
Memory Hierarchy— Motivation, Definitions, Four
Questions about Memory Hierarchy

Soner Onder

Michigan Technological University

Randy Katz & David A. Patterson

University of California, Berkeley

2Levels in a memory hierarchy

3Basic idea
DataTag

Memory address
=?

Cache
M

em
ory

block

4Who Cares about Memory Hierarchy?

1980: no cache in µproc;
1995 2-level cache, 60% trans. on Alpha 21164 µproc

5General Principles

Locality
• Temporal Locality: referenced again soon

• Spatial Locality: nearby items referenced soon

Locality + smaller HW is faster = memory hierarchy
• Levels: each smaller, faster, more expensive/byte than level below

• Inclusive: data found in top also found in the bottom

Definitions
• Upper is closer to processor

• Block: minimum unit that present or not in upper level

• Address = Block frame address + block offset address

• Hit time: time to access upper level, including hit determination

6Cache Measures

Hit rate: fraction found in that level
• So high that usually talk about Miss rate
• Miss rate fallacy: as MIPS to CPU performance,

miss rate to average memory access time in memory

Average memory-access time = Hit time + Miss rate x Miss
penalty (ns or clocks)

Miss penalty: time to replace a block from lower level,
including time to replace in CPU

• access time: time to lower level = ƒ(lower level latency)

• transfer time: time to transfer block = ƒ(BW upper & lower, block size)

7Block Size vs. Cache Measures

Increasing Block Size generally increases Miss Penalty

Block Size Block Size Block Size

Miss
Rate

Miss
Penalty

Avg.
Memory
Access
Time

X =

8Implications For CPU

Fast hit check since every memory access
• Hit is the common case

Unpredictable memory access time
• 10s of clock cycles: wait

• 1000s of clock cycles:
• Interrupt & switch & do something else
• New style: multithreaded execution

How handle miss (10s => HW, 1000s => SW)?

9
Four Questions for Memory Hierarchy Designers

Q1: Where can a block be placed in the upper level? (Block
placement)

Q2: How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss?
(Block replacement)

Q4: What happens on a write?
(Write strategy)

10

Q1: Where can a block be placed in the
upper level?
Block 12 placed in 8 block cache:

• Fully associative, direct mapped, 2-way set associative
• Set A. Mapping = Block Number Modulo Number Sets

11

Q2: How Is a Block Found If It Is in the Upper
Level?

Tag on each block

• No need to check index or block offset

Increasing associativity shrinks index, expands
tag

FA: No index
DM: Large
index

12

Q3: Which Block Should be Replaced on a
Miss?

Easy for Direct Mapped

S.A. or F.A.:
• Random (large associativities)

• LRU (smaller associativities)

Associativity: 2-way 4-way 8-way

Size LRU Random LRU Random LRU Random

16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

13Q4: What Happens on a Write?

Write through: The information is written to both the block in
the cache and to the block in the lower-level memory.

Write back: The information is written only to the block in the
cache. The modified cache block is written to main memory
only when it is replaced.

• is block clean or dirty?

Pros and Cons of each:
• WT: read misses cannot result in writes (because of replacements)

• WB: no writes of repeated writes

WT always combined with write buffers so that don’t wait for
lower level memory

14

2-way Set Associative,
Address to Select Word

Two sets of
Address tags
and data RAM

2:1 Mux
for the way

Use address
bits to select
correct Data
RAM

15Cache Performance

CPU time = (CPU execution clock cycles + Memory stall
clock cycles) x clock cycle time

Memory stall clock cycles = (Reads x Read miss rate x
Read miss penalty + Writes x Write miss rate x Write
miss penalty)

Memory stall clock cycles = Memory accesses x Miss
rate x Miss penalty

16Cache Performance

CPUtime = IC x (CPIexecution + Mem accesses per
instruction x Miss rate x Miss penalty) x Clock cycle
time

Misses per instruction = Memory accesses per
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per instruction x
Miss penalty) x Clock cycle time

