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A "Typical" RISC ISA

32-bit fixed format instruction (3 formats)
32 32-bit GPR (RO contains zero, DP take pair)
3-address, reg-reg arithmetic instruction

Single address mode for load/store:
base + displacement
2 no indirection

Simple branch conditions

Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, €DC 7600, Cray-1, Cray-2, Cray-3
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Example: MIPS ( MIPS)

Register-Register

31 26 25 2120 16 15 1110 6 5
op | Rst | Rz [ Rd ] Onx
Register-Immediate
31 26 25 2120 16 15
Op | Rst | Rd | _ immediate
Branch
31 26 25 2120 16 15
op | Rst Rs2/op]  immediate
Jump / Call
31 26 25

Op I target
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Datapath vs Control

Datapath Controller

signals -~

Control Points

= Datapath: Storage, FU, interconnect sufficient to perform the desired
functions

o Inputs are Control Points
o Outputs are signals

= Controller: State machine to orchestrate operation on the data path
o Based on desired function and signals
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Approaching an ISA

Instruction Set Architecture

o Defines set of operations, instruction format, hardware supported data types,
named storage, addressing modes, sequencing

Meaning of each instruction is described by RTL on architected registers
and memory

Given technology constraints assemble adequate datapath
o Architected storage mapped to actual storage
o Function units to do all the required operations
o Possible additional storage (eg. MAR, MBR, ...)
o Interconnect to move information among regs and FUs

Map each instruction to sequence of RTLs

Collate sequences into symbolic controller state transition diagram
(STD)

Lower symbolic STD to control points
Implement controller
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Pipelining: Its Naturall

Laundry Example

Ann, Brian, Cathy, Dave

each have one load of clothes @5@
to wash, dry, and fold

Washer takes 30 minutes =

Dryer takes 40 minutes =
(D
“Folder” takes 20 minutes .

i
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x 0 0 —

S0 Q=0

Sequential Laundry

6 PM 7 8 9 10 1 Midnight

I [
»

30 40 20

& =

Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?
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S0 Q>0

Pipelined Laundry
Start work ASAP

6 PM 7 8 9 10
I

11

Midnight

[
»

| Time

5555
GEENIC

5 Hﬂ"l?
& b

20

40

P

= Pipelined laundry takes 3.5 hours for 4 loads
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Pipelining Lessons
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Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

Pipeline rate limited by slowest
pipeline stage

Multiple tasks operating
simultaneously

Potential speedup = Number
pipe stages

Unbalanced lengths of pipe
stages reduces speedup

Time to “fillI” pipeline and time
to “drain” it reduces speedup



5 Steps of MIPS Datapath

Figure A.2, Page A-8

Instruction i Instr. Decode i Execute Memory Write
Fetch ! Reg. Fetch { Addr. Calc : Access : Back
Next PC i : > :
> Next SEQ PC
9 :

E ﬁ Zero?

IR <= mem[PC];

PC <= PC + 4

: WB Data
Reg[IR, ] <= Reg[IR,.] OP1Rrbp Reg[IR,,]
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5 Steps of MIPS Datapath

Figure A.3, Page A-9

Instruction Instr. Decode
Fetch : Reg. Fetch

Execute

Addr. Calc

Next PC

IR <= mem[PC];

Next SEQ PC

PC <= PC + 4

Imm

Next SEQ PC

A <= Reg[IR,.];
B <= Reg[IR,.]

rslt <= A Opip,, B

Write
Back

WB <= rslt

Reg[IR_ 4 ] <= WB

9/28/2020
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‘ Inst. Set Processor Controller

IR <= mem[PC] ;
Ifetch
PC <= PC + 4
A 4
JSR A <= Reg[IR]; opFetch-DCD
JR B <= Reg[IR,,] ST
jmp
o —— Rr. RI LD
if bop(a,Db) PC <= IRj.qar r <= A Oprp, B r <= A OP1pop IRip r <= A+ IRy,
PC <= PC+IR; l l
A 4
WB <= r WB <= r WB <= Mem|[r]
\ 4 A\ 4 l
Reg[IR,4] <= WB Reg[IR,4] <= WB Reg[IR,4] <= WB
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‘5 Steps of MIPS Datapath

Figure A.3, Page A-9

Instruction _Ins'rr'. Decode Execute Memory

Fetch i Reg. Fetch : Addr. Calc i  Access
Next PC '
Next SEQ PC ext SEQ PC.

n
+

Write
Back

* Data stationary control
- local decode for each instruction phase / pipeline stage

13
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Visualizing Pipelining
Figure A.2, Page A-8

Time ( clock cycles)

Cycle 1: Cycle 2: Cycle 3 Cycle 4 Cycle 5 Cycle 6: Cycle 7

Ifetch

Reg

f=te

Ifetch

Reg

Reg

hafe

Ifetch I Reg

Ifetch

Reg

Reg
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Pipelining is not quite that easy!

