25 cycles.

AVG-Memory access time = hit time + miss rate x miss penalty.

1.821.741.661.32256
2.001.921.841.52128
2.252.182.141.9264
2.452.372.302.0632

2.622.552.582.698

1.661.591.551.20512

2.532.462.402.2316

3.283.223.253.444
8-way4-way2-way1-wayCache

Size

16

4. Reducing Misses via a
“Victim Cache”

How to combine fast hit time of
direct mapped
yet still avoid conflict misses?

Add buffer to place data
discarded from cache

Jouppi [1990]: 4-entry victim
cache removed 20% to 95% of
conflicts for a 4 KB direct
mapped data cache

Used in Alpha, HP machines

17

5. Reducing Misses via
“Pseudo-Associativity”

How to combine fast hit time of Direct Mapped and have the lower
conflict misses of 2-way SA cache?

Divide cache: on a miss, check other half of cache to see if there, if so
have a pseudo-hit (slow hit)

Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
 Better for caches not tied directly to processor (L2)
 Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

18

6. Reducing Misses by Compiler
Optimizations

McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

Instructions
 Reorder procedures in memory so as to reduce conflict misses
 Profiling to look at conflicts(using tools they developed)

Data
 Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays
 Loop Interchange: change nesting of loops to access data in the order

stored in memory
 Loop Fusion: Combine 2 independent loops that have same looping and

some variables overlap
 Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down whole columns or rows

19Merging Arrays Example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

20Loop Interchange Example
/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through
memory every 100 words; improved spatial locality

21Loop Fusion Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; improve
spatial locality

22Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

 for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

 x[i][j] = r;

};

Two Inner Loops:
 Read all NxN elements of z[]
 Read N elements of 1 row of y[] repeatedly
 Write N elements of 1 row of x[]

Capacity Misses a function of N & Cache Size:
 3 NxNx4 => no capacity misses; otherwise ...

Idea: compute on BxB submatrix that fits

23Blocking Example
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

 for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

 x[i][j] = x[i][j] + r;

};

B called Blocking Factor
Capacity Misses from 2N3 + N2 to 2N3/B +N2

Conflict Misses Too?

24

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

25Summary

3 Cs: Compulsory, Capacity, Conflict
1. Reduce Misses via Larger Block Size
2. Make caches bigger
3. Reduce Misses via Higher Associativity
4. Reducing Misses via Victim Cache
5. Reducing Misses via Pseudo-Associativity
6. Reducing Misses by Compiler Optimizations

Remember danger of concentrating on just one
parameter when evaluating performance

CPUtime IC CPIExecution
Memory accesses

Instruction
Miss rate Miss penalty

Clock cycle time

26
Review: Improving Cache
Performance
1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

27

1. Reduce Miss Penalty with multi-level
caches

L1 Cache

L2 Cache

L3 Cache

Memory

Fa
st

er
Sm

al
le

r

Slower/Bigger

CPUA multi-level
cache reduces the
miss penalty :

Miss penalty for
each level is
smaller as we go
up.

28

Multi-level caches - Equations

L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss Rate L1 x (Hit TimeL2 + Miss Rate L2 +
Miss PenaltyL2)

Definitions:
 Local miss rate— misses in this cache divided by the total number

of memory accesses to this cache (Miss rateL2)

 Global miss rate—misses in this cache divided by the total number
of memory accesses generated by the CPU
(Miss RateL1 x Miss RateL2)

 Global Miss Rate is what matters

29

Comparing Local and Global Miss
Rates

32 KByte 1st level cache;
Increasing 2nd level cache

Global miss rate close to
single level cache rate
provided L2 >> L1

Don’t use local miss rate

L2 not tied to CPU clock cycle!

Cost & A.M.A.T.

Generally Fast Hit Times and
fewer misses

Since hits are few, target
miss reduction

Linear

Log

Cache Size

Cache Size

30

2. Reduce Miss Penalty:
Early Restart and Critical Word First

Don’t wait for full block to be loaded before restarting
CPU

 Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

 Critical Word First—Request the missed word first from memory and
send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

Generally useful only in large blocks,

Spatial locality a problem; tend to want next sequential
word, so not clear if benefit by early restart

block

31

3. Reducing Miss Penalty:
Read Priority over Write on Miss
Write through with write buffers offer RAW
conflicts with main memory reads on cache misses:

Write buffers may hold the updated value that
is needed on cache miss.

SW r3,512(R0) (Cache index 0)

LW r1,1024(R0) (Cache index 0)

LW r2,512(R0) (Cache index 0)

Is r2 = r3 ?

