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A "Typical" RISC ISA

 32-bit fixed format instruction (3 formats)
 32 32-bit GPR (R0 contains zero, DP take pair)
 3-address, reg-reg arithmetic instruction
 Single address mode for load/store: 

base + displacement
 no indirection

 Simple branch conditions
 Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3
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Example: MIPS ( MIPS)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call



9/28/2020 4

Datapath vs Control

 Datapath: Storage, FU, interconnect sufficient to perform the desired 
functions
 Inputs are Control Points
 Outputs are signals

 Controller: State machine to orchestrate operation on the data path
 Based on desired function and signals

Datapath Controller

Control Points

signals
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Approaching an ISA

 Instruction Set Architecture
 Defines set of operations, instruction format, hardware supported data types, 

named storage, addressing modes, sequencing
 Meaning of each instruction is described by RTL on architected registers

and memory
 Given technology constraints assemble adequate datapath

 Architected storage mapped to actual storage
 Function units to do all the required operations
 Possible additional storage (eg. MAR, MBR, …)
 Interconnect to move information among regs and FUs

 Map each instruction to sequence of RTLs
 Collate sequences into symbolic controller state transition diagram 

(STD)
 Lower symbolic STD to control points
 Implement controller
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Pipelining: Its Natural!

 Laundry Example
 Ann, Brian, Cathy, Dave 

each have one load of clothes 
to wash, dry, and fold

 Washer takes 30 minutes

 Dryer takes 40 minutes

 “Folder” takes 20 minutes

A B C D
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Sequential Laundry

 Sequential laundry takes 6 hours for 4 loads
 If they learned pipelining, how long would  laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time
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Pipelined Laundry
Start work ASAP

 Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20
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Pipelining Lessons

 Pipelining doesn’t help latency
of single task, it helps 
throughput of entire workload

 Pipeline rate limited by slowest
pipeline stage

 Multiple tasks operating 
simultaneously

 Potential speedup = Number 
pipe stages

 Unbalanced lengths of pipe 
stages reduces speedup

 Time to “fill” pipeline and time 
to “drain” it reduces speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20
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5 Steps of  MIPS Datapath
Figure A.2, Page A-8
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Reg[IRrd] <= Reg[IRrs] opIRop Reg[IRrt]
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5 Steps of  MIPS Datapath
Figure A.3, Page A-9
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IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt
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Inst. Set Processor Controller

IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR JR
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5 Steps of  MIPS Datapath
Figure A.3, Page A-9
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Visualizing Pipelining
Figure A.2, Page A-8
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Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5
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Pipelining is not quite that easy!

 Limits to pipelining: Hazards prevent next instruction from 
executing during its designated clock cycle
 Structural hazards: HW cannot support this combination of 

instructions (single person to fold and put clothes away)
 Data hazards: Instruction depends on result of prior instruction still 

in the pipeline (missing sock)
 Control hazards: Caused by delay between the fetching of 

instructions and decisions about changes in control flow (branches 
and jumps).
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One Memory Port/Structural Hazards
Figure A.4, Page A-14
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One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)

I
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Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?
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I
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB
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Dependences and hazards

 Dependences are a program property:

 If two instructions are data dependent they cannot execute 
simultaneously.

 Existence of control-dependences means serialization.

 Whether a dependence results in a hazard and whether that hazard 
actually causes a stall are properties of the pipeline organization. 

 Data dependences may occur through registers or memory.
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Dependences and hazards

 The presence of the dependence indicates the potential for a 
hazard, but the actual hazard and the length of any stall is a 
property of the pipeline. A data dependence:

 Indicates that there is a possibility of a hazard.

 Determines the order in which results must be calculated, and

 Sets an upper bound on the amount of parallelism that can be exploited.
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Dependencies

Output dependence

Anti-dependence

True dependence

Name dependencies

Data

Control
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Data dependences

 Data dependence, true dependence, and true data dependence are 
terms used to mean the same thing : 

 An instruction j is data dependent on instruction i if either of the 
following holds:
 instruction i produces a result that may be used by instruction j, or
 instruction j is data dependent on instruction k, and instruction k is data 

dependent on instruction i.

 Chains of dependent instructions.
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Name dependences

 Output dependence :

 When instruction I and j write the same register or memory location. The 
ordering must be preserved to leave the correct value in the register:
 add r7,r4,r3
 div r7,r2,r8

 Antidependence :
 When instruction j writes a register or memory location that instruction i 

reads :
 i: add r6,r5,r4
 j: sub r5,r8,r11
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Data Dependences through registers/memory

 Dependences through registers are easy :
 lw r10,10(r11)
 add r12,r10,r8  
 just compare register names.

 Dependences through memory are harder :
 sw r10,4 (r2)
 lw r6,0(r4)
 is r2+4 = r4+0 ? If so they are dependent, if not, they are not.
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Control dependences

 An instruction j is control dependent on i if the execution of j is 
controlled by instruction i.

I: If a < b 
j:     a=a+1;     j is control dependent on I.

 1. An instruction that is control dependent on a branch cannot be 
moved before the branch so that its execution is no longer controlled 
by the branch.

