“Standard” Unix Processes/IPC

- Through the filesystem: file descriptors, read()/write(), pipes

“Standard” Unix Processes/IPC

- Through the filesystem: file descriptors, read()/write(), pipes

- Implies: ipc construct shared thru normal process hierarchy inheritance rules; pipes are nameless
(in most Unix dialects)

“Standard” Unix Processes/IPC

- Through the filesystem: file descriptors, read()/write(), pipes

- Implies: ipc construct shared thru normal process hierarchy inheritance rules; pipes are nameless
(in most Unix dialects)

pipel

pipe2

“Standard” Unix Processes/IPC

Through the filesystem: file descriptors, read()/write(), pipes

Implies: ipc construct shared thru normal process hierarchy inheritance rules; pipes are nameless
(in most Unix dialects)

pipel

pipe2

Totally reliable byte stream between producer and consumer.

“Standard” Unix Processes/IPC

Through the filesystem: file descriptors, read()/write(), pipes

Implies: ipc construct shared thru normal process hierarchy inheritance rules; pipes are nameless
(in most Unix dialects)

pipel

pipe2

Totally reliable byte stream between producer and consumer.

Tie-in to conventional Unix semantics of process creation and termination.

We want:

- A real generalization of the conventional pipe construct to allow network-based i/o. This means
that file descriptors and read()/write() are still going to work.

We want:

- A real generalization of the conventional pipe construct to allow network-based i/o. This means
that file descriptors and read()/write() are still going to work.

- Need some extra features to take into account: (1) network protocol stacks, (2) network naming
conventions, (3) requirements of protocol-specific message passing.

We want:

- A real generalization of the conventional pipe construct to allow network-based i/o. This means
that file descriptors and read()/write() are still going to work.

- Need some extra features to take into account: (1) network protocol stacks, (2) network naming
conventions, (3) requirements of protocol-specific message passing.

- The BSD solution: socket(). Most concise definition is simply that of a communication
endpoint. Can be accessed through a file descriptor.

We want:

- A real generalization of the conventional pipe construct to allow network-based i/o. This means
that file descriptors and read()/write() are still going to work.

- Need some extra features to take into account: (1) network protocol stacks, (2) network naming
conventions, (3) requirements of protocol-specific message passing.

- The BSD solution: socket(). Most concise definition is simply that of a communication
endpoint. Can be accessed through a file descriptor.

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Communication domain:

Basically specifies a protocol stack. Some Unices implement a richer set of commo domains than
others.

Communication domain:

Basically specifies a protocol stack. Some Unices implement a richer set of commo domains than
others.

- AF_UNIX: the Unix IPC domain, local to single machine

Communication domain:

Basically specifies a protocol stack. Some Unices implement a richer set of commo domains than
others.

- AF_UNIX: the Unix IPC domain, local to single machine
- AF_INET: the Internet domain, global in scope

Communication domain:

Basically specifies a protocol stack. Some Unices implement a richer set of commo domains than
others.

- AF_UNIX: the Unix IPC domain, local to single machine
- AF_INET: the Internet domain, global in scope
- AF_NS: the Xerox NS protocol family

Communication domain:

Basically specifies a protocol stack. Some Unices implement a richer set of commo domains than
others.

AF_UNIX: the Unix IPC domain, local to single machine

AF_INET: the Internet domain, global in scope
AF_NS: the Xerox NS protocol family
AF_180: the ISO protocol family

Communication domain:

Basically specifies a protocol stack. Some Unices implement a richer set of commo domains than
others.

AF_UNIX: the Unix IPC domain, local to single machine

AF_INET: the Internet domain, global in scope
AF_NS: the Xerox NS protocol family
AF_180: the ISO protocol family

Once a domain is specified, know how to associate a name with the socket.

Communication domain:

Basically specifies a protocol stack. Some Unices implement a richer set of commo domains than
others.

AF_UNIX: the Unix IPC domain, local to single machine

AF_INET: the Internet domain, global in scope
AF_NS: the Xerox NS protocol family
AF_180: the ISO protocol family

Once a domain is specified, know how to associate a name with the socket.

Once a domain is specified, know the semantics of supported IPC mechanisms

Unix Domain Sockets (in brief)

Start with the (less interesting) case of the AF_UNIX commo domain. Header file <sys/un.h>
defines addresses.

Unix Domain Sockets (in brief)

Start with the (less interesting) case of the AF_UNIX commo domain. Header file <sys/un.h>
defines addresses.

#define UNIX_PATH_MAX 108

struct sockaddr_un {
unsigned short sun_family; /* AF_UNIX x*/
char sun_path[UNIX_PATH_MAX]; /* pathname */
s

Unix Domain Sockets (in brief)

Start with the (less interesting) case of the AF_UNIX commo domain. Header file <sys/un.h>
defines addresses.

#define UNIX_PATH_MAX 108
struct sockaddr_un {
unsigned short sun_family; /* AF_UNIX x*/
char sun_path[UNIX_PATH_MAX]; /* pathname */
s

For example:

curly’% 1ls -1 /dev/printer
srwxrwxrwx 1 root 0 Feb 26 08:49 /dev/printer

Unix Domain Sockets (in brief)

Start with the (less interesting) case of the AF_UNIX commo domain. Header file <sys/un.h>
defines addresses.

#define UNIX_PATH_MAX 108
struct sockaddr_un {
unsigned short sun_family; /* AF_UNIX x*/
char sun_path[UNIX_PATH_MAX]; /* pathname */
s

For example:

curly’% 1ls -1 /dev/printer
srwxrwxrwx 1 root 0 Feb 26 08:49 /dev/printer

/dev/printer is a Unix domain socket used by the printer spooler subsystem.

