
9/30/2020 1

Dynamic Branch Prediction
and

High Performance Instruction Delivery

Dr. Soner Onder
CS 4431

Michigan Technological University

Lecture - 4

9/30/2020 2

Dynamic Branch Prediction

 Why does prediction work?

 Underlying algorithm has regularities
 Data that is being operated on has regularities
 Instruction sequence has redundancies that are artifacts of way that

humans/compilers think about problems
 There are a small number of important branches in programs which have

dynamic behavior

 To reorder code around branches, need to predict branch statically
when compiling.

 Simplest scheme is to predict a branch as taken
 Average misprediction = untaken branch frequency = 34% SPEC

12%

22%

18%

11% 12%

4%
6%

9% 10%

15%

0%

5%

10%

15%

20%

25%

co
mpre

ss
eq

nto
tt

es
pre

ss
o gc

c li

do
du

c ea
r

hy
dro

2d

mdlj
dp

su
2c

or

M
is

pr
ed

ic
tio

n
R

at
e

9/30/2020 3

Static Branch Prediction

• More accurate
scheme predicts
branches using
profile information
collected from
earlier runs, and
modify prediction
based on last run:

Integer Floating Point

Chart1

		compress

		eqntott

		espresso

		gcc

		li

		doduc

		ear

		hydro2d

		mdljdp

		su2cor

Misprediction Rate

0.12

0.22

0.18

0.11

0.12

0.04

0.06

0.09

0.1

0.15

Sheet1

		Benchmark

		compress		12%

		eqntott		22%

		espresso		18%

		gcc		11%

		li		12%

		doduc		4%

		ear		6%

		hydro2d		9%

		mdljdp		10%

		su2cor		15%

Sheet1

		

Misprediction Rate

Sheet2

		

Sheet3

		

9/30/2020 4

Dynamic Branch Prediction

 Performance = ƒ(accuracy, cost of misprediction)
 Branch History Table: Lower bits of PC address index table of 1-bit

values
 Says whether or not branch taken last time
 No address check

9/30/2020 5

A Simple Branch Predictor

•Accessed early in the pipeline using the branch instruction PC
•Updated using the actual outcome.

Branch PC

0 Prediction

0 Not taken
1 Taken

Actual outcome

9/30/2020 6

A Simple Branch Predictor

 What happens when we see the sequence of branches :

 T N T N T N T N T N

 (T T T T T T T T T N) *

 N N N T N N N T

 What is the branch misprediction rate for each of the cases
assuming the predictor is initialized to zero?

9/30/2020 7

Dynamic Branch Prediction

 Problem: in a loop, 1-bit BHT will cause two mispredictions (avg is 9
iterations before exit):
 End of loop case, when it exits instead of looping as before
 First time through loop on next time through code, when it predicts exit

instead of looping

9/30/2020 8

Two bit branch prediction

Branch PC

10 Values

00 Not taken
01 Not taken
10 Taken
11 Taken

Branch history table
Branch prediction buffer

9/30/2020 9

Two-bit predictor state diagram

9/30/2020 10

Two-bit predictor

 A branch must miss twice before the prediction is changed.
 It is a specialization of an n-bit saturating counter scheme.

State N-T T
00 00 01

01 00 11

10 00 11

11 10 11

Next state

9/30/2020 11

N-Bit saturating counter

• 0 - 2n-1 possible values:
•0000
•0001
•0010
•0011
•0100
•0101
•0110
•0111
•1000
•1001
•1010
•1011
•1100
•1101
•1110
•1111

PREDICT Not Taken

PREDICT Taken

•Increment upon
taken

•Decrement upon
not taken

9/30/2020 12

BHT Accuracy

 Mispredict because either:
 Wrong guess for that branch
 Got branch history of wrong branch when indexing the table

 4096 entry table:

18%

5%

12%
10% 9%

5%

9% 9%

0% 1%
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

eq
nto

tt

es
pre

ss
o gc

c li
sp

ice
do

du
c

sp
ice

fpp
pp

matr
ix3

00
na

sa
7

M
is

pr
ed

ic
tio

n
R

at
e

Integer Floating Point

Chart3

		eqntott

		espresso

		gcc

		li

		spice

		doduc

		spice

		fpppp

		matrix300

		nasa7

Misprediction Rate

0.18

0.05

0.12

0.1

0.09

0.05

0.09

0.09

0

0.01

Sheet1

		Benchmark

		compress		12%

		eqntott		22%

		espresso		18%

		gcc		11%

		li		12%

		doduc		4%

		ear		6%

		hydro2d		9%

		mdljdp		10%

		su2cor		15%

Sheet1

		

Misprediction Rate

Sheet2

		eqntott		18%

		espresso		5%

		gcc		12%

		li		10%

		spice		9%

		doduc		5%

		spice		9%

		fpppp		9%

		matrix300		0%

		nasa7		1%

		eqntott		18%

		espresso		5%

		gcc		12%

		li		10%

		spice		9%

		doduc		5%

		spice		9%

		fpppp		9%

		matrix300		0%

		nasa7		1%

Sheet2

		

Misprediction Rate

Sheet3

		

9/30/2020 13

Spec89 Prediction Accuracy, infinite buffer

9/30/2020 14

Correlating (Two-Level) Branch Predictors

 Consider the sequence:
 if (aa == 2) aa=0;
 if (bb == 2) bb=0;
 if (aa != bb) {}

 MIPS Assembly:
aa is in $1, bb is in $2
subi $3,$1,#2
bnez $3,L1 ; aa!=2
add $1,$0,$0

 L1:
subi $3,$2,#2
bnez $3,L2 ; bb != 2
add $2,$0,$0

 L2:
subi $3,$1,$2
beqz $3,L3 ; aa==bb

What can you say about the
behavior of the last branch
with respect to the prior
two branches?

9/30/2020 15

Correlating Branch Predictors

How can we capture the behavior of last n branches and adjust
the prediction of the current branch accordingly?

Answer:
Use an n bit shift register, and shift the behavior of each

branch to this register as they become known.

0 1 1 Last branch outcome
0/1

How many possible values will our shift register have?
Imagine there are many tables and select the table you want
to use based on the value of the shift register.

9/30/2020 16

Correlated Branch Prediction

 Idea: record m most recently executed branches as taken or not
taken, and use that pattern to select the proper n-bit branch history
table

 In general, (m,n) predictor means record last m branches to select
between 2m history tables, each with n-bit counters
 Thus, old 2-bit BHT is a (0,2) predictor

 Global Branch History: m-bit shift register keeping T/NT status of
last m branches.

 Each entry in table has m n-bit predictors.

9/30/2020 17

Correlating Branches

(2,2) predictor
–Behavior of recent branches selects

between four predictions of next
branch, updating just that
prediction

2 Bits of global history means we
look at T/NT behavior of last
two branches to predict THIS
branch.

The buffer can be implemented as
a one dimensional array. How?

(m,n) predictor uses behavior of
last m branches to choose from 2m
predictors each being an n-bit
predictor.

Prediction

Branch address

2-bits per branch predictor

2-bit global branch history

4

9/30/2020 18

Correlating Branch Predictors

(m,n) predictor uses behavior of last m branches to choose from
2m predictor each being an n-bit predictor. How many bits are there
in a (0,2) branch predictor that has 4K entries selected by the
branch address?

20x2x4K = 8K.

How many bits does the example predictor have?

22x2x16=128 bits

9/30/2020 19

Correlating predictor performance

What can you say about the
performance of a (2,2) branch
predictor?

Why is this the case?

Which benchmarks show this
behavior? Why?

9/30/2020 20

Gshare Correlating predictor

Branch PC

10

Branch history table

XOR

Global history

0 1 0 1 01

What is happening
here?