Limits to pipelining: Hazards prevent next instruction from
executing during its designated clock cycle

o Structural hazards: HW cannot support this combination of
instructions (single person to fold and put clothes away)

o Data hazards: Instruction depends on result of prior instruction still
in the pipeline (missing sock)
o Control hazards: Caused by delay between the fetching of

instructions and decisions about changes in control flow (branches
and jumps).
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One Memory Port/Structural Hazards
Figure A.4, Page A-14

Time (clock cycles)

Lo ad Ifetch

Instr 1

Instr 2

Instr 3

Instr 4

Reg

Reg

t

HT!FI

Ifetch

Reg

Ifetch I

'f

Cycle 1 ;Cycle 2 i i Cycle 3 i E Cycle 4E Cycle 5 Cycle 6 Cycle 7

Ifetch

Reg
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One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)

Time (clock cycles)

Cycle 1

I Load Ifetch
n
S
t |[Instr 1
r.
o Instr 2
r
d
€ | stall
r

Instr 3

Cycle 2

Reg

Ifetch

Cycle 3

-»B .

Cycle 4 Cycle 5

Reg

Ifetch

Cycle 6 Cycle 7

Reg

How do you “bubble” the pipe?

{ Bubble
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Bubble

Ifetch

Bubble

v

Reg
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Data Hazard on R1

Figure A.6, Page A-17

Time (clock cycles)

add

sub

and

or

XOor

rl,r2,r3

r4d,rl,xr3

r6,rl,r’7

r8,rl,r9

rl0,rl,rll

IF ID/RF EX

Ifetch

Reg

t

Ifetch

ALV

Reg

Ifetch

MEM

wB

DMem

ALV

Reg
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Dependences and hazards

Dependences are a program property:

o If two instructions are data dependent they cannot execute
simultaneously.

o Existence of control-dependences means serialization.

o Whether a dependence results in a hazard and whether that hazard
actually causes a stall are properties of the pipeline organization.

o Data dependences may occur through registers or memory.
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Dependences and hazards

The presence of the dependence indicates the potential for a
hazard, but the actual hazard and the length of any stall is a
property of the pipeline. A data dependence:

o Indicates that there is a possibility of a hazard.
o Determines the order in which results must be calculated, and

o Sets an upper bound on the amount of parallelism that can be exploited.

9/28/2020 20



Dependencies

Name dependencies

» Output dependence

Data
True dependence

Control

9/28/2020
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Data dependences

Data dependence, true dependence, and true data dependence are
terms used to mean the same thing :

An instruction j is data dependent on instruction i if either of the
following holds:

o instruction i produces a result that may be used by instruction j, or

o instruction j is data dependent on instruction k, and instruction k is data
dependent on instruction .

Chains of dependent instructions.
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Name dependences

Output dependence :

o When instruction | and j write the same register or memory location. The
ordering must be preserved to leave the correct value in the register:

add r7,r4,r3
div r7,r2,r8

Antidependence :

o When instruction j writes a register or memory location that instruction i
reads :
i add r6,r5,r4
j: sub r5,r8,r11
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Data Dependences through registers/memory

Dependences through registers are easy :
o Iwr10,10(r11)

o addr12,r10,r8

o just compare register names.

Dependences through memory are harder :

o swr10,4 (r2)

o lwr6,0(r4)

0 isr2+4 =r4+0 ? If so they are dependent, if not, they are not.

9/28/2020
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Control dependences

An instruction j is control dependent on i if the execution of j is
controlled by instruction i.

l:Ifa<b
j: a=a+1; |is control dependenton I.

1. An instruction that is control dependent on a branch cannot be
moved before the branch so that its execution is no longer controlled
by the branch.

2. An instruction that is not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by the
branch.
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Three Generic Data Hazards

= Read After Write (RAW)
Instr, tries to read operand before Instr, writes it

I. add rl,r2,r3
< J: sub rd4,rl,r3

= Caused by a true dependence in the program.

9/28/2020
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Three Generic Data Hazards

Write After Read (WAR)
Instr; writes operand before Instr,reads it

I: sub r4,r1,x3
< J: add rl,r2,r3

K: mul r6,rl,r7

Caused by an “anti-dependence” in the program.

This results from reuse of the name “r1”.

Can’t happen in MIPS 5 stage pipeline because:

o All instructions take 5 stages, and
o Reads are always in stage 2, and
o Writes are always in stage 5

9/28/2020
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Three Generic Data Hazards

Write After Write (WAW)
Instr, writes operand before Instr, writes it.

