
CS 3411 Systems Programming

Department of Computer Science
Michigan Technological University

Compilation and Linking



Today's Topics

I Compilation and Linking

I Libraries



Compilation and Linking

#inc lude <s t d i o . h>

i n t x ;
i n t z ;
f l o a t a r r [ 1 0 0 ] ;

main ( ) {
x = 0 ; z = 0 ;
i n t r e s = f ( 3 ) ;
p r i n t f ( " f (3)=%d x=%d z=%d\n" , r e s , x , z ) ;

}

I Code for int f(int) not available yet (nor printf)

I x and z available to other object modules

I Compiled module must re�ect these facts



Compilation and Linking



Compilation and Linking

I Compiler: Converts program from source �le to machine

language, produces and object module

I Linker: Produces a load module which is ready to be executed

I Operating system creates a process from the load module



Compilation and Linking

s t a t i c i n t z ;
i n t f ( a )
i n t a ;
{

extern i n t x ;
x = 14 ; z = 1 ;
re tu rn a ;

}

I Let's try checking out what the compiled code looks like!



Object Files

I Object �le may contain unresolved global symbols

I De�ned: Variables, functions de�ned within object �le, can be

referenced within other object �les

I Unde�ned: variables, functions used within this object �le,

de�ned elsewhere

I Linker combines object �les and resolves symbols while
creating executable

I Object �le contains symbol table
I Symbol table will contain information needed to resolve

symbols
I Linker uses information from the symbol table

I Executable will contain no unresolved symbols



Object Modules

I Has many di�erent formats (ELF, COFF)

I Header section - Sizes required to parse object module and

create program

I Machine code - Generated machine code (the text section!)

I Initialized Data - Initialized global and static data (doesn't go

on stack)

I Symbol Table - External Symbols
I Unde�ned - Used in this module, de�ned elsewhere
I De�ned - De�ned in this module, may be unde�ned in another

module

I Relocation Information - Record of places where symbols must

be relocated



Tools for Examining Object Files

I �le

I nm

I objdump

I readelf



Linking

I Object module will (usually) assume starting address is zero

I Linker combines several object modules
I Text sections combined, data sections combined, ...

I Combined modules cannot all start at zero!

I Cannot have unresolved references in load module

I Two tasks then:
I Relocate modules (account for starting address that results

from combining modules)
I Link modules (resolve unde�ned external references)



Relocation



Linking



Load Module Creation

1. Create load module and global symbol table

2. Get next object module or library name

3. Object module

3.1 Insert code and data, remember where
3.2 Relocate object module and all symbols in module's symbol

table
3.3 Unde�ned external references

I Already de�ned in global symbol table, write value in just
loaded object module

I Not yet de�ned, note that links must be �xed when symbol
de�ned

3.4 De�ned external references:
I Fix up all previous references (to this symbol) noted in global

symbol table



Load Module Creation

4. Library
I Find each unde�ned external reference in global symbol table
I See if symbol de�ned in library
I If so, load it per step (3)

5. Back to step 2

I Load module need not contain reloaction (in most cases) or

symbol table sections

I Symbol table information may be used by debugger or stripped

to reduce binary size





Static Linking

I Library routines combined into binary program image

I Creates large load modules

I Same library may be contained in multiple images throughout

�le system

I Once load module is created, it is impervious to changes in
referenced library

I Cannot incorporate new versions without recompilation
I Does not depend on existence of (speci�c version of) library on

system

I gcc -static ...



Dynamic Linking

I Stub included in binary program image for each library-routine

reference

I Stub is code to locate memory-resident routine or load it if

library routine not present

I Stub replaces itself with address of routine and executes

routine

I Will use most recent version of library routine

I Higher overhead during use; faster startup than statically linked

I Allows same code to be shared by multiple processes

I All processes using a language library execute single copy of

library code (shared library)

I Generally requires help from OS (code mapped into multiple

address spaces)

I More e�cient use of memory


	Topics

