
9/28/2020 1

Pipelining

Dr. Soner Onder
CS 4431

Michigan Technological University

Lecture – 3

9/28/2020 2

A "Typical" RISC ISA

 32-bit fixed format instruction (3 formats)
 32 32-bit GPR (R0 contains zero, DP take pair)
 3-address, reg-reg arithmetic instruction
 Single address mode for load/store:

base + displacement
 no indirection

 Simple branch conditions
 Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

9/28/2020 3

Example: MIPS (MIPS)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

9/28/2020 4

Datapath vs Control

 Datapath: Storage, FU, interconnect sufficient to perform the desired
functions
 Inputs are Control Points
 Outputs are signals

 Controller: State machine to orchestrate operation on the data path
 Based on desired function and signals

Datapath Controller

Control Points

signals

9/28/2020 5

Approaching an ISA

 Instruction Set Architecture
 Defines set of operations, instruction format, hardware supported data types,

named storage, addressing modes, sequencing
 Meaning of each instruction is described by RTL on architected registers

and memory
 Given technology constraints assemble adequate datapath

 Architected storage mapped to actual storage
 Function units to do all the required operations
 Possible additional storage (eg. MAR, MBR, …)
 Interconnect to move information among regs and FUs

 Map each instruction to sequence of RTLs
 Collate sequences into symbolic controller state transition diagram

(STD)
 Lower symbolic STD to control points
 Implement controller

9/28/2020 6

Pipelining: Its Natural!

 Laundry Example
 Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

 Washer takes 30 minutes

 Dryer takes 40 minutes

 “Folder” takes 20 minutes

A B C D

9/28/2020 7

Sequential Laundry

 Sequential laundry takes 6 hours for 4 loads
 If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

9/28/2020 8

Pipelined Laundry
Start work ASAP

 Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

9/28/2020 9

Pipelining Lessons

 Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

 Pipeline rate limited by slowest
pipeline stage

 Multiple tasks operating
simultaneously

 Potential speedup = Number
pipe stages

 Unbalanced lengths of pipe
stages reduces speedup

 Time to “fill” pipeline and time
to “drain” it reduces speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

9/28/2020 10

5 Steps of MIPS Datapath
Figure A.2, Page A-8

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder

Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

ImmIR <= mem[PC];

PC <= PC + 4

Reg[IRrd] <= Reg[IRrs] opIRop Reg[IRrt]

9/28/2020 11

5 Steps of MIPS Datapath
Figure A.3, Page A-9

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD

W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt

9/28/2020 12

Inst. Set Processor Controller

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR JR

9/28/2020 13

5 Steps of MIPS Datapath
Figure A.3, Page A-9

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

9/28/2020 14

Visualizing Pipelining
Figure A.2, Page A-8

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

9/28/2020 15

Pipelining is not quite that easy!

 Limits to pipelining: Hazards prevent next instruction from
executing during its designated clock cycle
 Structural hazards: HW cannot support this combination of

instructions (single person to fold and put clothes away)
 Data hazards: Instruction depends on result of prior instruction still

in the pipeline (missing sock)
 Control hazards: Caused by delay between the fetching of

instructions and decisions about changes in control flow (branches
and jumps).

9/28/2020 16

One Memory Port/Structural Hazards
Figure A.4, Page A-14

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

9/28/2020 17

One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?

9/28/2020 18

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB

9/28/2020 19

Dependences and hazards

 Dependences are a program property:

 If two instructions are data dependent they cannot execute
simultaneously.

 Existence of control-dependences means serialization.

 Whether a dependence results in a hazard and whether that hazard
actually causes a stall are properties of the pipeline organization.

 Data dependences may occur through registers or memory.

9/28/2020 20

Dependences and hazards

 The presence of the dependence indicates the potential for a
hazard, but the actual hazard and the length of any stall is a
property of the pipeline. A data dependence:

 Indicates that there is a possibility of a hazard.

 Determines the order in which results must be calculated, and

 Sets an upper bound on the amount of parallelism that can be exploited.

9/28/2020 21

Dependencies

Output dependence

Anti-dependence

True dependence

Name dependencies

Data

Control

9/28/2020 22

Data dependences

 Data dependence, true dependence, and true data dependence are
terms used to mean the same thing :

 An instruction j is data dependent on instruction i if either of the
following holds:
 instruction i produces a result that may be used by instruction j, or
 instruction j is data dependent on instruction k, and instruction k is data

dependent on instruction i.