Two types of sockets available in Unix commo domain:

- SOCK_DGRAM provides datagram commo semantics; only best-effort delivery promised. Unix may
discard datagrams in times of buffer congestion! Connectionless.

Two types of sockets available in Unix commo domain:

- SOCK_DGRAM provides datagram commo semantics; only best-effort delivery promised. Unix may
discard datagrams in times of buffer congestion! Connectionless.

- SOCK_STREAM implements a virtual circuit; reliable FIFO point-to-point commo. Appears as a byte
stream to applications. Actually, this is the way 4.1bsd+ Unix implements pipes. Point-to-point
connection.

Two types of sockets available in Unix commo domain:

- SOCK_DGRAM provides datagram commo semantics; only best-effort delivery promised. Unix may
discard datagrams in times of buffer congestion! Connectionless.

- SOCK_STREAM implements a virtual circuit; reliable FIFO point-to-point commo. Appears as a byte
stream to applications. Actually, this is the way 4.1bsd+ Unix implements pipes. Point-to-point
connection.

Choose socket type in accordance with needs of application. Program in accordance with
well-specified delivery semantics of chosen type.

Operations on sockets:

- Binding a name to a socket:

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

Operations on sockets:

- Binding a name to a socket:

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

- Sending datagram on a socket (asynchronous):

int sendto(int s, const void *msg, int len, unsigned int flags,
const struct sockaddr *to, int tolen);

Operations on sockets:

- Binding a name to a socket:

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

- Sending datagram on a socket (asynchronous):

int sendto(int s, const void *msg, int len, unsigned int flags,
const struct sockaddr *to, int tolen);

- Receiving datagram from a socket (synchronous, blocking):

int recvfrom(int s, void *buf, int len, unsigned int flags,
struct sockaddr *from, int *fromlen) ;

Operations on sockets:

- Binding a name to a socket:

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

- Sending datagram on a socket (asynchronous):

int sendto(int s, const void *msg, int len, unsigned int flags,
const struct sockaddr *to, int tolen);

- Receiving datagram from a socket (synchronous, blocking):

int recvfrom(int s, void *buf, int len, unsigned int flags,
struct sockaddr *from, int *fromlen) ;

The programs unix_wdgram.c and unix_rdgram. c illustrate the use of these constructs to build
a simple client/server system based on Unix domain datagrams. (Warning ... error checking deleted
from the code to make smaller slides.)

#include
#include
#include
#include
#include
#include

main()

{

unix_rdgram.c: Server

<errno.h>
<strings.h>
<stdio.h>
<unistd.h>
<sys/socket.h>
<sys/un.h>

short p_len;
int socket_fd, cc, h_len, fsize, namelen;
void printsun();

struct
size_t

struct

sockaddr_un s_un, from;
addrlength;

{

char head;
u_long body;
char tail;

} msg;

socket_fd = socket (AF_UNIX, SOCK_DGRAM, 0);

s_un.sun_family = AF_UNIX,;

strcpy(s_un.sun_path, "udgram");
addrlength = sizeof(s_un.sun_family) + sizeof(s_un.sun_path); /* Note! */

unlink("udgram"); /* Just in case ... */
bind(socket_fd, (struct sockaddr *)&s_un, addrlength)

for(;;) {

fsize = sizeof (from);

cc = recvfrom(socket_£fd,&msg,sizeof (msg),0, (struct sockaddr *)&from,

&fsize);

printsun(&from, "unix_rdgram: ", "Packet from:");

printf ("Got data ::%c%ld%c\n",msg.head,msg.body,msg.tail) ;fflush(stdout);
+

}

void printsun(Sun, s1, s2)

struct sockaddr_un *Sun; char *sl1, *s2;

{

printf ("%s %s:\n", sl, s2);

printf (" family <%d> addr <%s>\n", Sun->sun_family, Sun->sun_path);

}

unix_wdgram.c: Client

#include <errno.h>
#include <strings.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

main ()
{
int socket_fd, cc;
long getpid();
struct sockaddr_un dest;

struct {
char head;
u_long body;
char tail;

} msgbuf;

socket_fd = socket (AF_UNIX, SOCK_DGRAM, 0);

dest.sun_family = AF_UNIX;
strcpy(dest.sun_path, "udgram");

msgbuf .head = ’<’;
msgbuf .body = (u_long) getpid();
msgbuf.tail = ’>7;

cc = sendto(socket_£fd,&msgbuf,sizeof (msgbuf),O0,
(struct sockaddr *)&dest,sizeof(dest));

Sockets and the Internet (IPv4)

AF_INET commo domain.

Sockets and the Internet (IPv4)

AF_INET commo domain.

Two types of sockets available in Internet commo domain (like in Unix domain):

Sockets and the Internet (IPv4)

AF_INET commo domain.

Two types of sockets available in Internet commo domain (like in Unix domain):

- SOCK_DGRAM provides datagram commo semantics; only best-effort delivery promised. Sys-
tems/routers may discard datagrams in times of buffer congestion! Connectionless. UDP/IP.

Sockets and the Internet (IPv4)

AF_INET commo domain.

Two types of sockets available in Internet commo domain (like in Unix domain):

- SOCK_DGRAM provides datagram commo semantics; only best-effort delivery promised. Sys-
tems/routers may discard datagrams in times of buffer congestion! Connectionless. UDP/IP.

- SOCK_STREAM implements a virtual circuit; reliable FIFO point-to-point commo. Appears as a
byte stream to applications. Pipe-like. Point-to-point connection. TCP/IP.

Sockets and the Internet (IPv4)

AF_INET commo domain.

