
10/5/2020 1

Measurement

Dr. Soner Onder
CS 4431

Michigan Technological University

Lecture - 4

10/5/2020 2

Acknowledgements

 David Patterson
 Dr. Roger Kieckhafer

10/5/2020 3

Computer Architecture is Design and Analysis

Design

Analysis

Architecture is an iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Creativity

Good Ideas

Mediocre IdeasBad Ideas

Cost /
Performance
Analysis

10/5/2020 4

What Computer Architecture brings to Table
 Other fields often borrow ideas from architecture
 Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

 Careful, quantitative comparisons
 Define, quantity, and summarize relative performance
 Define and quantity relative cost
 Define and quantity dependability
 Define and quantity power

 Culture of anticipating and exploiting advances in technology
 Culture of well-defined interfaces that are carefully implemented

and thoroughly checked

10/5/2020 5

1) Taking Advantage of Parallelism

 Increasing throughput of server computer via multiple processors or
multiple disks

 Detailed HW design
 Carry lookahead adders uses parallelism to speed up computing sums from

linear to logarithmic in number of bits per operand
 Multiple memory banks searched in parallel in set-associative caches

 Pipelining: overlap instruction execution to reduce the total time to
complete an instruction sequence.
 Not every instruction depends on immediate predecessor ⇒ executing

instructions completely/partially in parallel possible
 Classic 5-stage pipeline:

1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

10/5/2020 6

2) The Principle of Locality
 The Principle of Locality:

 Program access a relatively small portion of the address space at
any instant of time.

 Two Different Types of Locality:
 Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
 Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

 Last 30 years, HW relied on locality for memory perf.

P MEM$

10/5/2020 7

3) Focus on the Common Case
 Common sense guides computer design

 Since its engineering, common sense is valuable
 In making a design trade-off, favor the frequent case over

the infrequent case
 E.g., Instruction fetch and decode unit used more frequently

than multiplier, so optimize it 1st
 E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize it
1st

 Frequent case is often simpler and can be done faster than
the infrequent case
 E.g., overflow is rare when adding 2 numbers, so improve

performance by optimizing more common case of no overflow
 May slow down overflow, but overall performance improved by

optimizing for the normal case
 What is frequent case and how much performance

improved by making case faster => Amdahl’s Law

10/5/2020 8

4) Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction Fraction

1
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1 Speedup =

() 







+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime ExTime 1

10/5/2020 9

Amdahl’s Law example

 New CPU 10X faster
 I/O bound server, so 60% time waiting for I/O

()

()
56.1

64.0
1

10
0.4 0.4 1

1

Speedup
Fraction Fraction 1

1 Speedup

enhanced

enhanced
enhanced

overall

==
+−

=

+−
=

 Apparently, its human nature to be attracted by 10X faster,
vs. keeping in perspective its just 1.6X faster

10/5/2020 10

5) Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate

Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

10/5/2020 11

Performance(X) Execution_time(Y)
n = =

Performance(Y) Execution_time(X)

Definition: Performance

 Performance is in units of things per sec
 bigger is better

 If we are primarily concerned with response time

performance(x) = 1
execution_time(x)

" X is n times faster than Y" means

10/5/2020 12

Performance: What to measure

 Usually rely on benchmarks vs. real workloads
 To increase predictability, collections of benchmark applications, called

benchmark suites, are popular
 SPECCPU: popular desktop benchmark suite

 CPU only, split between integer and floating point programs
 SPECint2000 has 12 integer, SPECfp2000 has 14 integer pgms
 SPECSFS (NFS file server) and SPECWeb (WebServer) added as server

benchmarks
 Transaction Processing Council measures server performance and cost-

performance for databases
 TPC-C Complex query for Online Transaction Processing
 TPC-H models ad hoc decision support
 TPC-W a transactional web benchmark
 TPC-App application server and web services benchmark

10/5/2020 13

Relative Performance Metrics

 Given two design options (X and Y)
 Execution Time:

 TX ≡ Execution time of a workload run on option X
 TY ≡ Execution time of a workload run on option Y

 Performance:
 Perfx ≡ 1/ TX

 PerfY ≡ 1/ TY

 Speedup of X over Y (Sx/y):

X

Y

Y

X
YX T

T
Perf
PerfS =≡/

10/5/2020 14

Relative Performance Metrics

 Percent Improvement in Performance
 “X is n% faster than Y” means:





 Example:
 Y takes 15 seconds to complete a task,
 X takes 10 seconds to complete the same task.

[]1100

100100

/ −=









−=







 −
≡

YX

Y

Y

Y

X

Y

YX

Sn

Perf
Perf

Perf
Perf

Perf
PerfPerfn

10/5/2020 15

Revisiting Amdahl’s Law

 Amdahl’s Law States:



 Plugging into the definition of Speedup yields:



 Note: If FE = 1.0, Then:



() () 















+−=








+−=

E

E
E

E

E
EE S

FFT
S
FTFTT 11 0

0
0

() 







+−

==

E

E
E

E
E

S
FF

T
TS

1

10
0/

EE
E

E SS
S
TT =⇒








= 0/

0

10/5/2020 16

Revisiting Amdahl’s Law

 Example: An enhancement (E) improves the speed of Floating
Point (FLP) instructions by a factor of 2.
 SE = 2



 Where: FE = the fraction of FLP instructions in Program

 e.g. General Pgm: If FE = 0.1, Then SE/0 =

 e.g. Scientific Pgm: If FE = 0.9, Then SE/0 =

() 





+−

=

2
1

1
0/

E
E

E FF
S

10/5/2020 17

Execution Time

 Execution Time for a CPU

 T(N)

 N

 CPI

 τ = 1 / f (clock period = 1 / frequency)