17Improving Cache Performance

Average memory-access time = Hit time + Miss rate x
Miss penalty (ns or clocks)

Improve performance by:

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

18Summary

CPU-Memory gap is major performance obstacle for
performance, HW and SW

Take advantage of program behavior: locality

Time of program still only reliable performance measure

4Qs of memory hierarchy

19

Four Questions for Memory Hierarchy
Designers

Q1: Where can a block be placed in the upper level? (Block
placement)

• Fully Associative, Set Associative, Direct Mapped

Q2: How is a block found if it is in the upper level?
(Block identification)

• Tag/Block

Q3: Which block should be replaced on a miss?
(Block replacement)

• Random, LRU

Q4: What happens on a write?
(Write strategy)

• Write Back or Write Through (with Write Buffer)

20Cache Performance

CPU time = (CPU execution clock cycles + Memory stall
clock cycles) x clock cycle time

Memory stall clock cycles =

(Reads x Read miss rate x Read miss penalty + Writes x
Write miss rate x Write miss penalty)

Memory stall clock cycles =
Memory accesses x Miss rate x Miss penalty

21Cache Performance

CPUtime = Instruction Count x (CPIexecution + Mem
accesses per instruction x Miss rate x Miss penalty) x
Clock cycle time

Misses per instruction = Memory accesses per
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per instruction x
Miss penalty) x Clock cycle time

22Improving Cache Performance

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

23Reducing Misses

Classifying Misses: 3 Cs
• Compulsory—The first access to a block is not in the cache, so the block

must be brought into the cache. Also called cold start misses or first
reference misses.
(Misses in even an Infinite Cache)

• Capacity—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

• Conflict—If block-placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory & capacity misses) will occur
because a block can be discarded and later retrieved if too many blocks map
to its set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

24

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way
Capacity

Compulsory

3Cs Absolute Miss Rate (SPEC92)

Conflict

Compulsory vanishingly
small

25

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way
Capacity

Compulsory

2:1 Cache Rule

Conflict

miss rate 1-way associative cache size X = miss rate 2-way
associative cache size X/2

263Cs Relative Miss Rate

Cache Size (KB)

0%

20%

40%

60%

80%

100%
1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size
Good: insight => invention

27How Can We Reduce Misses?

3 Cs: Compulsory, Capacity, Conflict

In all cases, assume total cache size not changed:

What happens if:

1) Change Block Size:
Which of 3Cs is obviously affected?

2) Change Associativity:
Which of 3Cs is obviously affected?

3) Change Compiler:
Which of 3Cs is obviously affected?

28

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger Block Size

29

Effect of Block size on Average Memory Access
time

Block Size Miss Penalty 4K 16K 64K 256K

16 82 8.027 4.231 2.673 1.894
32 84 7.082 3.411 2.134 1.588
64 88 7.160 3.323 1.933 1.449
128 96 8.469 3.659 1.979 1.470
256 112 11.651 5.685 2.288 1.549

Cache Size

Block sizes 32 and 64 bytes dominate
Longer hit times?
Higher cost?

30
2. Make Caches Bigger

Bigger caches have lower miss rates.

Bigger caches cost more.

Bigger caches are slower to access.

It is the average memory access time and the cost of
the cache that ultimately determines the cache size.

31
3. Reduce Misses via Higher Associativity

2:1 Cache Rule:
• Miss Rate Direct Mapped cache size N Miss Rate 2-way cache size

N/2

Beware: Execution time is only final measure!
• Will Clock Cycle time increase?

• Hill [1988] suggested hit time for 2-way vs. 1-way
external cache +10%,
internal + 2%

32

Example: Avg. Memory Access Time vs
Associativity

Example: assume CCT = 1.36 for 2-way, 1.44 for 4-way, 1.52 for 8-way vs. CCT
direct mapped. Miss penalty is 25 cycles.

AVG-Memory access time = hit time + miss rate x miss penalty.