Two types of sockets available in Internet commo domain (like in Unix domain):

- SOCK_DGRAM provides datagram commo semantics; only best-effort delivery promised. Sys-
tems/routers may discard datagrams in times of buffer congestion! Connectionless. UDP/IP.

- SOCK_STREAM implements a virtual circuit; reliable FIFO point-to-point commo. Appears as a
byte stream to applications. Pipe-like. Point-to-point connection. TCP/IP.

For example:

sock_fd = socket(AF_INET, SOCK_DGRAM, 0);

Sockets and the Internet (IPv4)

AF_INET commo domain.

Two types of sockets available in Internet commo domain (like in Unix domain):

- SOCK_DGRAM provides datagram commo semantics; only best-effort delivery promised. Sys-
tems/routers may discard datagrams in times of buffer congestion! Connectionless. UDP/IP.

- SOCK_STREAM implements a virtual circuit; reliable FIFO point-to-point commo. Appears as a
byte stream to applications. Pipe-like. Point-to-point connection. TCP/IP.

For example:

sock_fd = socket(AF_INET, SOCK_DGRAM, 0);

Analogous to an open() in that the “file decsriptor” which is returned serves as a handle for future
i/o on the socket.

Sockets and the Internet (IPv4)

AF_INET commo domain.

Two types of sockets available in Internet commo domain (like in Unix domain):

- SOCK_DGRAM provides datagram commo semantics; only best-effort delivery promised. Sys-
tems/routers may discard datagrams in times of buffer congestion! Connectionless. UDP/IP.

- SOCK_STREAM implements a virtual circuit; reliable FIFO point-to-point commo. Appears as a
byte stream to applications. Pipe-like. Point-to-point connection. TCP/IP.

For example:

sock_fd = socket(AF_INET, SOCK_DGRAM, 0);

Analogous to an open() in that the “file decsriptor” which is returned serves as a handle for future
i/o on the socket.

In order to do network i/o through a socket fd, need a way to associate names with sockets.

Sockets and the Internet (IPv4)

AF_INET commo domain.

Two types of sockets available in Internet commo domain (like in Unix domain):

- SOCK_DGRAM provides datagram commo semantics; only best-effort delivery promised. Sys-
tems/routers may discard datagrams in times of buffer congestion! Connectionless. UDP/IP.

- SOCK_STREAM implements a virtual circuit; reliable FIFO point-to-point commo. Appears as a
byte stream to applications. Pipe-like. Point-to-point connection. TCP/IP.

For example:

sock_fd = socket(AF_INET, SOCK_DGRAM, 0);

Analogous to an open() in that the “file decsriptor” which is returned serves as a handle for future
i/o on the socket.

In order to do network i/o through a socket fd, need a way to associate names with sockets.

Header file <netinet/in.h> defines a 32-bit address for an Internet host. Actually identifies a
specific network interface on a specific system on the Internet. 32-bit number.

struct in_addr {
u32 s_addr;

+;

D Class A
= Mat = Host
] 8 16 24 31
1|0 Class B
= Mat = Host

] 8 16 24 3|

1|1|0 Class C
B Mat =— Host —s=

- Class D for multicast; Class E is reserved:; Classless.

D Class A
= Mat = Host
] 8 16 24 31
1|0 Class B
= Mat = Host

] 8 16 24 3|

1|1{0 Class C
= Mat =— Host —s=

- Class D for multicast; Class E is reserved:; Classless.

- Dotted decimal notation.

D Class A
= Mat = Host
] 8 16 24 31
1|0 Class B
= Mat = Host

] 8 16 24 3|

1|1{0 Class C
= Mat =— Host —s=

- Class D for multicast; Class E is reserved:; Classless.
- Dotted decimal notation.

- Net name—host part all 0's; broadcast address—host part all 1's (root only);

16

= Met = Host
5 16 24 al
0
= Mat = Host
5 16 24 a1
110
= Mat =— Host —==|

Class D for multicast: Class E is reserved; Classless.

Dotted decimal notation.

Net name—host part all 0's; broadcast address—host part all 1's (root only);

Localhost—127.0.0.1

Class A

Class B

Class C

- In header file <netinet/in.h>:

#define __SOCK_SIZE__ 16 /* sizeof (struct sockaddr) */

struct sockaddr_in {

short int sin_family; /* Address family */
unsigned short int sin_port; /* Port number */
struct in_addr sin_addr; /* Internet address x/

/* Pad to size of ‘struct sockaddr’. x/
unsigned char __pad[__SOCK_SIZE__ - sizeof(short int) -
sizeof (unsigned short int) - sizeof(struct in_addr)];

+;

- In header file <netinet/in.h>:

#define __SOCK_SIZE__ 16 /* sizeof (struct sockaddr) */

struct sockaddr_in {

short int sin_family; /* Address family */
unsigned short int sin_port; /* Port number */
struct in_addr sin_addr; /* Internet address x/

/* Pad to size of ‘struct sockaddr’. x/
unsigned char __pad[__SOCK_SIZE__ - sizeof(short int) -
sizeof (unsigned short int) - sizeof(struct in_addr)];

+;

- Declare/allocate instance of struct sockaddr_in whenever you need to specify a full adress on
the Internet.

- In header file <netinet/in.h>:

#define __SOCK_SIZE__ 16 /* sizeof (struct sockaddr) */

struct sockaddr_in {

short int sin_family; /* Address family */
unsigned short int sin_port; /* Port number */
struct in_addr sin_addr; /* Internet address x/

/* Pad to size of ‘struct sockaddr’. x/
unsigned char __pad[__SOCK_SIZE__ - sizeof(short int) -
sizeof (unsigned short int) - sizeof(struct in_addr)];

+;

- Declare/allocate instance of struct sockaddr_in whenever you need to specify a full adress on
the Internet.