32

3. Reducing Miss Penalty:
Read Priority over Write on Miss
If we simply wait for write buffer to empty, we may
increase read miss penalty (old MIPS 1000 by 50%)

Check write buffer contents before read;
if no conflicts, let the memory access continue

Write Back?
 Read miss replacing dirty block
 Normal: Write dirty block to memory, and then do the read
 Instead copy the dirty block to a write buffer, then do the read,

and then do the write
 CPU stall less since restarts as soon as do read

33
4. Reduce Miss Penalty: Subblock
Placement
Don’t have to load full block on a miss

Have valid bits per subblock to indicate valid

(Originally invented to reduce tag storage)

Valid Bits Subblocks

34

5. Reduce Miss Penalty: Non-blocking
Caches to reduce stalls on misses
Non-blocking cache or lockup-free cache allow data cache
to continue to supply cache hits during a miss

 requires out-of-order execution CPU

“hit under miss” reduces the effective miss penalty by
working during miss vs. ignoring CPU requests

“hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple
misses

 Significantly increases the complexity of the cache controller as there
can be multiple outstanding memory accesses

 Requires multiple memory banks (otherwise cannot support)
 Pentium Pro allows 4 outstanding memory misses

35

Value of Hit Under Miss for SPEC

FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

A
v
g

.
M

e
m

.
A

c
c
e

s
s
 T

im
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
n
to
tt

es
p
re
ss
o

xl
is
p

co
m
p
re
ss

m
d
lj
sp
2

ea
r

fp
p
p
p

to
m
ca
tv

sw
m
2
5
6

d
od
u
c

su
2
co
r

w
av
e5

m
d
lj
d
p
2

h
yd
ro
2
d

al
vi
n
n

n
as
a7

sp
ic
e2
g
6

or
a

0 ->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

36

Reducing Misses:
Which apply to L2 Cache?

Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Capacity/Conf. Misses by Compiler

Optimizations

37

Relative CPU Time

Block Size

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size & A.M.A.T.

32KB L1, 8 byte path to memory

38Reducing Miss Penalty Summary

Five techniques
 Read priority over write on miss
 Subblock placement
 Early Restart and Critical Word First on miss
 Non-blocking Caches (Hit under Miss, Miss under Miss)
 Second Level Cache

Can be applied recursively to Multilevel Caches
 Danger is that time to DRAM will grow with multiple levels in

between
 First attempts at L2 caches can make things worse, since increased

worst case is worse

CPUtime IC CPIExecution
Memory accesses

Instruction
Miss rate Miss penalty

Clock cycle time

39Prefetching

Can be done by the hardware, software, or
both.

It may reduce the miss rate and miss
penalty.

Anticipation of the future needs of the cache
is essential:

Early determination.

Enough bandwidth.

40

1. Reducing Misses by Hardware
Prefetching of Instructions & Data
E.g., Instruction Prefetching

 Alpha 21064 fetches 2 blocks on a miss
 Extra block placed in “stream buffer”
 On miss check stream buffer

Works with data blocks too:
 Jouppi [1990] 1 data stream buffer got 25% misses from 4KB

cache; 4 streams got 43%
 Palacharla & Kessler [1994] for scientific programs for 8

streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

Prefetching relies on having extra memory
bandwidth that can be used without penalty

41

2. Reducing Misses by
Software Prefetching Data

Data Prefetch
 Load data into register (HP PA-RISC loads)
 Cache Prefetch: load into cache

(MIPS IV, PowerPC, SPARC v. 9)
 Special prefetching instructions cannot cause faults;

a form of speculative execution

Issuing Prefetch Instructions takes time
 Is cost of prefetch issues < savings in reduced misses?
 Higher superscalar reduces difficulty of issue bandwidth

42

What is the Impact of What You’ve
Learned About Caches?

1960-1985: Speed
= ƒ(no. operations)

1990

 Pipelined
Execution &
Fast Clock Rate

 Out-of-Order
execution

 Superscalar
Instruction Issue

1998: Speed =
ƒ(non-cached memory accesses)

Superscalar, Out-of-Order machines hide L1 data cache miss
(5 clocks) but not L2 cache miss (50 clocks)?

1

10

100

1000

19
8
0

19
8
1

19
8
2

19
8
3

19
8
4

19
8
5

19
8
6

19
8
7

19
8
8

19
8
9

19
9
0

19
9
1

19
9
2

19
9
3

19
9
4

19
9
5

19
9
6

19
9
7

19
9
8

19
9
9

2
0
0
0

DRAM

CPU

43Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + +? 2
Compiler Controlled Prefetching + +? 3
Compiler Reduce Misses + 0

Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2

m
is

s
 r

a
te

m
is

s
 p

en
al

ty