Cache
Size

1-way 2-way 4-way 8-way

4 3.44 3.25 3.22 3.28
8 2.69 2.58 2.55 2.62
16 2.23 2.40 2.46 2.53
32 2.06 2.30 2.37 2.45
64 1.92 2.14 2.18 2.25
128 1.52 1.84 1.92 2.00
256 1.32 1.66 1.74 1.82
512 1.20 1.55 1.59 1.66

33

4. Reducing Misses via a
“Victim Cache”

How to combine fast hit time of direct
mapped
yet still avoid conflict misses?

Add buffer to place data discarded
from cache

Jouppi [1990]: 4-entry victim cache
removed 20% to 95% of conflicts for
a 4 KB direct mapped data cache

Used in Alpha, HP machines

34

5. Reducing Misses via
“Pseudo-Associativity”

How to combine fast hit time of Direct Mapped and have the lower conflict misses
of 2-way SA cache?

Divide cache: on a miss, check other half of cache to see if there, if so have a
pseudo-hit (slow hit)

Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

• Better for caches not tied directly to processor (L2)

• Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time
Pseudo Hit Time Miss Penalty

Time

35
6. Reducing Misses by Compiler Optimizations

McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

Instructions
• Reorder procedures in memory so as to reduce conflict misses

• Profiling to look at conflicts(using tools they developed)

Data
• Merging Arrays: improve spatial locality by single array of compound elements vs. 2

arrays

• Loop Interchange: change nesting of loops to access data in the order stored in
memory

• Loop Fusion: Combine 2 independent loops that have same looping and some
variables overlap

• Blocking: Improve temporal locality by accessing “blocks” of data repeatedly vs.
going down whole columns or rows

36Merging Arrays Example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

37Loop Interchange Example
/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through memory
every 100 words; improved spatial locality

38Loop Fusion Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; improve spatial locality

39Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

x[i][j] = r;

};

Two Inner Loops:
• Read all NxN elements of z[]

• Read N elements of 1 row of y[] repeatedly

• Write N elements of 1 row of x[]

Capacity Misses a function of N & Cache Size:
• 3 NxNx4 => no capacity misses; otherwise ...

Idea: compute on BxB submatrix that fits

40Blocking Example
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;

};

B called Blocking Factor

Capacity Misses from 2N3 + N2 to 2N3/B +N2

Conflict Misses Too?

41

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to Reduce Cache
Misses (by hand)

42Summary

3 Cs: Compulsory, Capacity, Conflict
1. Reduce Misses via Larger Block Size

2. Make caches bigger

3. Reduce Misses via Higher Associativity

4. Reducing Misses via Victim Cache

5. Reducing Misses via Pseudo-Associativity

6. Reducing Misses by Compiler Optimizations

Remember danger of concentrating on just one parameter
when evaluating performance

CPUtime = IC × CPIExecution +
Memory accesses

Instruction
× Miss rate × Miss penalty



 × Clock cycle time

43Review: Improving Cache Performance

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

44

1. Reduce Miss Penalty with multi-level caches

L1 Cache

L2 Cache

L3 Cache

Memory

Fa
st

er
Sm

al
le

r

Slower/Bigger

CPUA multi-level
cache reduces the
miss penalty :

Miss penalty for
each level is
smaller as we go
up.

45

Multi-level caches - Equations

L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 +
Miss PenaltyL2)

Definitions:
• Local miss rate— misses in this cache divided by the total number of

memory accesses to this cache (Miss rateL2)

• Global miss rate—misses in this cache divided by the total number of
memory accesses generated by the CPU
(Miss RateL1 x Miss RateL2)

• Global Miss Rate is what matters

46
Comparing Local and Global Miss Rates

32 KByte 1st level cache;
Increasing 2nd level cache

Global miss rate close to single
level cache rate provided L2 >> L1

Don’t use local miss rate

L2 not tied to CPU clock cycle!

Cost & A.M.A.T.