- A port is an Internet commo endpoint associated with an application. (host,port) defines an
Internet address.

- In header file <netinet/in.h>:

#define __SOCK_SIZE__ 16 /* sizeof (struct sockaddr) */

struct sockaddr_in {

short int sin_family; /* Address family */
unsigned short int sin_port; /* Port number */
struct in_addr sin_addr; /* Internet address x/

/* Pad to size of ‘struct sockaddr’. x/
unsigned char __pad[__SOCK_SIZE__ - sizeof(short int) -
sizeof (unsigned short int) - sizeof(struct in_addr)];

+;

- Declare/allocate instance of struct sockaddr_in whenever you need to specify a full adress on
the Internet.

- A port is an Internet commo endpoint associated with an application. (host,port) defines an
Internet address.

- Ports in the range [0,1023] reserved for root; others available to ordinary users. (See RFC 1700,
IANA http: //www.iana.com/numbers. html)

- In header file <netinet/in.h>:

#define __SOCK_SIZE__ 16 /* sizeof (struct sockaddr) */

struct sockaddr_in {

short int sin_family; /* Address family */
unsigned short int sin_port; /* Port number */
struct in_addr sin_addr; /* Internet address x/

/* Pad to size of ‘struct sockaddr’. x/
unsigned char __pad[__SOCK_SIZE__ - sizeof(short int) -
sizeof (unsigned short int) - sizeof(struct in_addr)];

+;

- Declare/allocate instance of struct sockaddr_in whenever you need to specify a full adress on
the Internet.

- A port is an Internet commo endpoint associated with an application. (host,port) defines an
Internet address.

- Ports in the range [0,1023] reserved for root; others available to ordinary users. (See RFC 1700,
IANA http: //www.iana.com/numbers. html)

- ftp uses 20 & 21; telnet uses 23; finger uses 79; rlogin uses 513; talk uses 517 ... see
/etc/services (“well-known" ports).

MACHINE A

MACHINE B

120.240.2.10
PROCESS A
120.240.2. 167100 SR
120.240.2. 10/105 FORE. [0
PROCESS B
120.240.2.10p2000 ,
PROCESS C | 720.240.3.2/2004
PORT 2000 —‘
120.240.3.1

i]

retweork inferface -
e.g. elhernet card

frarsmission medinem

2. 2460.3.2/2100

PROCESS A
PORT 2100

120.240.3.2

frarsmission mediiem

Library function to map symbolic host name into IP address(es):

#include <netdb.h>

struct hostent *gethostbyname(const char *name)

void herror(const char *s);

Library function to map symbolic host name into IP address(es):
#include <netdb.h>
struct hostent *gethostbyname(const char *name)

void herror(const char *s);

Hostent data structure:

struct hostent {

char *h_name; /* official name of host */
char *xh_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */
char *xh_addr_list; /* list of addresses */

}
#define h_addr h_addr_list[0]

Useful for printing IP addresses and turning “dotted decimal” strings into IP addresses (see UPM
inet(3) for more info):

Useful for printing IP addresses and turning “dotted decimal” strings into IP addresses (see UPM
inet(3) for more info):

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char *inet_ntoa(struct in_addr in);

int inet_aton(const char *cp, struct in_addr *inp);

getaddrs.c: Get Host Info From Symbolic Name

#include
#include
#include
#include

getaddrs.c: Get Host Info From Symbolic Name

<netdb.h>
<sys/socket.h>
<arpa/inet.h>
<netinet/in.h>

main(argc,argv)

int argc;

struct

entry =

char **argv;

hostent *entry; char **next; struct in_addr address, **addrptr;
gethostbyname (argv[1]);

if ('entry) { herror("lookup error"); exit(1l);}
printf ("Official name -> %s\n", entry->h_name);
if (entry->h_aliases([0]) {
printf("Aliases ->\n");
for (next = entry->h_aliases; *next; next++)
printf (" %s\n", *next);

}

printf ("IP Addresses:\n");
for (addrptr=(struct in_addr **) entry->h_addr_list; *addrptr; addrptr++)
printf (" %s\n", inet_ntoa(**addrptr));

anthony.csl’, ./getaddrs anthony
Official name -> anthony.csl.mtu.edu
Aliases:

anthony.csl

anthony

cslab21
IP Addresses:

141.219.150.190

anthony.csl’, ./getaddrs anthony
Official name -> anthony.csl.mtu.edu
Aliases:

anthony.csl

anthony

cslab21
IP Addresses:

141.219.150.190
anthony.csl), ./getaddrs www.linux.org
Official name -> www.linux.org
IP Addresses:

198.182.196.56

Inverse function (know IP adress, want symbolic name):
#include <netdb.h>

struct hostent *gethostbyaddr(const char *addr, int len, int type);

Inverse function (know IP adress, want symbolic name):
#include <netdb.h>

struct hostent *gethostbyaddr(const char *addr, int len, int type);

gethost.c: Get Host Info From IP Address

Inverse function (know IP adress, want symbolic name):
#include <netdb.h>

struct hostent *gethostbyaddr(const char *addr, int len, int type);

gethost.c: Get Host Info From IP Address

#include <netdb.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

main(argc,argv)

int argc; char x*argv;

{
struct hostent *entry; struct in_addr address; char x**next;
inet_aton(argv([1], &address);

entry = gethostbyaddr((char *)&address,sizeof (address) ,AF_INET);

if (lentry) { herror("lookup error"); exit(1l);}

like getaddrs.c

anthony.csl’, ./gethost 141.219.150.190
Official name -> anthony.csl.mtu.edu
Aliases:

anthony.csl

anthony

cslab21
IP Addresses:

141.219.150.190

UDP Server

socket ()

UDP Client Y
bind () (well-known porf)