I.: sub rl,r4,r3
J: add rl,r2,r3
K: mul r6,rl,r7

Caused by an “output dependence” in the program.
This also results from the reuse of name “r1”.

Can’t happen in MIPS 5 stage pipeline because:
o All instructions take 5 stages, and

o Writes are always in stage 5
Will see WAR and WAW in more complicated pipes

9/28/2020
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Forwarding to Avoid Data Hazard

Figure A.7, Page A-19

Time (clock cycles)

add rl,r2,r3rmm

Reg

sub r4,rl,r3

and r6,rl,r7

or r8,rl,r9

xor rl0,rl,rll

-

Ifetch

Ifetch

9/28/2020
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HW Change for Forwarding

Figure A.23, Page A-37

NextPC

xnw

v

sJa4s1bay

XnWw

Immediate

Data
Memory

xXnw

What circuit detects and resolves this hazard?

9/28/2020
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Forwarding to Avoid LW-SW Data Hazard

Figure A.8, Page A-20

Time (clock cycles)

add rl ’ r2 y T 3 |rretcn

Reg

1w r4, 0(xrl)

sw r4,12(rl)

or r8,r6,r9

xor rl0,r9,rll

-

Ifetch I

Ifetch

9/28/2020

Reg

Ifetch

Reg

ALV

Ifetch

Reg

DMem

Reg

DMem

Reg

31




I+ 3N

soas3Q

Data Hazard Even with Forwarding

Figure A.9, Page A-21

Time (clock cycles)

v

lw rl, 0(r2)

sub r4,rl,r6

and r6,rl,r7

or r8,rl,r9

Ifetch

:IZM

Ifetch
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Data Hazard Even with Forwarding

(Similar to Figure A.10, Page A-21)

Time (clock cycles)

v

Iw r1, 0(r2)

Ifetch

Reg

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

How is this detected?

Ifetch

Ifetch
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Software Scheduling to Avoid L.oad Hazards

Try producing fast code for
a=b+c;

d=e-f;

assuming a, b, c, d ,e, and f in memory.

Slow code:
LW
LW
ADD
sSw
LW
LW
SuUB
sSw

Rb,b
Rc,c
Ra,Rb,Rc
a,Ra

Re,e

Rf,f
Rd,Re,Rf
d,Rd

Fast code:

LW
LW
LW
ADD
LW
SW
SUB
SW

Rb,b

Rc,c

Re,e
Ra,Rb,Rc
Rf,f

a,Ra
Rd,Re,Rf
d,Rd

Compiler optimizes for performance. Hardware checks for safety.

9/28/2020
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Control Hazard on Branches

Three Stage Stall

10: beq rl,r3,36

14: and r2,r3,r5

18: or «r6,rl,r7

22: add r8,rl,r9

36: xor rl0,rl,rll

What do you do with the 3 instructions in between?
How do you do it?

Where is the “commit”?

[fetc!

Reg

[fetc

9/28/2020
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Branch Stall Impact

If CPl =1, 30% branch,
Stall 3 cycles => new CPIl = 1.9!
Two part solution:
o Determine branch taken or not sooner, AND
o Compute taken branch address earlier
MIPS branch tests if register =0 or =0

MIPS Solution:
o Move Zero test to ID/RF stage
o Adder to calculate new PC in ID/RF stage
o 1 clock cycle penalty for branch versus 3

9/28/2020
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‘Pipelined MIPS Datapath

Figure A.24, page A-38 _ _
Execute Memory : Werite

Instruction Instr. Decode
Fetch Reg. Fetch : Addr. Calc Access i Back

Next PC

Imm‘

RD

- Interplay of instruction set design and cycle time.
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
o Execute successor instructions in sequence
o “Squash” instructions in pipeline if branch actually taken
o Advantage of late pipeline state update
o 47% MIPS branches not taken on average
o PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
o 53% MIPS branches taken on average

o But haven't calculated branch target address in MIPS
MIPS still incurs 1 cycle branch penalty
Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4:. Delayed Branch
o Define branch to take place AFTER a following instruction

branch instruction
sequential successor;
sequential successor,

........ \

sequential successor, Branch delay of length n

branch target if taken
o 1 slot delay allows proper decision and branch target address in 5

stage pipeline
o MIPS uses this

9/28/2020
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Scheduling Branch Delay Slots (Fig A.14)

A. From before branch

add
$1,$2,83 —
if $2=0 then

B. From branch target

C. From fall through

becomes l

sub $4, $5/ $6<—

add $1,$2,83
if $1=0 then

add $1,$2/$3
if $1=0 then —

1if $2=0 then —
add $1,%$2,%$3

becomes |

sub $4,S$5,8%"

