
1

Instruction Set Architectures

Dr. Soner Onder
CS 4431

Michigan Technological University

Lecture – 2

2

Instruction Set Architecture (ISA)

 1950s to 1960s: Computer Architecture Course
Computer Arithmetic

 1970 to mid 1980s: Computer Architecture Course
Instruction Set Design, especially ISA appropriate for
compilers

 1990s: Computer Architecture Course
Design of CPU, memory system, I/O system,
Multiprocessors

3

Instruction Set Architecture (ISA)

instruction set

software

hardware

4

Interface Design
A good interface:

• Lasts through many implementations (portability,
compatability)

• Is used in many differeny ways (generality)
• Provides convenient functionality to higher levels
• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time

5

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,88000,IBM RS6000, . . .1987)

6

Evolution of Instruction Sets

 Major advances in computer architecture are typically
associated with landmark instruction set designs
 Ex: Stack vs GPR (System 360)

 Design decisions must take into account:
 technology
 machine organization
 programming languages
 compiler technology
 operating systems

 And they in turn influence these

7

Design Space of ISA

Five Primary Dimensions
 Number of explicit operands(0, 1, 2, 3)
 Operand Storage Where besides memory?
 Effective Address How is memory location specified?
 Type & Size of Operands byte, int, float, vector, . . .

How is it specified?
 Operations add, sub, mul, . . .

How is it specified?

Other Aspects
 Successor How is it specified?
 Conditions How are they determined?
 Encoding Fixed or variable? Wide?
 Parallelism

8

ISA Metrics

Aesthetics:
 Orthogonality

 No special registers, few special cases, all operand modes available with
any data type or instruction type

 Completeness
 Support for a wide range of operations and target applications

 Regularity
 No overloading for the meanings of instruction fields

 Streamlined
 Resource needs easily determined

Ease of compilation (programming?)
Ease of implementation
Scalability

9

Basic ISA Classes
Accumulator:

1 address add A acc ← acc + mem[A]
1+x address addx A acc ← acc + mem[A + x]

Stack:
0 address add tos ← tos + next

General Purpose Register:
2 address add A B EA(A) ← EA(A) + EA(B)
3 address add A B C EA(A) ← EA(B) + EA(C)

Load/Store:
3 address add Ra Rb Rc Ra ← Rb + Rc

load Ra Rb Ra ← mem[Rb]
store Ra Rb mem[Rb] ← Ra

10

11

Stack Machines

 Instruction set:
+, -, *, /, . . .
push A, pop A

 Example: a*b - (a+c*b)
push a
push b
*
push a
push c
push b
*
+
-

A B
A

A*B

-

+

aa b

*

b

*

c

A*B
A*B

A*B

A
A
C

A*B
A A*B

12

Kinds of Addressing Modes

 Register direct Ri
 Immediate (literal) v
 Direct (absolute) M[v]
 Register indirect M[Ri]
 Base+Displacement M[Ri + v]
 Base+Index M[Ri + Rj]
 Scaled Index M[Ri + Rj*d + v]
 Autoincrement M[Ri++]
 Autodecrement M[Ri - -]
 Memory Indirect M[M[Ri]]
 [Indirection Chains]

Ri Rj v

memory

reg. file

13

14

A "Typical" RISC

 32-bit fixed format instruction (3 formats)
 32 32-bit GPR (R0 contains zero, DP take pair)
 3-address, reg-reg arithmetic instruction
 Single address mode for load/store:

base + displacement
 no indirection

 Simple branch conditions
 Delayed branch

see: SPARC, MIPS, MC88100, AMD2900, i960, i860
PARisc, DEC Alpha, Clipper,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

15

16

Operations that need an immediate operand

17

18

Distribution of data accesses by size for benchmark programs

19

20

09/04/12 21

22

09/04/12 23

Variations of Instruction Encoding

09/04/12 24

State-of-the Art Compilers

25

26

Example: MIPS

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

27

 simple instructions all 32 bits wide
 very structured, no unnecessary baggage
 only three instruction formats

 rely on compiler to achieve performance
— what are the compiler's goals?