Y

recvirom({) -

socket () "
" blocks untll datagram recelved from cllent

saendto ()
data {request)

process regquest

sendto
y %

recvirom()

Y

clo=ze ()

recv_udp.c: UDP/IP Server

recv_udp.c: UDP/IP Server

main()
{
short p_len;
int socket_fd, cc, h_len, fsize, namelen;
struct sockaddr_in s_in, from;
struct { char head; u_long body; char tail;} msg;

socket_fd = socket (AF_INET, SOCK_DGRAM, 0);

bzero((char *) &s_in, sizeof(s_in)); /* They say you must do this x/
s_in.sin_family = (short)AF_INET;
s_in.sin_addr.s_addr = htonl (INADDR_ANY) ; /* WILDCARD x*/

S_in.sin_port = htons((u_short)0x3333);
printsin(&s_in, "RECV_UDP", "Local socket is:"); fflush(stdout);
bind(socket_fd, (struct sockaddr *)&s_in, sizeof(s_in));
for(;5;) {
fsize = sizeof (from);
cc = recvfrom(socket_fd,&msg,sizeof (msg),0, (struct sockaddr *)&from,&fsize);
printsin(&from, "recv_udp: ", "Packet from:");
printf ("Got data ::%c%ldlc\n",msg.head,ntohl(msg.body) ,msg.tail); fflush(stdout);

send_udp.c: UDP/IP Client

send_udp.c: UDP/IP Client

main(argc,argv)

int argc; char **argv;

{
int socket_fd;
struct sockaddr_in dest;
struct hostent *hostptr;

struct { char head; u_long body; char tail; } msgbuf;
socket_fd = socket (AF_INET, SOCK_DGRAM, 0);

bzero((char *) &dest, sizeof(dest)); /* They say you must do this */
hostptr = gethostbyname(argv([1]);

dest.sin_family = (short) AF_INET;

bcopy (hostptr->h_addr, (char *)&dest.sin_addr,hostptr->h_length);
dest.sin_port = htons((u_short)0x3333);

msgbuf.head = ’<’;
msgbuf .body = htonl(getpid()); /* IMPORTANT! */
msgbuf.tail = ’>’;

sendto(socket_fd,&msgbuf,sizeof (msgbuf),0, (struct sockaddr *)&dest,
sizeof (dest));

Note striking similarities and simple differences between Unix datagram programs and Internet
datagram programs. (Extends local IPC into networked IPC relatively seamlessly).

Note striking similarities and simple differences between Unix datagram programs and Internet
datagram programs. (Extends local IPC into networked IPC relatively seamlessly).

Different socket creation parameters (trivial).

Note striking similarities and simple differences between Unix datagram programs and Internet
datagram programs. (Extends local IPC into networked IPC relatively seamlessly).

Different socket creation parameters (trivial).

Different naming conventions (significant).

Note striking similarities and simple differences between Unix datagram programs and Internet
datagram programs. (Extends local IPC into networked IPC relatively seamlessly).

Different socket creation parameters (trivial).
Different naming conventions (significant).

Of course, underlying implementation is completely different (but generally hidden from
programmer).

Note striking similarities and simple differences between Unix datagram programs and Internet
datagram programs. (Extends local IPC into networked IPC relatively seamlessly).

Different socket creation parameters (trivial).
Different naming conventions (significant).

Of course, underlying implementation is completely different (but generally hidden from
programmer).

Impt. practical note: can always open up Internet ports on “localhost” (127.0.0.1) to test/develop
network software. Implementation should be smart enough not to put packets on wire (move from
output buffer to input buffer).

Want a much fancier application. Namely:

- Receiver will shut down cleanly if no datagram received after a 1 minute interval. Will also shut
down cleanly if receives anything on stdin.

Want a much fancier application. Namely:

- Receiver will shut down cleanly if no datagram received after a 1 minute interval. Will also shut
down cleanly if receives anything on stdin.

- Basic problem . . . hanging a read/recv from several descriptors at once.

Want a much fancier application. Namely:

- Receiver will shut down cleanly if no datagram received after a 1 minute interval. Will also shut
down cleanly if receives anything on stdin.

- Basic problem . . . hanging a read/recv from several descriptors at once.
- Solution thru kernel call:

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

fancy_recv_udp.c: Fancy UDP Server

fancy_recv_udp.c: Fancy UDP Server

main ()
{
int socket_fd, cc, h_len, fsize, namelen, hits;
fd_set mask;
struct timeval timeout;
struct sockaddr_in s_in, from;

struct { char head; u_long body; char tail; } msg;
socket_fd = socket (AF_INET, SOCK_DGRAM, 0);

bzero((char *) &s_in, sizeof(s_in)); /* They say you must do this
s_in.sin_family = (short) AF_INET;

s_in.sin_addr.s_addr = htons(INADDR_ANY); /* WILDCARD x*/
s_in.sin_port = htonl((u_short)0x3333);

bind(socket_fd, (struct sockaddr *)&s_in, sizeof(s_in));

for(;;) {
fsize = sizeof (from);
FD_ZERO (&mask) ; FD_SET(0,&mask); FD_SET(socket_fd,&mask);
timeout.tv_sec = 60; timeout.tv_usec = 0;

if ((hits = select(socket_fd+1, &mask, (fd_set *)0, (fd_set *)O0,
&timeout)) < 0) {
perror ("recv_udp:select"); exit(1);

+

if ((hits==0) || ((hits>0) && (FD_ISSET(0,&mask)))) {

printf ("Shutting down\n"); exit(0);
+
cc = recvfrom(socket_£fd,&msg,sizeof (msg) ,0,

(struct sockaddr *)&from,&fsize);

printsin(&from, "recv_udp: ", "Packet from:");
printf ("Got data ::%c’%ld%c\n",msg.head,ntohl(msg.body) ,msg.tail);
fflush(stdout);

Internet Virtual Circuits (TCP/IP)

Want to extend pipe abstraction into the Internet. This means a reliable byte stream with no
visible packets/messages.

