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Computer Architecture is Design and Analysis

Design

Analysis

Architecture is an iterative process:
• Searching the space  of possible designs
• At all levels of computer systems

Creativity

Good Ideas

Mediocre IdeasBad Ideas

Cost /
Performance
Analysis
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What Computer Architecture brings to Table
 Other fields often borrow ideas from architecture
 Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

 Careful, quantitative comparisons
 Define, quantity, and summarize relative performance
 Define and quantity relative cost
 Define and quantity dependability
 Define and quantity power

 Culture of anticipating and exploiting advances in technology
 Culture of well-defined interfaces that are carefully implemented 

and thoroughly checked
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1) Taking Advantage of  Parallelism

 Increasing throughput of server computer via multiple processors or 
multiple disks

 Detailed HW design
 Carry lookahead adders uses parallelism to speed up computing sums from 

linear to logarithmic in number of bits per operand
 Multiple memory banks searched in parallel in set-associative caches

 Pipelining: overlap instruction execution to reduce the total time to 
complete an instruction sequence.
 Not every instruction depends on immediate predecessor ⇒ executing 

instructions completely/partially in parallel possible
 Classic 5-stage pipeline: 

1) Instruction Fetch (Ifetch), 
2) Register Read (Reg), 
3) Execute (ALU), 
4) Data Memory Access (Dmem), 
5) Register Write (Reg)
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2) The Principle of  Locality
 The Principle of Locality:

 Program access a relatively small portion of the address space at 
any instant of time.

 Two Different Types of Locality:
 Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)
 Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon 
(e.g., straight-line code, array access)

 Last 30 years, HW  relied on locality for memory perf.

P MEM$
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3) Focus on the Common Case
 Common sense guides computer design

 Since its engineering, common sense is valuable
 In making a design trade-off, favor the frequent case over 

the infrequent case
 E.g., Instruction fetch and decode unit used more frequently 

than multiplier, so optimize it 1st
 E.g., If database server has 50 disks / processor, storage 

dependability dominates system dependability, so optimize it 
1st

 Frequent case is often simpler and can be done faster than 
the infrequent case
 E.g., overflow is rare when adding 2 numbers, so improve 

performance by optimizing more common case of no overflow 
 May slow down overflow, but overall performance improved by 

optimizing for the normal case
 What is frequent case and how much performance 

improved by making case faster => Amdahl’s Law
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4) Amdahl’s Law
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Amdahl’s Law example

 New CPU 10X faster
 I/O bound server, so 60% time waiting for I/O
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 Apparently, its human nature to be attracted by 10X faster, 
vs. keeping in perspective its just 1.6X faster
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5) Processor performance equation

CPU time =  Seconds    =   Instructions  x    Cycles        x   Seconds
Program          Program            Instruction         Cycle

Inst Count CPI Clock Rate

Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X
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Performance(X) Execution_time(Y) 
n  = =

Performance(Y) Execution_time(X) 

Definition: Performance

 Performance is in units of things per sec
 bigger is better

 If we are primarily concerned with response time

performance(x) =               1                   
execution_time(x)

" X is n times faster than Y"  means
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Performance: What to measure

 Usually rely on benchmarks vs. real workloads
 To increase predictability, collections of benchmark applications, called 

benchmark suites, are popular
 SPECCPU: popular desktop benchmark suite

 CPU only, split between integer and floating point programs
 SPECint2000 has 12 integer, SPECfp2000 has 14 integer pgms
 SPECSFS (NFS file server) and SPECWeb (WebServer) added as server 

benchmarks
 Transaction Processing Council measures server performance and cost-

performance for databases
 TPC-C Complex query for Online Transaction Processing
 TPC-H models ad hoc decision support
 TPC-W  a transactional web benchmark
 TPC-App application server and web services benchmark
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Relative Performance Metrics

 Given two design options (X and Y)
 Execution Time:

 TX ≡ Execution time of a workload run on option X
 TY ≡ Execution time of a workload run on option Y

 Performance:
 Perfx ≡ 1/ TX

 PerfY ≡ 1/ TY

 Speedup of X over Y  (Sx/y):

X

Y

Y

X
YX T

T
Perf
PerfS =≡/
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Relative Performance Metrics

 Percent Improvement in Performance
 “X is n% faster than Y”  means:





 Example: 
 Y takes 15 seconds to complete a task, 
 X takes 10 seconds to complete the same task.
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Revisiting Amdahl’s Law

 Amdahl’s Law States:



 Plugging into the definition of Speedup yields:



 Note: If FE = 1.0, Then:
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Revisiting Amdahl’s Law

 Example: An enhancement (E) improves the speed of Floating 
Point (FLP) instructions by a factor of 2.
 SE = 2



