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•Exploiting more ILP requires that we overcome the limitation 
of control dependence:

• With branch prediction we allowed the processor continue issuing 
instructions past a branch based on a prediction:

• Those fetched instructions do not modify the processor state.
• These instructions are squashed if prediction is incorrect.

• We now allow the processor to execute these instructions before we 
know if it is ok to execute them:

• We need to correctly restore the processor state if such an instruction 
should not have been executed.

• We need to pass the results from these instructions to future instructions 
as if the program is just following that path.

Hardware Based Speculation
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•Assume the processor predicts B1 
to be taken and executes.

•What will happen if the 
prediction was wrong?

•What value of each variable 
should be used if the processor 
predicts B1 and B2 taken and 
executes instructions along the 
way?

Hardware Based Speculation
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•In order to execute instructions speculatively, we need to 
provide means:

• To roll back the values of both registers and the memory to their correct 
values upon a misprediction,

• To communicate speculatively calculated values to the new uses of those 
values.

•Both can be provided by using a simple structure called 
Reorder Buffer (ROB).

Hardware Based Speculation
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•It is a simple circular array with a head and a tail pointer:
• New instructions is allocated a position at the tail in program order.

• Each entry provides a location for storing the instruction’s result.

• New instructions look for the values starting from tail – back.

• When the instruction at the head complete and becomes non-speculative 
the values are committed and the instruction is removed from the buffer.

Reorder Buffer

Tail Head
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 3 fields: instr, destination, value
 Reorder buffer can be operand source => more registers like RS

 Use reorder buffer number instead of reservation station when 
execution completes

 Supplies operands between execution complete & commit

 Once operand commits, result is put into register

 Instructions commit

 As a result, its easy to undo speculated instructions 
on mispredicted branches 
or on exceptions

Reorder Buffer
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Steps of Speculative Tomasulo Algorithm

1. Issue [get instruction from FP Op Queue]

1. Check if the reorder buffer is full.

2. Check if a reservation station is available.

3. Access the register file and the reorder buffer for the current values of the 
source operands.

4. Send the instruction, its reorder buffer slot number and the source 
operands to the reservation station.

Once issued, the instruction stays in the reservation station 
until it gets both operands.
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Steps of Speculative Tomasulo Algorithm

2. Execute [operate on operands (EX)]

When both operands ready and a functional unit is 
available, the instruction executes.

This step checks RAW hazards and as long as operands are 
not ready, watches CDB for results. 
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Steps of Speculative Tomasulo Algorithm

3. Write result [finish execution (WB)]
Write on Common Data Bus to all awaiting FUs and 
the reorder buffer; mark reservation station available.
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Steps of Speculative Tomasulo Algorithm

4. Commit [update register file with reorder result]
When instruction reaches the head of reorder buffer 

 The result is present

 No exceptions associated with the instruction:

The instruction becomes non-speculative:
 Update register file with result (or store to memory)

 Remove the instruction from the reorder buffer.

A mispredicted branch flushes the reorder buffer.
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Common variation of speculative design

Reorder buffer keeps instruction information 
but not the result

Extend register file with extra 
renaming registers to hold speculative results

Rename register allocated at issue; 
result into rename register on execution complete; 
rename register into real register on commit

Operands read either from register file 
(real or speculative) or via Common Data Bus

Advantage: operands are always from single source (extended 
register file)
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1. Index a MAP table using the 
source register identifiers to get 
the physical register number.

2. Get the previous physical register 
number for the destination 
register.

3. Allocate a free physical register 
and modify the MAP table by 
indexing it with the destination 
register identifier.

4. When instruction commits, return 
the previous physical register to 
the pool.

.

.

Map table125
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Assumptions for ideal/perfect machine to start:

1. Register renaming–infinite virtual registers and all WAW & 
WAR hazards are avoided

2. Branch prediction–perfect; no mispredictions 

3. Jump prediction–all jumps perfectly predicted => machine with 
perfect speculation & an unbounded buffer of instructions available

4. Memory-address alias analysis–addresses are known & a load 
can be moved before a store provided addresses not equal

1 cycle latency for all instructions; unlimited number of instructions issued 
per clock cycle
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