Internet Virtual Circuits (TCP/IP)

Want to extend pipe abstraction into the Internet. This means a reliable byte stream with no
visible packets/messages.

Implies point-to-point connection. In entire Internet, the tuple
((host1,portl), (host2,port2))
is unique. Note that point-to-point means process-to-process.

Internet Virtual Circuits (TCP/IP)

Want to extend pipe abstraction into the Internet. This means a reliable byte stream with no
visible packets/messages.

Implies point-to-point connection. In entire Internet, the tuple
((host1,portl), (host2,port2))
is unique. Note that point-to-point means process-to-process.

Note that there is a non-trivial cost in setting up the connection, maintaining reliable transmission
on the connection, and tearing down the connection.

Internet Virtual Circuits (TCP/IP)

Want to extend pipe abstraction into the Internet. This means a reliable byte stream with no
visible packets/messages.

Implies point-to-point connection. In entire Internet, the tuple
((host1,portl), (host2,port2))
is unique. Note that point-to-point means process-to-process.

Note that there is a non-trivial cost in setting up the connection, maintaining reliable transmission
on the connection, and tearing down the connection.

Client-server model implicit.

New kernel calls:

To mark socket as being capable of accepting TCP/IP connections, server does:

#include <sys/socket.h>

int listen(int s, int backlog);

New kernel calls:
To mark socket as being capable of accepting TCP/IP connections, server does:
#include <sys/socket.h>

int listen(int s, int backlog);

To accept a TCP/IP connection on a listening socket, server can then do:

#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int *addrlen);

New kernel calls:
To mark socket as being capable of accepting TCP/IP connections, server does:
#include <sys/socket.h>

int listen(int s, int backlog);

To accept a TCP/IP connection on a listening socket, server can then do:

#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int *addrlen);

To initiate a connection to a server, client does:

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

New kernel calls:

To mark socket as being capable of accepting TCP/IP connections, server does:

#include <sys/socket.h>

int listen(int s, int backlog);

To accept a TCP/IP connection on a listening socket, server can then do:

#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int *addrlen);

To initiate a connection to a server, client does:

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

Can then use read and write to pass data on the virtual circuit.

socket ()
Y
bind ()
Y
listen()
Y
accept()
socket () blocks untll connectlon from cllent
t conneclon establishment
connect () e
" TCP three-way handshake
write ()
\ '
data {rﬂqu&ﬂt} read { }
Y

process request

' ‘y writel)
read ()

close () end—of-flle notiflcation
¥
read {)

¥

close ()

inet_wstream.c TCP/IP Client

inet_wstream.c TCP/IP Client

char msg[] = { "false pearls before real swine" };
main(argc, argv)
int argc; char **argv;
{
char *remhost; u_short remport;
int sock, left, num, put;
struct sockaddr_in remote;
struct hostent x*h;

remhost = argv[1]; remport = atoi(argv[2]);
sock = socket(AF_INET, SOCK_STREAM, O);

bzero((char *) &remote, sizeof (remote));

remote.sin_family = AF_INET;

h = gethostbyname (remhost) ;

bcopy((char *)h->h_addr, (char *)&remote.sin_addr, h->h_length);
remote.sin_port = htons(remport);

connect (sock, (struct sockaddr *)&remote, sizeof(remote));
/* can’t guarantee socket will accept all we try to write, cope */
g p y p

left = sizeof(msg); put=0;
while (left > 0){
if ((num = write(sock, msg+put , left)) < 0) {
perror("inet_wstream:write");
exit(1);
+
else {
left -= num;
put += num,;
+
+

inet_rstream.c TCP/IP Server

inet_rstream.c TCP/IP Server

main()

{
int listener, conn, length; char ch;
struct sockaddr_in s1, s2;

listener = socket(AF_INET, SOCK_STREAM, 0);

bzero((char *) &sl1, sizeof(sl));

sl.sin_family = AF_INET;

sl.sin_addr.s_addr = htonl (INADDR_ANY); /* Any of this host’s interfaces is 0K. */
sl.sin_port = htons(0); /* bind() will gimme unique port. */
bind(listener, (struct sockaddr *)&sl, sizeof(sl));

length = sizeof(sl);

getsockname (listener, (struct sockaddr *)&sl, &length); /* Find out port number */
printf ("RSTREAM:: assigned port number %d\n", sl.sin_port);

listen(listener,1);

length = sizeof(s2);

conn=accept(listener, (struct sockaddr *)&s2, &length);
printsin(&s2,"RSTREAM::", "accepted connection from");

printf ("\n\nRSTREAM:: data from stream:\n");
while (read(conn, &ch, 1) == 1) putchar(ch);
putchar(’\n’);

Typical TCP/IP Client/Server Server

Typical TCP/IP Client/Server Server

listener = socket(...);

bind(listener, ...);
listen(listener, ...);
while (1) {

new = accept(listener, ...);

if (fork() == 0) {
close(listener);
/* read lots of stuff from new */

}

close(new) ;

while(wait3(status, WNOHANG, NULL)); /* Can also handle
SIGCHLD */

Application related protocols

e.g., FTP: handle flle naming
conventlon differences

Allow users to establish session

Dlalogue control
Token management
Synchronkzation

Control operation of subnet

Routing
Congestion control
Accounting

Transmission of raw bits over wire

How many volts representa 1,a 0?
Is transmisslon bidirectlonal?