 Chains of dependent instructions.

9/28/2020 23

Name dependences

 Output dependence :

 When instruction I and j write the same register or memory location. The
ordering must be preserved to leave the correct value in the register:
 add r7,r4,r3
 div r7,r2,r8

 Antidependence :
 When instruction j writes a register or memory location that instruction i

reads :
 i: add r6,r5,r4
 j: sub r5,r8,r11

9/28/2020 24

Data Dependences through registers/memory

 Dependences through registers are easy :
 lw r10,10(r11)
 add r12,r10,r8
 just compare register names.

 Dependences through memory are harder :
 sw r10,4 (r2)
 lw r6,0(r4)
 is r2+4 = r4+0 ? If so they are dependent, if not, they are not.

9/28/2020 25

Control dependences

 An instruction j is control dependent on i if the execution of j is
controlled by instruction i.

I: If a < b
j: a=a+1; j is control dependent on I.

 1. An instruction that is control dependent on a branch cannot be
moved before the branch so that its execution is no longer controlled
by the branch.

 2. An instruction that is not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by the
branch.

9/28/2020 26

 Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

 Caused by a true dependence in the program.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

9/28/2020 27

 Write After Read (WAR)
InstrJ writes operand before InstrI reads it

 Caused by an “anti-dependence” in the program.
This results from reuse of the name “r1”.

 Can’t happen in MIPS 5 stage pipeline because:
 All instructions take 5 stages, and
 Reads are always in stage 2, and
 Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards

9/28/2020 28

Three Generic Data Hazards

 Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

 Caused by an “output dependence” in the program.
This also results from the reuse of name “r1”.

 Can’t happen in MIPS 5 stage pipeline because:

 All instructions take 5 stages, and
 Writes are always in stage 5

 Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

9/28/2020 29

Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

9/28/2020 30

HW Change for Forwarding
Figure A.23, Page A-37

M
EM

/W
R

ID
/EX

EX
/M

EM
 Data

Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

What circuit detects and resolves this hazard?

9/28/2020 31

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard
Figure A.8, Page A-20

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

9/28/2020 32

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure A.9, Page A-21

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

9/28/2020 33

Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch

A
LU DMemBubble Reg

How is this detected?

9/28/2020 34

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance. Hardware checks for safety.

9/28/2020 35

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
L U DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?

9/28/2020 36

Branch Stall Impact

 If CPI = 1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

 Two part solution:
 Determine branch taken or not sooner, AND
 Compute taken branch address earlier

 MIPS branch tests if register = 0 or ≠ 0
 MIPS Solution:

 Move Zero test to ID/RF stage
 Adder to calculate new PC in ID/RF stage
 1 clock cycle penalty for branch versus 3

9/28/2020 37

A
dder

IF/ID

Pipelined MIPS Datapath
Figure A.24, page A-38

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ
PC

RD RD RD

W
B

D
at

a

• Interplay of instruction set design and cycle time.

Next PC

A
ddress

RS1

RS2

Imm
M

U
X

ID
/EX

9/28/2020 38

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

 Execute successor instructions in sequence
 “Squash” instructions in pipeline if branch actually taken
 Advantage of late pipeline state update
 47% MIPS branches not taken on average
 PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
 53% MIPS branches taken on average
 But haven’t calculated branch target address in MIPS

 MIPS still incurs 1 cycle branch penalty
 Other machines: branch target known before outcome

9/28/2020 39

Four Branch Hazard Alternatives

#4: Delayed Branch
 Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

 1 slot delay allows proper decision and branch target address in 5
stage pipeline

 MIPS uses this

Branch delay of length n

9/28/2020 40

Scheduling Branch Delay Slots (Fig A.14)

 A is the best choice, fills delay slot & reduces instruction count (IC)
 In B, the sub instruction may need to be copied, increasing IC
 In B and C, must be okay to execute sub when branch fails

add
$1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then
add $1,$2,$3 add $1,$2,$3

if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

9/28/2020 41

Delayed Branch
Compiler effectiveness for single branch delay slot:

 Fills about 60% of branch delay slots
 About 80% of instructions executed in branch delay slots useful

in computation
 About 50% (60% x 80%) of slots usefully filled

 Delayed Branch downside: As processor go to deeper
pipelines and multiple issue, the branch delay grows and
need more than one delay slot
 Delayed branching has lost popularity compared to more

expensive but more flexible dynamic approaches
 Growth in available transistors has made dynamic approaches

relatively cheaper

9/28/2020 42

Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0
Predict taken 1 1.20 4.2 1.33
Predict not taken 1 1.14 4.4 1.40
Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty

9/28/2020 43

Problems with Pipelining

 Exception: An unusual event happens to an instruction during
its execution
 Examples: divide by zero, undefined opcode

 Interrupt: Hardware signal to switch the processor to a new
instruction stream
 Example: a sound card interrupts when it needs more audio

output samples (an audio “click” happens if it is left waiting)
 Problem: It must appear that the exception or interrupt must

appear between 2 instructions (Ii and Ii+1)
 The effect of all instructions up to and including Ii is totalling

complete
 No effect of any instruction after Ii can take place

 The interrupt (exception) handler either aborts program or
restarts at instruction Ii+1

Precise Exceptions in Static Pipelines

Key observation: architected state only change in memory and register write stages.

9/28/2020 45

And In Conclusion: Control and Pipelining

 Control VIA State Machines and Microprogramming
 Just overlap tasks; easy if tasks are independent
 Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

 Hazards limit performance on computers:
 Structural: need more HW resources
 Data (RAW,WAR,WAW): need forwarding, compiler scheduling
 Control: delayed branch, prediction

 Exceptions, Interrupts add complexity

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

9/28/2020 46

Handling multi-cycle operations

 How would the pipeline should be changed if
some instructions need more than a single
cycle to complete their execution?

 What are the consequences in terms of
hazards?

9/28/2020 47

9/28/2020 48

9/28/2020 49

Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

Instper cycles Stall Average CPI Ideal CPIpipelined +=

For simple RISC pipeline, CPI = 1:

9/28/2020 50

Example: Dual-port vs. Single-port

 Machine A: Dual ported memory (“Harvard Architecture”)
 Machine B: Single ported memory, but its pipelined

implementation has a 1.05 times faster clock rate
 Ideal CPI = 1 for both
 Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

 Machine A is 1.33 times faster

9/28/2020 51

	Pipelining
	A "Typical" RISC ISA
	Example: MIPS (­ MIPS)
	Datapath vs Control
	Approaching an ISA
	Pipelining: Its Natural!
	Sequential Laundry
	Pipelined Laundry�Start work ASAP
	Pipelining Lessons
	5 Steps of MIPS Datapath�Figure A.2, Page A-8
	5 Steps of MIPS Datapath�Figure A.3, Page A-9
	Inst. Set Processor Controller
	5 Steps of MIPS Datapath�Figure A.3, Page A-9
	Visualizing Pipelining�Figure A.2, Page A-8
	Pipelining is not quite that easy!
	One Memory Port/Structural Hazards�Figure A.4, Page A-14
	One Memory Port/Structural Hazards�(Similar to Figure A.5, Page A-15)
	Data Hazard on R1�Figure A.6, Page A-17
	Dependences and hazards
	Dependences and hazards
	Dependencies
	Data dependences
	Name dependences
	Data Dependences through registers/memory
	Control dependences
	Three Generic Data Hazards
	Three Generic Data Hazards
	Three Generic Data Hazards
	Forwarding to Avoid Data Hazard�Figure A.7, Page A-19
	HW Change for Forwarding�Figure A.23, Page A-37
	Forwarding to Avoid LW-SW Data Hazard�Figure A.8, Page A-20
	Data Hazard Even with Forwarding�Figure A.9, Page A-21
	Data Hazard Even with Forwarding�(Similar to Figure A.10, Page A-21)
	Software Scheduling to Avoid Load Hazards
	Control Hazard on Branches�Three Stage Stall
	Branch Stall Impact
	Pipelined MIPS Datapath�Figure A.24, page A-38
	Four Branch Hazard Alternatives
	Four Branch Hazard Alternatives
	Scheduling Branch Delay Slots (Fig A.14)
	Delayed Branch
	Evaluating Branch Alternatives
	Problems with Pipelining
	 Precise Exceptions in Static Pipelines
	And In Conclusion: Control and Pipelining
	Handling multi-cycle operations
	Slide Number 47
	Slide Number 48
	Speed Up Equation for Pipelining
	Example: Dual-port vs. Single-port
	Slide Number 51