Generally Fast Hit Times and fewer
misses

Since hits are few, target miss
reduction

Linear

Log

Cache Size

Cache Size

47

2. Reduce Miss Penalty:
Early Restart and Critical Word First

Don’t wait for full block to be loaded before restarting CPU
• Early restart—As soon as the requested word of the block arrives, send it to the

CPU and let the CPU continue execution

• Critical Word First—Request the missed word first from memory and send it to
the CPU as soon as it arrives; let the CPU continue execution while filling the rest
of the words in the block. Also called wrapped fetch and requested word first

Generally useful only in large blocks,

Spatial locality a problem; tend to want next sequential word, so
not clear if benefit by early restart

block

48

3. Reducing Miss Penalty:
Read Priority over Write on Miss

Write through with write buffers offer RAW conflicts with main
memory reads on cache misses:

Write buffers may hold the updated value that is
needed on cache miss.

SW r3,512(R0) (Cache index 0)

LW r1,1024(R0) (Cache index 0)

LW r2,512(R0) (Cache index 0)

Is r2 = r3 ?

49

3. Reducing Miss Penalty:
Read Priority over Write on Miss

If we simply wait for write buffer to empty, we may increase
read miss penalty (old MIPS 1000 by 50%)

Check write buffer contents before read;
if no conflicts, let the memory access continue

Write Back?
• Read miss replacing dirty block

• Normal: Write dirty block to memory, and then do the read

• Instead copy the dirty block to a write buffer, then do the read, and then do
the write

• CPU stall less since restarts as soon as do read

50
4. Reduce Miss Penalty: Subblock
Placement

Don’t have to load full block on a miss

Have valid bits per subblock to indicate valid

(Originally invented to reduce tag storage)

Valid Bits Subblocks

51

5. Reduce Miss Penalty: Non-blocking Caches to reduce
stalls on misses

Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss

• requires out-of-order execution CPU

“hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests

“hit under multiple miss” or “miss under miss” may further lower
the effective miss penalty by overlapping multiple misses

• Significantly increases the complexity of the cache controller as there can be
multiple outstanding memory accesses

• Requires multiple memory banks (otherwise cannot support)

• Pentium Pro allows 4 outstanding memory misses

52

Value of Hit Under Miss for SPEC

FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
pr

es
so

xl
is

p

co
m

pr
es

s

m
dl

js
p2 ea

r

fp
pp

p

to
m

ca
tv

sw
m

25
6

do
du

c

su
2c

or

w
av

e5

m
dl

jd
p2

hy
dr

o2
d

al
vi

nn

na
sa

7

sp
ic

e2
g6 or

a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

53

Reducing Misses:
Which apply to L2 Cache?

Reducing Miss Rate
1. Reduce Misses via Larger Block Size

2. Reduce Conflict Misses via Higher Associativity

3. Reducing Conflict Misses via Victim Cache

4. Reducing Conflict Misses via Pseudo-Associativity

5. Reducing Capacity/Conf. Misses by Compiler Optimizations

54

Relative CPU Time

Block Size

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size & A.M.A.T.

32KB L1, 8 byte path to memory

55
Reducing Miss Penalty Summary

Five techniques
• Read priority over write on miss

• Subblock placement

• Early Restart and Critical Word First on miss

• Non-blocking Caches (Hit under Miss, Miss under Miss)

• Second Level Cache

Can be applied recursively to Multilevel Caches
• Danger is that time to DRAM will grow with multiple levels in between

• First attempts at L2 caches can make things worse, since increased worst case
is worse

CPUtime = IC × CPIExecution +
Memory accesses

Instruction
× Miss rate × Miss penalty



 × Clock cycle time

56Prefetching

Can be done by the hardware, software, or both.

It may reduce the miss rate and miss penalty.

Anticipation of the future needs of the cache is
essential:

Early determination.

Enough bandwidth.