OSI| Reference Model

Application

Presentation

Session

Transport

MNetwork

Physical

Services requested frequently

Concemed with syntax and semantlcs of Information
transmisslon
e.g., data encoding, data compression

End-to-end layer

Ensure data from sesslon layer artves
In order, error free

Data broken Into smaller units

Data broken Into frames
Create and recognize frame boundaries
Handle lost or dupllcated frames

Application

Presentation

Session

Transport

Metwork

Datalink

Physical

0S| REFERENCE MODEL

Application

TCP UDP

IPva, IPvG

Device Driver
and
Hardware

INTERNET PROTOCOL
SUITE

User process

Kemel

Packet Encapsulation

ol IP Packet Encapsulated in Ethernet Packet
a|a
Ethernet Ethernet
Header Checksum

TCP or UDP Packet Encapsulated in IP Datagram

IP Dest
IP Src

IP Header

Data

Src Port
Length

ksum

oo

=
=}
a
B
=)
P

UDP Header

Ethernet

e |EEE Standard 802: CSMA/CD, token bus, token ring

Ethernet

e |EEE Standard 802: CSMA/CD, token bus, token ring
e |EEE Standard 802.3: CSMA/CD

Ethernet

e |EEE Standard 802: CSMA/CD, token bus, token ring

e |EEE Standard 802.3: CSMA/CD
Ethernet is implementation of 802.3

Ethernet

e |EEE Standard 802: CSMA/CD, token bus, token ring

e |EEE Standard 802.3: CSMA/CD
Ethernet is implementation of 802.3

e Typically 6 byte address: 00:62:97:B8:C9:4A

Ethernet

IEEE Standard 802: CSMA/CD, token bus, token ring

|IEEE Standard 802.3: CSMA/CD
Ethernet is implementation of 802.3

Typically 6 byte address: 00:62:97:B8:C9:4A
ARP: protocol for mapping IPv4 address the hardware address

Ethernet

|IEEE Standard 802: CSMA/CD, token bus, token ring

|IEEE Standard 802.3: CSMA/CD
Ethernet is implementation of 802.3

Typically 6 byte address: 00:62:97:B8:C9:4A
ARP: protocol for mapping IPv4 address the hardware address
RARP: protocol for mapping hardware address to |IPv4 address

Ethernet

|IEEE Standard 802: CSMA/CD, token bus, token ring

|IEEE Standard 802.3: CSMA/CD
Ethernet is implementation of 802.3

Typically 6 byte address: 00:62:97:B8:C9:4A
ARP: protocol for mapping IPv4 address the hardware address
RARP: protocol for mapping hardware address to |IPv4 address

Ethernet address outermost
Routing protocols determine correct IP address on a hop-by-hop basis
ARP maps IP address to ethernet address to transmit message across next hop

Ethernet

|IEEE Standard 802: CSMA/CD, token bus, token ring

|IEEE Standard 802.3: CSMA/CD
Ethernet is implementation of 802.3

Typically 6 byte address: 00:62:97:B8:C9:4A
ARP: protocol for mapping IPv4 address the hardware address
RARP: protocol for mapping hardware address to |IPv4 address

Ethernet address outermost
Routing protocols determine correct IP address on a hop-by-hop basis
ARP maps IP address to ethernet address to transmit message across next hop

jmayo: arp -a

cec.mtu.edu (141.219.151.196) at 08:00:20:1D:16:13 [ether] on ethO
kurosawa.hu.mtu.edu (141.219.148.44) at 00:50:04:A1:D4:C2 [ether] on ethO
cslserver.csl.mtu.edu (141.219.150.71) at 08:00:20:77:32:D6 [ether] on ethO
cs.mtu.edu (141.219.150.12) at 08:00:20:21:A5:D3 [ether] on ethO
brtril.tc.mtu.edu (141.219.148.1) at 00:00:EF:06:76:30 [ether] on

ethO

jmayo> ping rainbow.cs.mtu.edu

PING rainbow.cs.mtu.edu (141.219.150.6) from 141.219.150.16 : 56(84) bytes of data.

64 bytes from rainbow.cs.mtu.edu (141.219.150.6): icmp_seq=0 tt1=255 time=1.2 ms64 bytes from rainbo
—--- rainbow.cs.mtu.edu ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 0.5/0.8/1.2 ms

jmayo> ping rainbow.cs.mtu.edu

PING rainbow.cs.mtu.edu (141.219.150.6) from 141.219.150.16 : 56(84) bytes of data.

64 bytes from rainbow.cs.mtu.edu (141.219.150.6): icmp_seq=0 tt1=255 time=1.2 ms64 bytes from rainbo
—--- rainbow.cs.mtu.edu ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 0.5/0.8/1.2 ms

jmayo: arp -a

cec.mtu.edu (141.219.151.196) at 08:00:20:1D:16:13 [ether] on ethO
kurosawa.hu.mtu.edu (141.219.148.44) at 00:50:04:A1:D4:C2 [ether] on ethO
cslserver.csl.mtu.edu (141.219.150.71) at 08:00:20:77:32:D6 [ether] on ethO
cs.mtu.edu (141.219.150.12) at 08:00:20:21:A5:D3 [ether] on ethO
brtril.tc.mtu.edu (141.219.148.1) at 00:00:EF:06:76:30 [ether] on ethO
rainbow.cs.mtu.edu (141.219.150.6) at 08:00:20:9C:2F:97 [ether] on ethO

jmayo: ping ftp.x.org

PING ftp.x.org (198.4.202.8) from 141.219.150.16 : 56(84) bytes of data.
64 bytes from ftp.x.org (198.4.202.8): icmp_seq=0 ttl=51 time=81.0 ms
64 bytes from ftp.x.org (198.4.202.8): icmp_seqg=1 ttl=51 time=79.0 ms