9/30/2020 21

Gshare Correlating predictor

Quick Homework:

Show the working of a gshare predictor that uses two
bits of global history, and having 16 entries.

For this, enumerate the possible PC values (i.e., the portion of
the PC that is used to index the table) and the global history
values. Record the number of times each table entry is
referenced. If you like, you may write a small C program for this
purpose.

Are there collisions?

Is this harmful?

9/30/2020 22

Hybrid predictors

 The basic idea is to use a META predictor to select among multiple
predictors.

 Example:
 Local predictors are better in some branches.
 Global predictors are better in utilizing correlation.
 Use a predictor to select the better predictor.

9/30/2020 23

Tournament Predictors

n/m means :
n left predictor
m right predictor

0: Incorrect
1: Correct

A predictor must be
twice incorrect
before we switch to
the other one.

9/30/2020 24

Tournament Predictors

 Tournament predictor using, say, 4K 2-bit counters indexed by local
branch address. Chooses between:

 Global predictor
 4K entries index by history of last 12 branches (212 = 4K)
 Each entry is a standard 2-bit predictor

 Local predictor
 Local history table: 1024 10-bit entries recording last 10 branches, index

by branch address
 The pattern of the last 10 occurrences of that particular branch used to

index table of 1K entries with 3-bit saturating counters

9/30/2020 25

Alpha 21264 Branch Prediction Mechanism

Source: Microprocessor Report, 10/28/96

9/30/2020 26

Fraction of predictions coming from the local predictor

The Tournament
predictor selects
between a local 2-
bit predictor and
a 2-bit Gshare
predictor.

Each predictor
has 1024 entries
each 2 bits for a
total of 64 K bits.

9/30/2020 27

Misprediction rates

9/30/2020 28

Pentium 4 Misprediction Rate (per 1000 instructions)

11

13

7

12

9

1
0 0 0

5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cra
fty

16
8.

wup
wise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
plu

17
7.

m
es

a

B
ra

n
ch

 m
is

p
re

d
ic

ti
on

s
p

er
 1

0
0

0
 I

n
st

ru
ct

io
n

s

SPECint2000 SPECfp2000

≈6% misprediction rate per branch SPECint
(19% of INT instructions are branch)

≈2% misprediction rate per branch SPECfp
(5% of FP instructions are branch)

9/30/2020 29

Dynamic Branch Prediction Summary

 Prediction becoming important part of execution
 Branch History Table: 2 bits for loop accuracy
 Correlation: Recently executed branches correlated with next branch

 Either different branches (GA)
 Or different executions of the same branch (PA)

 Tournament predictors take insight to next level, by using multiple
predictors
 usually one based on global information and one based on local

information, and combining them with a selector
 In 2006, tournament predictors using ≈ 30K bits are in processors like

the Power5 and Pentium 4
 Branch Target Buffer: include branch address & prediction, discuss

next

9/30/2020 30

Branch Target Buffers

 We need to know the branch target address as well as the direction
of the branch.

 We need to supply the branch target before decoding the current
instruction!

 Don’t worry there is a simple way to achieve this. It is called a BTB.

9/30/2020 31

Branch Target Buffers

number of
entries in the
btb

PC

=

hit/miss
target address

branch type

9/30/2020 32

Basic fetch unit using a branch predictor and a btb

pc

Branch

Predictor

Branch

Target

Buffer

t/nt

Hit/miss

4

+

0

1

next-pc

If the BTB hits and the predictor predicts
taken, then target address coming off the
BTB is used as the next-pc. Otherwise,
current pc+4 will become the next-pc.

pc +4

branch target
RTL:

pc4 = pc + 4
taken = bp[pc]
target = btb[pc].target
hit = btb[pc].hit
next_pc = if hit & taken then target else pc4

9/30/2020 33

Return Address Predictors

Procedure foo()
{
Important stuff
return; {It really is jr $31}
}

for i=1; i < 100000; i++)
{
foo();

}

What can you say about the
prediction accuracy of BTB for
the jr instructions?

