
Hardware Based Speculation

Soner Önder
Michigan Technological University, Houghton MI

2

•Exploiting more ILP requires that we overcome the limitation
of control dependence:

• With branch prediction we allowed the processor continue issuing
instructions past a branch based on a prediction:

• Those fetched instructions do not modify the processor state.
• These instructions are squashed if prediction is incorrect.

• We now allow the processor to execute these instructions before we
know if it is ok to execute them:

• We need to correctly restore the processor state if such an instruction
should not have been executed.

• We need to pass the results from these instructions to future instructions
as if the program is just following that path.

Hardware Based Speculation

3

•Assume the processor predicts B1
to be taken and executes.

•What will happen if the
prediction was wrong?

•What value of each variable
should be used if the processor
predicts B1 and B2 taken and
executes instructions along the
way?

Hardware Based Speculation

x < y?

A =b+c
C=c-1

C=0
A=0

B=b+1
A=a+1

C=a

D=a+b+c
….

Use d

X < z

B1

B
2

T

T

N

N

4

•In order to execute instructions speculatively, we need to
provide means:

• To roll back the values of both registers and the memory to their correct
values upon a misprediction,

• To communicate speculatively calculated values to the new uses of those
values.

•Both can be provided by using a simple structure called
Reorder Buffer (ROB).

Hardware Based Speculation

5

•It is a simple circular array with a head and a tail pointer:
• New instructions is allocated a position at the tail in program order.

• Each entry provides a location for storing the instruction’s result.

• New instructions look for the values starting from tail – back.

• When the instruction at the head complete and becomes non-speculative
the values are committed and the instruction is removed from the buffer.

Reorder Buffer

Tail Head

6

 3 fields: instr, destination, value
 Reorder buffer can be operand source => more registers like RS

 Use reorder buffer number instead of reservation station when
execution completes

 Supplies operands between execution complete & commit

 Once operand commits, result is put into register

 Instructions commit

 As a result, its easy to undo speculated instructions
on mispredicted branches
or on exceptions

Reorder Buffer

7

Steps of Speculative Tomasulo Algorithm

1. Issue [get instruction from FP Op Queue]

1. Check if the reorder buffer is full.

2. Check if a reservation station is available.

3. Access the register file and the reorder buffer for the current values of the
source operands.

4. Send the instruction, its reorder buffer slot number and the source
operands to the reservation station.

Once issued, the instruction stays in the reservation station
until it gets both operands.

8

Steps of Speculative Tomasulo Algorithm

2. Execute [operate on operands (EX)]

When both operands ready and a functional unit is
available, the instruction executes.

This step checks RAW hazards and as long as operands are
not ready, watches CDB for results.

9

Steps of Speculative Tomasulo Algorithm

3. Write result [finish execution (WB)]
Write on Common Data Bus to all awaiting FUs and
the reorder buffer; mark reservation station available.

10

Steps of Speculative Tomasulo Algorithm

4. Commit [update register file with reorder result]
When instruction reaches the head of reorder buffer

 The result is present

 No exceptions associated with the instruction:

The instruction becomes non-speculative:
 Update register file with result (or store to memory)

 Remove the instruction from the reorder buffer.

A mispredicted branch flushes the reorder buffer.

11MIPS FP Unit

12Renaming Registers

Common variation of speculative design

Reorder buffer keeps instruction information
but not the result

Extend register file with extra
renaming registers to hold speculative results

Rename register allocated at issue;
result into rename register on execution complete;
rename register into real register on commit

Operands read either from register file
(real or speculative) or via Common Data Bus

Advantage: operands are always from single source (extended
register file)

13Renaming Registers

1. Index a MAP table using the
source register identifiers to get
the physical register number.

2. Get the previous physical register
number for the destination
register.

3. Allocate a free physical register
and modify the MAP table by
indexing it with the destination
register identifier.

4. When instruction commits, return
the previous physical register to
the pool.

.

.

Map table125

0
1
2

29
30
31

.

.

