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A "Typical" RISC ISA

 32-bit fixed format instruction (3 formats)
 32 32-bit GPR (R0 contains zero, DP take pair)
 3-address, reg-reg arithmetic instruction
 Single address mode for load/store: 

base + displacement
 no indirection

 Simple branch conditions
 Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3
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Example: MIPS ( MIPS)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call
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Datapath vs Control

 Datapath: Storage, FU, interconnect sufficient to perform the desired 
functions
 Inputs are Control Points
 Outputs are signals

 Controller: State machine to orchestrate operation on the data path
 Based on desired function and signals

Datapath Controller

Control Points

signals
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Approaching an ISA

 Instruction Set Architecture
 Defines set of operations, instruction format, hardware supported data types, 

named storage, addressing modes, sequencing
 Meaning of each instruction is described by RTL on architected registers

and memory
 Given technology constraints assemble adequate datapath

 Architected storage mapped to actual storage
 Function units to do all the required operations
 Possible additional storage (eg. MAR, MBR, …)
 Interconnect to move information among regs and FUs

 Map each instruction to sequence of RTLs
 Collate sequences into symbolic controller state transition diagram 

(STD)
 Lower symbolic STD to control points
 Implement controller
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Pipelining: Its Natural!

 Laundry Example
 Ann, Brian, Cathy, Dave 

each have one load of clothes 
to wash, dry, and fold

 Washer takes 30 minutes

 Dryer takes 40 minutes

 “Folder” takes 20 minutes

A B C D
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Sequential Laundry

 Sequential laundry takes 6 hours for 4 loads
 If they learned pipelining, how long would  laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time
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Pipelined Laundry
Start work ASAP

 Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20
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Pipelining Lessons

 Pipelining doesn’t help latency
of single task, it helps 
throughput of entire workload

 Pipeline rate limited by slowest
pipeline stage

 Multiple tasks operating 
simultaneously

 Potential speedup = Number 
pipe stages

 Unbalanced lengths of pipe 
stages reduces speedup

 Time to “fill” pipeline and time 
to “drain” it reduces speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20
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5 Steps of  MIPS Datapath
Figure A.2, Page A-8
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9/28/2020 11

5 Steps of  MIPS Datapath
Figure A.3, Page A-9
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PC <= PC + 4
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Reg[IRrd] <= WB

WB <= rslt
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Inst. Set Processor Controller

IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR JR
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5 Steps of  MIPS Datapath
Figure A.3, Page A-9
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Visualizing Pipelining
Figure A.2, Page A-8
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Reg A
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Pipelining is not quite that easy!

 Limits to pipelining: Hazards prevent next instruction from 
executing during its designated clock cycle
 Structural hazards: HW cannot support this combination of 

instructions (single person to fold and put clothes away)
 Data hazards: Instruction depends on result of prior instruction still 

in the pipeline (missing sock)
 Control hazards: Caused by delay between the fetching of 

instructions and decisions about changes in control flow (branches 
and jumps).
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One Memory Port/Structural Hazards
Figure A.4, Page A-14
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One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)
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Load

Instr 1
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Stall

Instr 3

Reg A
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Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB



9/28/2020 19

Dependences and hazards

 Dependences are a program property:

 If two instructions are data dependent they cannot execute 
simultaneously.

 Existence of control-dependences means serialization.

 Whether a dependence results in a hazard and whether that hazard 
actually causes a stall are properties of the pipeline organization. 

 Data dependences may occur through registers or memory.
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Dependences and hazards

 The presence of the dependence indicates the potential for a 
hazard, but the actual hazard and the length of any stall is a 
property of the pipeline. A data dependence:

 Indicates that there is a possibility of a hazard.

 Determines the order in which results must be calculated, and

 Sets an upper bound on the amount of parallelism that can be exploited.



9/28/2020 21

Dependencies

Output dependence

Anti-dependence

True dependence

Name dependencies

Data

Control
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Data dependences

 Data dependence, true dependence, and true data dependence are 
terms used to mean the same thing : 

 An instruction j is data dependent on instruction i if either of the 
following holds:
 instruction i produces a result that may be used by instruction j, or
 instruction j is data dependent on instruction k, and instruction k is data 

dependent on instruction i.

 Chains of dependent instructions.
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Name dependences

 Output dependence :

 When instruction I and j write the same register or memory location. The 
ordering must be preserved to leave the correct value in the register:
 add r7,r4,r3
 div r7,r2,r8

 Antidependence :
 When instruction j writes a register or memory location that instruction i 

reads :
 i: add r6,r5,r4
 j: sub r5,r8,r11
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Data Dependences through registers/memory

 Dependences through registers are easy :
 lw r10,10(r11)
 add r12,r10,r8  
 just compare register names.

 Dependences through memory are harder :
 sw r10,4 (r2)
 lw r6,0(r4)
 is r2+4 = r4+0 ? If so they are dependent, if not, they are not.
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Control dependences

 An instruction j is control dependent on i if the execution of j is 
controlled by instruction i.

I: If a < b 
j:     a=a+1;     j is control dependent on I.