 help compiler where we can

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

Overview of MIPS

28

 Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4
° $t5

beq $t4,$t5,Label Next instruction is at Label if $t4 =
$t5

j Label Next instruction is at Label

 Formats:
op rs rt 16 bit address

Addresses in Branches and Jumps

– Addresses are not 32 bits
— How do we handle this with load and store instructions?

op 26 bit Address

29

 Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4°$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

 Formats:

 Could specify a register (like lw and sw) and add it to
address
 use Instruction Address Register (PC = program counter)
 most branches are local (principle of locality)

 Jump instructions just use high order bits of PC
 address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches

30

Summary of MIPS

MIPS operands
Name Example Comments

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,

words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

230 memory

31

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants

load word lw $s1, 100($s2) Word from memory to register

store word sw $s1, 100($s2) Word from register to memory

Data transfer load byte lb $s1, 100($s2) Byte from memory to register

store byte sb $s1, 100($s2) Byte from register to memory
load upper immediate lui $s1, 100 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 Equal test; PC-relative branch

Conditional
branch on not equal bne $s1, $s2, 25 Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 Compare less than; for beq, bne

slti $s1, $s2, 100 Compare less than constant

jump j 2500 go to 10000 Jump to target address

Uncondi- jump register jr $ra For switch, procedure return

$s1 = Memory[$s2 + 100]
Memory[$s2 + 100] = $s1
$s1 = Memory[$s2 + 100]
Memory[$s2 + 100] = $s1
$s1 = 100 * 216

if ($s1 == $s2) go to
PC + 4 + 100

if ($s1 != $s2) go to
PC + 4 + 100

if ($s2 < $s3) $s1 = 1;
 else $s1 = 0

set less than
immediate

if ($s2 < 100) $s1 = 1;
 else $s1 = 0

go to $ra

32

 Design alternative:
 provide more powerful operations
 goal is to reduce number of instructions executed
 danger is a slower cycle time and/or a higher CPI

 Sometimes referred to as “RISC vs. CISC”
 virtually all new instruction sets since 1982 have

been RISC
 VAX: minimize code size, make assembly

language easy
instructions from 1 to 54 bytes long!

Alternative Architectures

33

PowerPC
 Indexed addressing

 example: lw $t1,$a0+$s3
#$t1=Memory[$a0+$s3]

 What do we have to do in MIPS?

 Update addressing
 update a register as part of load (for marching through

arrays)
 example: lwu $t0,4($s3)
#$t0=Memory[$s3+4];$s3=$s3+4

 What do we have to do in MIPS?

 Others:
 load multiple/store multiple
 a special counter register “bc Loop”

decrement counter, if not 0 goto loop

34

80x86

 1978: The Intel 8086 is announced (16 bit architecture)
 1980: The 8087 floating point coprocessor is added
 1982: The 80286 increases address space to 24 bits, +instructions
 1985: The 80386 extends to 32 bits, new addressing modes
 1989-1995: The 80486, Pentium, Pentium Pro add a few

instructions
(mostly designed for higher performance)

 1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” of
compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

35

A dominant architecture: 80x86

 See your textbook for a more detailed description
 Complexity:

 Instructions from 1 to 17 bytes long
 one operand must act as both a source and destination
 one operand can come from memory
 complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”

 Saving grace:
 the most frequently used instructions are not too difficult to

build
 compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

36

Tips for Helping the Compiler Writer

 Provide regularity
 How does it affect the architecture?

 Provide primitives, not solutions
 Why is it hard?

 Simplify tradeoffs among alternatives
 How does this affect architecture?

 Provide instructions that bind the quantities known
at compile time as constants.
 How does it help with compiler/Hw interaction?

37

	Instruction Set Architectures
	Instruction Set Architecture (ISA)
	Instruction Set Architecture (ISA)
	Interface Design
	Evolution of Instruction Sets
	Evolution of Instruction Sets
	Design Space of ISA
	ISA Metrics
	Basic ISA Classes
	Slide Number 10
	Stack Machines
	Kinds of Addressing Modes
	Slide Number 13
	A "Typical" RISC
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Example: MIPS
	Overview of MIPS
	Addresses in Branches and Jumps
	Addresses in Branches
	Summary of MIPS
	Slide Number 31
	Alternative Architectures
	PowerPC
	80x86
	A dominant architecture: 80x86
	Tips for Helping the Compiler Writer
	Slide Number 37