Physical registers

0
1
2

125
126
127

14Renaming Registers

5
4

0

2
3

1

Map table

0
1
2
3
4
5
6
7
8 7

6

9
10
22
13
17

R7=r4+r3
R6=r2+r6
R3=r6+r7
R6=r6+10

Code sequence

15Renaming Registers

5
4

0

2
3

1

Map table

0
1
2
3
4
5
6
7 7

6

9
10
22
13
17

R7=r4+r3
R6=r2+r6
R3=r6+r7
R6=r6+10

Code sequence Renamed Code sequence

16Renaming Registers

5
4

0

2
3

1

Map table

0
1
2
3
4
5
6
7 9

6

10
22
13
17

R7=r4+r3
R6=r2+r6
R3=r6+r7
R6=r6+10

Code sequence

R9=r4+r3

Renamed Code sequence

R7

Previous Dest

17Renaming Registers

5
4

0

2
3

1

Map table

0
1
2
3
4
5
6
7 9

10

22
13
17

R7=r4+r3
R6=r2+r6
R3=r6+r7
R6=r6+10

Code sequence

R9=r4+r3
R10=r2+r6

Renamed Code sequence

R7
r6

Previous Dest

18Renaming Registers

5
4

0

2
22

1

Map table

0
1
2
3
4
5
6
7 9

10

13
17

R7=r4+r3
R6=r2+r6
R3=r6+r7
R6=r6+10

Code sequence

R9=r4+r3
R10=r2+r6
R22=r10+r9

Renamed Code sequence

R7
R6
R3

Previous Dest

19Renaming Registers

5
4

0

2
22

1

Map table

0
1
2
3
4
5
6
7 9

13

17

R7=r4+r3
R6=r2+r6
R3=r6+r7
R6=r6+10

Code sequence

R9=r4+r3
R10=r2+r6
R22=r10+r9
R13=r10+10

Renamed Code sequence

R7
R6
R3
R10

Previous Dest

20Renaming Registers

5
4

0

2
22

1

Map table

0
1
2
3
4
5
6
7 9

13

17
10

R7=r4+r3
R6=r2+r6
R3=r6+r7
R6=r6+10

Code sequence

R9=r4+r3
R10=r2+r6
R22=r10+r9
R13=r10+10

Renamed Code sequence

R7
R6
R3
R10

Previous Dest

When r13=r10+10
retires

21Speculative Processing with Map tables

Fetch Decode

PC

icache

Front
Map

Issue

+ Qj Qk
Select

Register
Read

Register
File

Ex

Commit Rear
Map

Reorder buffer

22Limits to ILP

Assumptions for ideal/perfect machine to start:

1. Register renaming–infinite virtual registers and all WAW &
WAR hazards are avoided

2. Branch prediction–perfect; no mispredictions

3. Jump prediction–all jumps perfectly predicted => machine with
perfect speculation & an unbounded buffer of instructions available

4. Memory-address alias analysis–addresses are known & a load
can be moved before a store provided addresses not equal

1 cycle latency for all instructions; unlimited number of instructions issued
per clock cycle

23Upper Limit to ILP: Ideal Machine

Programs

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Integer: 18 - 60

FP: 75 - 150

IP
C

24

Program

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

35

41

16

61
58

60

9

12
10

48

15

6 7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact

Change from Infinite window to
examine to 2000 and maximum
issue of 64 instructions per clock
cycle

FP: 15 - 45

Integer: 6 - 12

IP
C

25

Program

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

11

15

12

29

54

10

15

12

49

16

10
13

12

35

15

44

9 10 11

20

11

28

5 5 6 5 5
7

4 4
5

4
5 5

59

45

Infinite 256 128 64 32 None

More Realistic HW: Register Impact

Change 2000 instr window, 64
instr issue, 8K 2 level
Prediction

Integer: 5 - 15

FP: 11 - 45

IP
C

26

Program

0

5

10

15

20

25

30

35

40

45

50

gcc espresso li fpppp doducd tomcatv

10

15

12

49

16

45

7 7
9

49

16

4 5 4 4
6 5

3
5

3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW: Alias Impact

Change 2000 instr window, 64
instr issue, 8K 2 level Prediction,
256 renaming registers

FP: 4 - 45
(Fortran,
no heap)

Integer: 4 - 9

IP
C

27

Program

0

10

20

30

40

50

60

gcc expresso li fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5 4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW for ‘9X: Window Impact

Perfect disambiguation (HW), 1K
Selective Prediction, 16 entry return,
64 registers, issue as many as
window

Integer: 6 - 12

FP: 8 - 45

IP
C

28Speculative Processing with Map tables

	Hardware Based Speculation
	Hardware Based Speculation
	Hardware Based Speculation
	Hardware Based Speculation
	Reorder Buffer
	Reorder Buffer
	Steps of Speculative Tomasulo Algorithm
	Steps of Speculative Tomasulo Algorithm
	Steps of Speculative Tomasulo Algorithm
	Steps of Speculative Tomasulo Algorithm
	MIPS FP Unit
	Renaming Registers
	Renaming Registers
	Renaming Registers
	Renaming Registers
	Renaming Registers
	Renaming Registers
	Renaming Registers
	Renaming Registers
	Renaming Registers
	Speculative Processing with Map tables
	Limits to ILP
	Upper Limit to ILP: Ideal Machine
	More Realistic HW: Branch Impact
	More Realistic HW: Register Impact
	More Realistic HW: Alias Impact
	Realistic HW for ‘9X: Window Impact�
	Speculative Processing with Map tables