 2. An instruction that is not control dependent on a branch cannot be 
moved after the branch so that its execution is controlled by the 
branch.
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 Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

 Caused by a true dependence in the program.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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 Write After Read (WAR)
InstrJ writes operand before InstrI reads it

 Caused by an “anti-dependence” in the program. 
This results from reuse of the name “r1”.

 Can’t happen in MIPS 5 stage pipeline because:
 All instructions take 5 stages, and
 Reads are always in stage 2, and 
 Writes are always in stage 5

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards
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Three Generic Data Hazards

 Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

 Caused by an “output dependence” in the program.
This also results from the reuse of name “r1”.

 Can’t happen in MIPS 5 stage pipeline because: 

 All instructions take 5 stages, and 
 Writes are always in stage 5

 Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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HW Change for Forwarding
Figure A.23, Page A-37
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What circuit detects and resolves this hazard?
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Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard
Figure A.8, Page A-20
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lw r4, 0(r1)

sw r4,12(r1)

or   r8,r6,r9

xor r10,r9,r11
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Reg A
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Time (clock cycles)
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lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

Data Hazard Even with Forwarding
Figure A.9, Page A-21

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)

Time (clock cycles)

or   r8,r1,r9

I
n
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t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch

A
LU DMemBubble Reg

How is this detected?



9/28/2020 34

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.
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Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
L U DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
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Branch Stall Impact

 If CPI = 1, 30% branch, 
Stall 3 cycles => new CPI = 1.9!

 Two part solution:
 Determine branch taken or not sooner, AND
 Compute taken branch address earlier

 MIPS branch tests if register = 0 or ≠ 0
 MIPS Solution:

 Move Zero test to ID/RF stage
 Adder to calculate new PC in ID/RF stage
 1 clock cycle penalty for branch versus 3
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Figure A.24, page A-38
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

 Execute successor instructions in sequence
 “Squash” instructions in pipeline if branch actually taken
 Advantage of late pipeline state update
 47% MIPS branches not taken on average
 PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
 53% MIPS branches taken on average
 But haven’t calculated branch target address in MIPS

 MIPS still incurs 1 cycle branch penalty
 Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4: Delayed Branch
 Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

 1 slot delay allows proper decision and branch target address in 5 
stage pipeline

 MIPS uses this

Branch delay of length n



9/28/2020 40

Scheduling Branch Delay Slots (Fig A.14)

 A is the best choice, fills delay slot & reduces instruction count (IC)
 In B, the sub instruction may need to be copied, increasing IC
 In B and C, must be okay to execute sub when branch fails

add  
$1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3
if $1=0 then

delay slot

add  $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then
add  $1,$2,$3 add  $1,$2,$3

if $1=0 then

sub $4,$5,$6

add  $1,$2,$3
if $1=0 then

sub $4,$5,$6
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Delayed Branch
Compiler effectiveness for single branch delay slot:

 Fills about 60% of branch delay slots
 About 80% of instructions executed in branch delay slots useful 

in computation
 About 50% (60% x 80%) of slots usefully filled

 Delayed Branch downside: As processor go to deeper 
pipelines and multiple issue, the branch delay grows and 
need more than one delay slot
 Delayed branching has lost popularity compared to more 

expensive but more flexible dynamic approaches
 Growth in available transistors has made dynamic approaches 

relatively cheaper



9/28/2020 42

Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0
Predict taken 1 1.20 4.2 1.33
Predict not taken 1 1.14 4.4 1.40
Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty
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Problems with Pipelining

 Exception:  An unusual event happens to an instruction during 
its execution  
 Examples: divide by zero, undefined opcode

 Interrupt:  Hardware signal to switch the processor to a new 
instruction stream  
 Example: a sound card interrupts when it needs more audio 

output samples (an audio “click” happens if it is left waiting)
 Problem: It must appear that the exception or interrupt must 

appear between 2 instructions (Ii and Ii+1)
 The effect of all instructions up to and including Ii is totalling 

complete
 No effect of any instruction after Ii can take place 

 The interrupt (exception) handler either aborts program or 
restarts at instruction Ii+1



Precise Exceptions in Static Pipelines

Key observation: architected state only change in memory and register write stages.
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And In Conclusion:  Control and Pipelining

 Control VIA State Machines and Microprogramming
 Just overlap tasks; easy if tasks are independent
 Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

 Hazards limit performance on computers:
 Structural: need more HW resources
 Data (RAW,WAR,WAW): need forwarding, compiler scheduling
 Control: delayed branch, prediction

 Exceptions, Interrupts add complexity

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=
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Handling multi-cycle operations

 How would the pipeline should be changed if 
some instructions need more than a single 
cycle to complete their execution?

 What are the consequences in terms of 
hazards?
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Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal  Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, CPI = 1:
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Example: Dual-port vs. Single-port

 Machine A: Dual ported memory (“Harvard Architecture”)
 Machine B: Single ported memory, but its pipelined 

implementation has a 1.05 times faster clock rate
 Ideal CPI = 1 for both
 Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

 Machine A is 1.33 times faster 
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