57

1. Reducing Misses by Hardware Prefetching of
Instructions & Data

E.g., Instruction Prefetching
• Alpha 21064 fetches 2 blocks on a miss

• Extra block placed in “stream buffer”

• On miss check stream buffer

Works with data blocks too:
• Jouppi [1990] 1 data stream buffer got 25% misses from 4KB cache; 4

streams got 43%

• Palacharla & Kessler [1994] for scientific programs for 8 streams got 50%
to 70% of misses from
2 64KB, 4-way set associative caches

Prefetching relies on having extra memory bandwidth that
can be used without penalty

58

2. Reducing Misses by
Software Prefetching Data

Data Prefetch
• Load data into register (HP PA-RISC loads)

• Cache Prefetch: load into cache
(MIPS IV, PowerPC, SPARC v. 9)

• Special prefetching instructions cannot cause faults;
a form of speculative execution

Issuing Prefetch Instructions takes time
• Is cost of prefetch issues < savings in reduced misses?

• Higher superscalar reduces difficulty of issue bandwidth

59

What is the Impact of What You’ve Learned
About Caches?

1960-1985: Speed
= ƒ(no. operations)

1990

• Pipelined
Execution &
Fast Clock Rate

• Out-of-Order
execution

• Superscalar
Instruction Issue

1998: Speed =
ƒ(non-cached memory accesses)

Superscalar, Out-of-Order machines hide L1 data cache miss
(5 clocks) but not L2 cache miss (50 clocks)?

1

10

100

1000

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

60Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + +? 2
Compiler Controlled Prefetching + +? 3
Compiler Reduce Misses + 0

Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2

m
is

s
ra

te
m

is
s

pe
na

lty

	Memory Hierarchy— Motivation, Definitions, Four Questions about Memory Hierarchy
	Levels in a memory hierarchy
	Basic idea
	Who Cares about Memory Hierarchy?
	General Principles
	Cache Measures
	Block Size vs. Cache Measures
	Implications For CPU
	Four Questions for Memory Hierarchy Designers
	Q1: Where can a block be placed in the upper level?
	Q2: How Is a Block Found If It Is in the Upper Level?
	Q3: Which Block Should be Replaced on a Miss?
	Q4: What Happens on a Write?
	2-way Set Associative, �Address to Select Word
	Cache Performance
	Cache Performance
	Improving Cache Performance
	Summary
	Four Questions for Memory Hierarchy Designers
	Cache Performance
	Cache Performance
	Improving Cache Performance
	Reducing Misses
	3Cs Absolute Miss Rate (SPEC92)
	2:1 Cache Rule
	3Cs Relative Miss Rate
	How Can We Reduce Misses?
	1. Reduce Misses via Larger Block Size
	Effect of Block size on Average Memory Access time
	2. Make Caches Bigger
	3. Reduce Misses via Higher Associativity
	Example: Avg. Memory Access Time vs Associativity
	4. Reducing Misses via a�“Victim Cache”
	5. Reducing Misses via �“Pseudo-Associativity”
	6. Reducing Misses by Compiler Optimizations
	Merging Arrays Example
	Loop Interchange Example
	Loop Fusion Example
	Blocking Example
	Blocking Example
	Summary of Compiler Optimizations to Reduce Cache Misses (by hand)
	Summary
	Review: Improving Cache Performance
	1. Reduce Miss Penalty with multi-level caches
	Multi-level caches - Equations
	Comparing Local and Global Miss Rates
	2. Reduce Miss Penalty: �Early Restart and Critical Word First
	3. Reducing Miss Penalty: �Read Priority over Write on Miss
	3. Reducing Miss Penalty: �Read Priority over Write on Miss
	4. Reduce Miss Penalty: Subblock Placement
	5. Reduce Miss Penalty: Non-blocking Caches to reduce stalls on misses
	Value of Hit Under Miss for SPEC
	Reducing Misses: �Which apply to L2 Cache?
	L2 cache block size & A.M.A.T.
	Reducing Miss Penalty Summary
	Prefetching
	1. Reducing Misses by Hardware Prefetching of Instructions & Data
	2. Reducing Misses by �Software Prefetching Data
	What is the Impact of What You’ve Learned About Caches?
	Cache Optimization Summary