--— ftp.x.org ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 79.0/80.0/81.0 ms

jmayo: ping ftp.x.org

PING ftp.x.org (198.4.202.8) from 141.219.150.16 : 56(84) bytes of data.
64 bytes from ftp.x.org (198.4.202.8): icmp_seq=0 ttl=51 time=81.0 ms
64 bytes from ftp.x.org (198.4.202.8): icmp_seqg=1 ttl=51 time=79.0 ms

--— ftp.x.org ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 79.0/80.0/81.0 ms

jmayo: arp -a

cec.mtu.edu (141.219.151.196) at 08:00:20:1D:16:13 [ether] on ethO
kurosawa.hu.mtu.edu (141.219.148.44) at 00:50:04:A1:D4:C2 [ether] on ethO
cslserver.csl.mtu.edu (141.219.150.71) at 08:00:20:77:32:D6 [ether] on ethO
cs.mtu.edu (141.219.150.12) at 08:00:20:21:A5:D3 [ether] on ethO
brtril.tc.mtu.edu (141.219.148.1) at 00:00:EF:06:76:30 [ether] on ethO
rainbow.cs.mtu.edu (141.219.150.6) at 08:00:20:9C:2F:97 [ether] on ethO
jmayo>

Mapping between Symbolic Name and IP Address

e Domain Name System: maps between hostnames and IP addresses

Mapping between Symbolic Name and IP Address

e Domain Name System: maps between hostnames and IP addresses
Nameserver provides resolution service

Mapping between Symbolic Name and IP Address

e Domain Name System: maps between hostnames and IP addresses
Nameserver provides resolution service

« typically BIND (Berkely Internet Name Domain)

Mapping between Symbolic Name and IP Address

e Domain Name System: maps between hostnames and IP addresses
Nameserver provides resolution service

« typically BIND (Berkely Internet Name Domain)
* Jetc/resolv.conf - contains nameserver locations

Mapping between Symbolic Name and IP Address

e Domain Name System: maps between hostnames and IP addresses
Nameserver provides resolution service

« typically BIND (Berkely Internet Name Domain)
* Jetc/resolv.conf - contains nameserver locations

e Other mechanisms:
static hosts files, e.g. /etc/hosts

Mapping between Symbolic Name and IP Address

e Domain Name System: maps between hostnames and IP addresses
Nameserver provides resolution service

« typically BIND (Berkely Internet Name Domain)
* /Jetc/resolv.conf - contains nameserver locations
e Other mechanisms:

static hosts files, e.g. /etc/hosts
Network Information System (NIS)

Mapping between Symbolic Name and IP Address

e Domain Name System: maps between hostnames and IP addresses
Nameserver provides resolution service

« typically BIND (Berkely Internet Name Domain)

x /etc/resolv.conf - contains nameserver locations
e Other mechanisms:

static hosts files, e.g. /etc/hosts

Network Information System (NIS)

e Access DNS via library routines
resolver library, gethostbyname,gethostbyaddr,etc.

jmayo: traceroute www.sydney.com.au
traceroute to www.sydney.com.au (209.66.116.64), 30 hops max, 38 byte packets

1

O 00 N O O i W N

[EQ
(@

brtril.tc.mtu.edu (141.219.148.1) 0.791 ms 0.585 ms 0.587 ms
bfs001-backbone.tc.mtu.edu (141.219.72.6) 2.321 ms 1.086 ms 1.101 ms
fel-0-0.mtu2.mich.net (198.110.131.61) 1.600 ms 1.790 ms 1.590 ms
198.108.23.141 (198.108.23.141) 13.184 ms 11.848 ms 11.948 ms

aads.above.net (206.220.243.71) 74.809 ms 75.470 ms 74.266 ms
corel-chicago-2.ord.above.net (216.200.254.89) 76.393 ms 73.363 ms 74.317 ms
sjc-ord-ocl2.sjc2.above.net (207.126.96.118) 73.871 ms 72.713 ms 73.291 ms
coreb-corel-oc48.sjc.above.net (216.200.0.177) 73.828 ms 72.795 ms 72.903 ms
main2-coreb-oc3.sjc.above.net (216.200.0.206) 77.723 ms 75.180 ms 73.493 ms
sydney.com.au (209.66.116.64) 77.176 ms 75.010 ms 75.228 ms

jmayo: traceroute cs.wm.edu
traceroute to cs.wm.edu (128.239.2.31), 30 hops max, 38 byte packets

1

©O© 00 N O O b W N

[
o

brtril.tc.mtu.edu (141.219.148.1) 14.237 ms 0.713 ms 0.765 ms
bfsO01-backbone.tc.mtu.edu (141.219.72.6) 1.955 ms 1.127 ms 0.920 ms
fel-0-0.mtu2.mich.net (198.110.131.61) 2.114 ms 1.755 ms 1.609 ms
198.108.23.141 (198.108.23.141) 12.832 ms 12.052 ms 12.678 ms
192.122.182.18 (192.122.182.18) 16.851 ms 16.688 ms 16.350 ms
clev-ipls.abilene.ucaid.edu (198.32.8.26) 22.950 ms 23.675 ms 23.446 ms
nycm-clev.abilene.ucaid.edu (198.32.8.30) 34.659 ms 35.171 ms 34.652 ms

cisco7200-at-wm-to-noc-at-abilene.wm.edu (128.239.12.1) 46.280 ms 45.460 ms

128.239.14.6 (128.239.14.6) 46.616 ms 45.396 ms 45.868 ms
va.cs.wm.edu (128.239.2.31) 47.630 ms 46.582 ms 47.162 ms

46.232 ms