 1. An instruction that is control dependent on a branch cannot be 
moved before the branch so that its execution is no longer controlled 
by the branch.

 2. An instruction that is not control dependent on a branch cannot be 
moved after the branch so that its execution is controlled by the 
branch.
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 Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

 Caused by a true dependence in the program.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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 Write After Read (WAR)
InstrJ writes operand before InstrI reads it

 Caused by an “anti-dependence” in the program. 
This results from reuse of the name “r1”.

 Can’t happen in MIPS 5 stage pipeline because:
 All instructions take 5 stages, and
 Reads are always in stage 2, and 
 Writes are always in stage 5

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards
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Three Generic Data Hazards

 Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

 Caused by an “output dependence” in the program.
This also results from the reuse of name “r1”.

 Can’t happen in MIPS 5 stage pipeline because: 

 All instructions take 5 stages, and 
 Writes are always in stage 5

 Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19
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sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
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Reg A
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Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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HW Change for Forwarding
Figure A.23, Page A-37
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What circuit detects and resolves this hazard?
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Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard
Figure A.8, Page A-20
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lw r4, 0(r1)

sw r4,12(r1)

or   r8,r6,r9

xor r10,r9,r11
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Time (clock cycles)
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lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

Data Hazard Even with Forwarding
Figure A.9, Page A-21

Reg A
LU DMemIfetch Reg

Reg A
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Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)

Time (clock cycles)

or   r8,r1,r9
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lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch

A
LU DMemBubble Reg

How is this detected?
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Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.



9/28/2020 35

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
L U DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
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Branch Stall Impact

 If CPI = 1, 30% branch, 
Stall 3 cycles => new CPI = 1.9!

 Two part solution:
 Determine branch taken or not sooner, AND
 Compute taken branch address earlier

 MIPS branch tests if register = 0 or ≠ 0
 MIPS Solution:

 Move Zero test to ID/RF stage
 Adder to calculate new PC in ID/RF stage
 1 clock cycle penalty for branch versus 3
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

 Execute successor instructions in sequence
 “Squash” instructions in pipeline if branch actually taken
 Advantage of late pipeline state update
 47% MIPS branches not taken on average
 PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
 53% MIPS branches taken on average
 But haven’t calculated branch target address in MIPS

 MIPS still incurs 1 cycle branch penalty
 Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4: Delayed Branch
 Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

 1 slot delay allows proper decision and branch target address in 5 
stage pipeline

 MIPS uses this

Branch delay of length n
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Scheduling Branch Delay Slots (Fig A.14)

 A is the best choice, fills delay slot & reduces instruction count (IC)
 In B, the sub instruction may need to be copied, increasing IC
 In B and C, must be okay to execute sub when branch fails

add  
$1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3
if $1=0 then

delay slot

add  $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then
add  $1,$2,$3 add  $1,$2,$3

if $1=0 then

sub $4,$5,$6

add  $1,$2,$3
if $1=0 then

sub $4,$5,$6
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Delayed Branch
Compiler effectiveness for single branch delay slot:

 Fills about 60% of branch delay slots
 About 80% of instructions executed in branch delay slots useful 

in computation
 About 50% (60% x 80%) of slots usefully filled

 Delayed Branch downside: As processor go to deeper 
pipelines and multiple issue, the branch delay grows and 
need more than one delay slot
 Delayed branching has lost popularity compared to more 

expensive but more flexible dynamic approaches
 Growth in available transistors has made dynamic approaches 

relatively cheaper
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Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0
Predict taken 1 1.20 4.2 1.33
Predict not taken 1 1.14 4.4 1.40
Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty
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Problems with Pipelining

 Exception:  An unusual event happens to an instruction during 
its execution  
 Examples: divide by zero, undefined opcode

 Interrupt:  Hardware signal to switch the processor to a new 
instruction stream  
 Example: a sound card interrupts when it needs more audio 

output samples (an audio “click” happens if it is left waiting)
 Problem: It must appear that the exception or interrupt must 

appear between 2 instructions (Ii and Ii+1)
 The effect of all instructions up to and including Ii is totalling 

complete
 No effect of any instruction after Ii can take place 

 The interrupt (exception) handler either aborts program or 
restarts at instruction Ii+1



Precise Exceptions in Static Pipelines

Key observation: architected state only change in memory and register write stages.



9/28/2020 45

And In Conclusion:  Control and Pipelining

 Control VIA State Machines and Microprogramming
 Just overlap tasks; easy if tasks are independent
 Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

 Hazards limit performance on computers:
 Structural: need more HW resources
 Data (RAW,WAR,WAW): need forwarding, compiler scheduling
 Control: delayed branch, prediction

 Exceptions, Interrupts add complexity

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=
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Handling multi-cycle operations

 How would the pipeline should be changed if 
some instructions need more than a single 
cycle to complete their execution?

 What are the consequences in terms of 
hazards?
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Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal  Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, CPI = 1:
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Example: Dual-port vs. Single-port

 Machine A: Dual ported memory (“Harvard Architecture”)
 Machine B: Single ported memory, but its pipelined 

implementation has a 1.05 times faster clock rate
 Ideal CPI = 1 for both
 Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

 Machine A is 1.33 times faster 
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