 T(N) =

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

10/5/2020 18

Cycles Per Instruction

 Calculating CPI:
 Fk ≡ Fraction of instructions of type k, k ∈ {1…m}

 CPIk ≡ CPI for instruction type k

 CPI ≡ Mean CPI for entire program

 Conclusion: Invest Resources where time is Spent!
 Focus on instruction types for which (Fk x CPIk) is largest

k

m

k
k CPIFCPI ×=∑

=1

10/5/2020 19

 Typical Instruction Mix

 Type (k) Fk CPIk Fk*CPIk (% Time)

ALU 50% 1 .5 (33%)

Load 20% 2 .4 (27%)

Store 10% 2 .2 (13%)

Branch 20% 2 .4 (27%)

 CPI = 1.5

Example: Calculating CPI

10/5/2020 20

Example
 Suppose we have the following measurements:

 Frequency of FP operations: 25 %
 Average CPI of FP operations: 4.0
 Average CPI of other instructions: 1.33
 Frequency of FPSRQ: 2 %
 CPI of FPSQR: 20

 Assume two design alternatives: Decrease the CPI of FPSQR to 2, or decrease the
average CPI of all FP operations to 2.5. Use processor performance equation to
calculate.
 Observe that the clock speed and instruction count remain identical.
 Find original CPI first:

 CPI = 4 x 0.25 + 1.33 x 0.75 = 2.0
 CPI new sqrt = CPi original – 0.02 x (CPI old FPSQRT – CPI of new FPSQRT)

 = 2.0 – 0.02 * (20 -2) = 1.64
 CPI new FP = (0.75 x 1.33) + (0.25 x 2.5) = 1.62
 Speed-up = CPI original / CPI new FP

 = 2.0 / 1.62 = 1.23 = 1.23

10/5/2020 21

Throughput

 Execution Time is relative
 Depends on number of operations executed
 Interested how much work was done in that time

 W(N) = Mean operations executed per unit time



 Typical Units
 MIPS = Millions of Instructions per Secon
 MFLOPS = Millions of Floating Point Ops per Second

 Both MIPS & MFLOPS need time measured in µsec

)(
)(

NT
NNW ≡

10/5/2020 22

Throughput

 Marketing Hype vs. Actual Performance:

 MIPS:

 Machines with different instruction sets ?

 Programs with different instruction mixes ?
 Dynamic frequency of instructions

 Uncorrelated with performance

 MFLOPs:

 Machine dependent

 Often not where time is spent

10/5/2020 23

Programs to Evaluate Processor Performance

 Toy Benchmarks

 10-100 line program

 e.g.: sieve, puzzle, quicksort

 Synthetic Benchmarks

 Attempt to match average frequencies of real workloads

 e.g., Whetstone, dhrystone

 Kernels

 Time critical excerpts from Real programs

 e.g., gcc, spice

10/5/2020 24

Common Benchmarking Mistakes

 Only average behavior represented in test workload

 Skewness of device demands ignored

 Loading level controlled inappropriately

 Caching effects ignored

 Buffer sizes not appropriate

 Inaccuracies due to sampling ignored

10/5/2020 25

Common Benchmarking Mistakes

 Ignoring monitoring overhead

 Not validating measurements

 Not ensuring same initial conditions

 Not measuring transient (cold start) performance

 Using device utilizations for performance comparisons

 Collecting too much data but doing too little analysis

10/5/2020 26

Revisiting SPEC: System Perf. Evaluation Cooperative

 First Round 1989
 10 programs yielding a single number

 Second Round 1992
 SpecInt92 (6 integer programs) and
 SpecFP92 (14 floating point programs)

 Compiler Flags unlimited.

 Third Round 1995
 Single flag setting for all programs;
 new set of programs
 “benchmarks useful for 3 years”

10/5/2020 27

SPEC First Round
 One program: 99% of time in single line of code
 New front-end compiler could improve dramatically

10/5/2020 28

How to Summarize Performance

 Arithmetic mean (weighted arithmetic mean)

 tracks execution time:

 Harmonic mean (weighted harmonic mean) of rates

 Normalized execution time

 Relative to some baseline system

 Handy for scaling performance.

10/5/2020 29

Summary

 Relative Performance Metrics

 Speedup:

 Percent Improvement:

 Amdahl’s Law

 Limited impact of

enhancements

X

Y

Y

X
YX T

T
Perf
PerfS =≡/

[]1100 / −= YXSn

() 







+−

==

E

E
E

E
E

S
FF

T
TS

1

10
0/

() 















+−=

E

E
EE S

FFTT 10

10/5/2020 30

Summary

 Absolute Performance Metrics

 Exec time:

 CPI:

 Throughput

 Could be any granularity

 If measured in Instructions:

k

m

k
k CPIFCPI ×=∑

=1

τ××= CPINNT)(

)(
)(

NT
NNW ≡

CPI
f

CPI
NW =

×
=

τ
1)(

10/5/2020 31

	Measurement
	Acknowledgements
	Computer Architecture is Design and Analysis
	What Computer Architecture brings to Table
	1) Taking Advantage of Parallelism
	2) The Principle of Locality
	3) Focus on the Common Case
	4) Amdahl’s Law
	Amdahl’s Law example
	5) Processor performance equation
	Definition: Performance
	Performance: What to measure
	Relative Performance Metrics
	Relative Performance Metrics
	Revisiting Amdahl’s Law
	Revisiting Amdahl’s Law
	Execution Time
	Cycles Per Instruction
	Example: Calculating CPI
	Example
	Throughput
	Throughput
	Programs to Evaluate Processor Performance
	Common Benchmarking Mistakes
	Common Benchmarking Mistakes
	Revisiting SPEC: System Perf. Evaluation Cooperative
	SPEC First Round
	How to Summarize Performance
	Summary
	Summary
	Slide Number 31