«——

add $1,%2,53
if $1=0 then —

sub $4,$5,$6

becomes l

add $1,$2,S3
if $1=0 then —

sub $4,$5,$6

P

A is the best choice, fills delay slot & reduces instruction count (IC)

In B, the sub instruction may need to be copied, increasing IC
In B and C, must be okay to execute sub when branch fails

9/28/2020
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Delayed Branch

Compiler effectiveness for single branch delay slot:
o Fills about 60% of branch delay slots

o About 80% of instructions executed in branch delay slots useful
in computation

o About 50% (60% x 80%) of slots usefully filled
Delayed Branch downside: As processor go to deeper

pipelines and multiple issue, the branch delay grows and
need more than one delay slot

o Delayed branching has lost popularity compared to more
expensive but more flexible dynamic approaches

o Growth in available transistors has made dynamic approaches
relatively cheaper
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FEvaluating Branch Alternatives

Pipeline depth

Pipeline speedup = [ +Branch frequencyx Branch penalty

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPIl speedup v. speedup v.

scheme penalty unpipelined stall
Stall pipeline 3 1.60 3.1 1.0
Predict taken 1 1.20 4.2 1.33
Predict nottaken 1 1.14 4.4 1.40

Delayed branch 0.5 1.10 4.5 1.45
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Problems with Pipelining

Exception: An unusual event happens to an instruction during
its execution

o Examples: divide by zero, undefined opcode

Interrupt: Hardware signal to switch the processor to a new
instruction stream

o Example: a sound card interrupts when it needs more audio
output samples (an audio “click” happens if it is left waiting)

Problem: It must appear that the exception or interrupt must
appear between 2 instructions (I, and [, ,)

o The effect of all instructions up to and including | is totalling
complete

o No effect of any instruction after |, can take place

The interrupt (exception) handler either aborts program or
restarts at instruction |,
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‘ Precise Exceptions in Static Pipelines

Commit
PuintE

DataE

Inst. _ﬁ
lPC O Mem MPT Decode [ HE| > + M
&
A N N /A
Illegal

Seleft Opcode verflow
Handler PC Address

PG Exceptions

Data Addr
Except

Mema

Kill F Kill D I KH'J'E
Stage Stage Stage

As ynchmnous
Interrupts

E AN EEEEEEEN EEE YN

Key observation: architected state only change in memory and register write stages.

Kill

iteback

Cause

EPC




And In Conclusion: Control and Pipelining

Control VIA State Machines and Microprogramming
Just overlap tasks; easy if tasks are independent
Speed Up < Pipeline Depth; if ideal CPl is 1, then:

Plpel ine depTh CYCIe Timeunpipelined

Speedup =

1 + Pipeline stall CPI Cycle Time,; . jined

Hazards limit performance on computers:

o Structural: need more HW resources
o Data (RAW,WAR,WAW): need forwarding, compiler scheduling
o Control: delayed branch, prediction

Exceptions, Interrupts add complexity

9/28/2020
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Handling multi-cycle operations

How would the pipeline should be changed if
some instructions need more than a single
cycle to complete their execution?

What are the consequences in terms of
hazards?
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EX

Integer unit

EX

FP/integer

multiply
MEM

EX

FP adder

EX

FP/integer
divider

£ 2007 Elsavier, Inc. All righta resarved.

WB
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Integer unit

EX
FR/integer multiply
M1 M2 M3 M4 M5 ME M7
MEM WE
FP adder
Al AZ A3 Ad
FFlinteger divider

...dill

£ 2007 Eleavier, Inc. All rights resarved.
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Speed Up Equation for Pipelining

CPI

vipelined = Ldeal CPT + Average Stall cycles per Inst

Speedup = Ideal CPI x Pipeline depth Cycle Time, ninclined

Ideal CPI + Pipeline stall CPT Cycle Time,; . ined

For simple RISC pipeline, CPT = 1:

Plpelme depTh CYC'C Timeunpipelined
1 + Pipeline stall cPL Cycle Time

Speedup =
pipelined
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Example: Dual-port vs. Single-port

Machine A: Dual ported memory (“Harvard Architecture”)

Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

Ideal CPI = 1 for both

Loads are 40% of instructions executed

SpeedUp, = Pipeline Depth/(1 + 0) x (clock,ne/Clock ;)
= Pipeline Depth

SpeedUpg = Pipeline Depth/(1 + 0.4 x 1) x (clock,,,ine/(Clock npipe / 1.09)
= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth

SpeedUp, / SpeedUpg = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

Machine A is 1.33 times faster

9/28/2020
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