9/30/2020 34

Return Address Predictors

Procedure foo()
{
Important stuff
return; {It really is jr $31}
}

for i=1; i < 50000; i++)
{
foo();
foo();

}

What can you say about the
prediction accuracy of BTB for
the jr instructions?

9/30/2020 35

Return Address Predictors

Use a stack:
call (I.e. jal to a subroutine) push the return address onto the stack.
return (I.e. jr $31) pop the address from the stack.

Discard the bottom entry if overflow.

What can you say about the prediction accuracy of BTB for the
jr instructions if we have an infinite stack depth?

How about a limited stack depth?

9/30/2020 36

Return Address Predictors

9/30/2020 37

 Avoid branch prediction by turning branches into
conditionally executed instructions:

 if (x) then A = B op C else NOP
 If false, then neither store result nor cause

exception
 Expanded ISA of Alpha, MIPS, PowerPC, SPARC

have conditional move; PA-RISC can annul any
following instr.

 IA-64: 64 1-bit condition fields selected so
conditional execution of any instruction

Instruction predication

x

A = B op C

9/30/2020 38

Conditional Move Instructions

Example

if x < y then
a=a + 1

else
a=a * 2

Code Sequence
lw r11,x
lw r12,y
slt r3,r11,r12

lw r7,a
addi r8,1
sll r9,r7,1
cmov r9,r8,r3
sw r9,a

9/30/2020 39

Full predication

p = x < y;
p: a = a + 1;
!p: a = a * 2;

Example

if x < y then
a=a + 1

else
a=a * 2

Code sequence:

lw T: r11,x
lw T: r12,y
slt T: r3,r11,r12
lw T : r7,a
addi r3: r8,r7,1
sll r3: r8,r7,1
sw T : r9,a

9/30/2020 40

 Drawbacks to conditional instructions
 Still takes a clock even if “annulled”
 Stall if condition evaluated late
 Complex conditions reduce effectiveness;

condition becomes known late in pipeline

Instruction predication

9/30/2020 41

Dynamic Branch Prediction Summary

 Branch History Table: 2 bits for loop accuracy
 Correlation: Recently executed branches correlated with next branch
 Branch Target Buffer: include branch address & prediction
 Return address predictor: Works well for most procedure calls.
 Predicated Execution can reduce number of branches as well as

number of mispredicted branches.

9/30/2020 42

Spring in Calumet

	�Dynamic Branch Prediction�and�High Performance Instruction Delivery
	Dynamic Branch Prediction
	Static Branch Prediction
	Dynamic Branch Prediction
	A Simple Branch Predictor
	A Simple Branch Predictor
	Dynamic Branch Prediction
	Two bit branch prediction
	Two-bit predictor state diagram
	Two-bit predictor
	N-Bit saturating counter
	BHT Accuracy
	Spec89 Prediction Accuracy, infinite buffer
	Correlating (Two-Level) Branch Predictors
	Correlating Branch Predictors
	Correlated Branch Prediction
	Correlating Branches
	Correlating Branch Predictors
	Correlating predictor performance
	Gshare Correlating predictor
	Gshare Correlating predictor
	Hybrid predictors
	Tournament Predictors
	Tournament Predictors
	Alpha 21264 Branch Prediction Mechanism
	Fraction of predictions coming from the local predictor
	Misprediction rates
	Pentium 4 Misprediction Rate (per 1000 instructions)
	Dynamic Branch Prediction Summary
	Branch Target Buffers
	Branch Target Buffers
	Basic fetch unit using a branch predictor and a btb
	Return Address Predictors
	Return Address Predictors
	Return Address Predictors
	Return Address Predictors
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Dynamic Branch Prediction Summary
	Slide Number 42