 Where:  FE = the fraction of FLP instructions in Program

 e.g. General Pgm:   If FE = 0.1,  Then SE/0 = 

 e.g. Scientific Pgm:  If FE = 0.9, Then SE/0 =
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Execution Time

 Execution Time for a CPU

 T(N)

 N

 CPI

 τ = 1 / f (clock period = 1 / frequency)

 T(N) = 

CPU time =  Seconds    =        Instructions  x      Cycles     x    Seconds
Program Program            Instruction        Cycle
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Cycles Per Instruction

 Calculating CPI:
 Fk ≡ Fraction of instructions of type k,  k ∈ {1…m}

 CPIk ≡ CPI for instruction type k

 CPI ≡ Mean CPI for entire program

 Conclusion: Invest Resources where time is Spent!
 Focus on instruction types for which (Fk x CPIk) is largest

k

m

k
k CPIFCPI ×=∑

=1
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 Typical Instruction Mix

 Type (k) Fk CPIk Fk*CPIk     (% Time)

ALU 50% 1 .5 (33%)

Load 20% 2 .4 (27%)

Store 10% 2 .2 (13%)

Branch 20% 2 .4 (27%)

 CPI = 1.5

Example: Calculating CPI
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Example
 Suppose we have the following measurements:

 Frequency of FP operations: 25 %
 Average CPI of FP operations: 4.0
 Average CPI of other instructions: 1.33
 Frequency of FPSRQ: 2 %
 CPI of FPSQR: 20

 Assume two design alternatives: Decrease the CPI of FPSQR to 2, or decrease the 
average CPI of all FP operations to 2.5. Use processor performance equation to 
calculate.
 Observe that the clock speed and instruction count remain identical.
 Find original CPI first:

 CPI = 4 x 0.25 + 1.33 x 0.75  = 2.0
 CPI new sqrt = CPi original – 0.02 x (CPI old FPSQRT – CPI of new FPSQRT)

 = 2.0 – 0.02 * (20 -2) = 1.64
 CPI new FP = (0.75 x 1.33) + (0.25 x 2.5) = 1.62
 Speed-up = CPI original / CPI new FP

 =  2.0 / 1.62  = 1.23 = 1.23
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Throughput

 Execution Time is relative
 Depends on number of operations executed
 Interested how much work was done in that time

 W(N) = Mean operations executed per unit time



 Typical Units
 MIPS = Millions of Instructions per Secon
 MFLOPS = Millions of Floating Point Ops per Second

 Both MIPS & MFLOPS need time measured in µsec

)(
)(

NT
NNW ≡
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Throughput

 Marketing Hype vs. Actual Performance:

 MIPS:

 Machines with different instruction sets ?

 Programs with different instruction mixes ? 
 Dynamic frequency of instructions

 Uncorrelated with performance

 MFLOPs:

 Machine dependent

 Often not where time is spent
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Programs to Evaluate Processor Performance

 Toy Benchmarks

 10-100 line program

 e.g.: sieve, puzzle, quicksort

 Synthetic Benchmarks

 Attempt to match average frequencies of real workloads

 e.g., Whetstone, dhrystone

 Kernels

 Time critical excerpts from Real programs

 e.g., gcc, spice
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Common Benchmarking Mistakes

 Only average behavior represented in test workload

 Skewness of device demands ignored

 Loading level controlled inappropriately

 Caching effects ignored

 Buffer sizes not appropriate

 Inaccuracies due to sampling ignored
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Common Benchmarking Mistakes

 Ignoring monitoring overhead

 Not validating measurements

 Not ensuring same initial conditions

 Not measuring transient (cold start) performance

 Using device utilizations for performance comparisons

 Collecting too much data but doing too little analysis
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Revisiting SPEC: System Perf. Evaluation Cooperative

 First Round 1989
 10 programs yielding a single number

 Second Round 1992
 SpecInt92 (6 integer programs) and 
 SpecFP92 (14 floating point programs)

 Compiler Flags unlimited. 

 Third Round 1995
 Single flag setting for all programs; 
 new set of programs 
 “benchmarks useful for 3 years”
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SPEC First Round
 One program: 99% of time in single line of code
 New front-end compiler could improve dramatically
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How to Summarize Performance

 Arithmetic mean (weighted arithmetic mean) 

 tracks execution time: 

 Harmonic mean (weighted harmonic mean) of rates 

 Normalized execution time 

 Relative to some baseline system

 Handy for scaling performance.



10/5/2020 29

Summary

 Relative Performance Metrics

 Speedup: 

 Percent Improvement:

 Amdahl’s Law

 Limited impact of

enhancements 
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Summary

 Absolute Performance Metrics

 Exec time:

 CPI:

 Throughput

 Could be any granularity

 If measured in Instructions:
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