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ThreadMentor is a multi-platform pedagogical tool designed to ease the difficulty in teaching and
learning multithreaded programming. It consists of a C++ class library and a visualization system.
The class library supports many thread management functions and synchronization primitives in
an object-oriented way, and the visualization system is activated automatically by a user program
and shows the inner working of every thread and every synchronization primitive on-the-fly. Events
can also be saved for playback. In this way, students will be able to visualize the dynamic behavior
of a threaded program and the interaction among threads and synchronization primitives.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.4.1 [Operating Systems]: Process Management; K.3.2 [Computers and Education]:
Computer and Information Science Education—Computer Science Education

General Terms: threads, synchronization, visualization

Additional Key Words and Phrases: multithreaded programming, synchronization primitives

1. INTRODUCTION

The capability of multithreaded programming was first commercially available in
the late 60’s when IBM added the task feature and completion event variables
into its PL/I F compiler and made the same available in all IBM VS (i.e., virtual
storage) operating systems as supervisor calls. Threading became popular in the
Unix community in the early 80’s. Today, virtually all operating systems have
multithreaded capability and the POSIX Pthreads standard is also popular. Many
well-known operating systems textbooks added sections on threads in their newest
editions [Silberschatz et al. 2002; Stallings 2001; Tanenbaum 2001] and numerous
books about threads were published in recent years.

To ensure students can lead the trend in computer science toward multithreaded
programming in the foreseeable future, we have been teaching this concept in an
operating systems course for seven years [Shene 1998; 2002]. Our experience shows
that the paradigm shift from sequential to multithreaded causes students significant
problems [Shene and Carr 1998], such as (1) multithreaded programming requires
a new mindset, (2) the behavior of a multithreaded program is dynamic, making
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debugging very difficult, (3) proper synchronization is more difficult than antici-
pated, and (4) programming interfaces are usually more complex than necessary,
causing students to spend time in learning the system details rather than the fun-
damentals. Items (2) and (3) have proven to be more troublesome because students
have difficulties in reconstructing the events from the output of the execution of a
threaded program. Hence, it is very challenging for students to pinpoint mistakes
and potential problems (e.g., race conditions) in their programs. Moreover, since
the output of a threaded program is serialized by the screen output, the dynamic
behavior of the execution of a threaded program is lost. ThreadMentor has been
developed to bring back and let students see the dynamic behavior of threaded
programs, and to help students understand synchronization primitives.

ThreadMentor is a multi-platform pedagogical tool designed to ease the difficulty
in teaching and learning multithreaded programming. It runs on multiple plat-
forms (e.g., Windows, Linux and Sun Solaris) and consists of two components:
a class library and a visualization system. These two components are integrat-
ed together seamlessly and a user does not have to instrument his/her program
to obtain the visualization. The visualization can be real-time or post-mortem
and supports all thread management (e.g., creation, termination, joining, yielding,
suspension and resume) and almost all commonly used synchronization primitives
(e.g., mutex locks, semaphores, Hoare and Mesa monitors, barriers, reader-priority
and writers-priority readers-writers locks, and synchronous and asynchronous one-
to-one, many-to-one and many-to-many channels). Additionally, a topology editor
allows students to design the topology of communication links among threads and
generate the necessary program code for channel construction. With the topology
editor, students can concentrate on problem solving rather than the usually messy
and tedious channel construction task. Moreover, ThreadMentor also includes a
portable user-level kernel mtuThread that supports non-preemptive thread schedul-
ing for students to learn the internals of thread dispatching and thread management.
ThreadMentor’s emphasis is on the low-level events rather than algorithm animation
because we believe that these low-level activities are the most fundamental parts
that students have difficulty comprehending and are the most important factors
needing visualization. Therefore, ThreadMentor provides students with a coherent
and unified platform for students to learn multithreaded programming in operating
systems and/or concurrent programming courses.

In this paper, we shall provide an overview of the design philosophy and some
important features of ThreadMentor. In the following, Section 2 contains a review of
related work; Section 3 discusses some design issues, and advantages and disadvan-
tages of our approach; and Section 4 presents a general system overview. Section 5
to Section 7 contain a detailed discussion of ThreadMentor’s support of semaphores,
monitors and channels. Although ThreadMentor supports more synchronization
primitives, only semaphores, monitors and synchronous one-to-one channels will be
discussed. The user-level kernel mtuThread and the topology editor are discussed
in [Bedy et al. 1999] and [Carr et al. 2002], respectively, and will not be repeated
here. Some preliminary results were also reported in [Bedy et al. 2000; Carr and
Shene 2000] and a tutorial is available in [Shene 2001]. Finally, Section 8 has our
conclusions.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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2. PREVIOUS WORK

Many papers have been published in the SIGCSE Technical Symposium and ITiCSE
Conference on multithreaded, multiprocess, parallel and distributed computing.
These works include: socket-based message-passing libraries [Arnow 1995; Tol-
l 1995b], various modifications to Ben-Ari’s well-known Pascal compiler [Ben-Ari
1982; Bynum and Camp 1996; Kurtz et al. 1998; Persky and Ben-Ari 1998], PVM-
based parallel computing [Jin and Yang 1995a; McDonald and Kazemi 1997], a
data-parallel C++ library [Kotz 1995], Java-based concurrent programming [Hart-
ley 1998; 1999; 2000; 2001], synchronization [Choi and Lewis 2000; Reek 2002;
Robbins 2000; 2001; 2002], multithreaded programming [Berk 1996], parallel al-
gorithms [Jin and Yang 1995b; McDonald and Kazemi 2000; Luque et al. 1996;
Naps and Chan 1999], parallel computing labs [Elenbogen 1996; Harlan 1995] and
other education related issues [Adams et al. 2000; Ben-Ari 1996; Burkhart 1997;
Cunha and ao Lourenço 1998; Kolikant et al. 2000; Kurtz and Alsabbagh 1998;
Kwiatkowski et al. 1996; Pollock and Jochen 2001; Toll 1995a]. There are other
earlier studies also. Higginbotham and Morelli [1991] used the Unix IPC interface.
Zimmermann et al. [1988] discussed their system for Portal, a language close to
Modula 2. Unfortunately, a special hardware TMK (Test Machine Kernel) was
used, making this system not portable. Hartley used a software technique [Hartley
1992; 1994]. The user program, written in SR [Andrews and Olson 1992], saves the
activities of a program to a file and uses XTANGO [Stasko 1990] to playback after
the program completes. Price and Baecker [1991] also discussed a framework for
concurrent program animation. These works address some aspects of concurrent
computing rather than providing a coherent and unified environment for students
to learn multithreaded programming.

There are very few pedagogical tools for teaching threaded programming. Most
tools are variations of Ben-Ari’s Pascal compiler (see also Burns and Davies [1993]),
focusing mainly on running threads or processes under the control of an interpreter
with various kinds of synchronization primitives. Lester’s Multi-Pascal [Lester 1993]
is also an interpreter with limited parallel computing capability. There are some
Java-based tools for distributed algorithms [Ben-Ari 1997; 2001; Schreiner 2002].

Visualizing parallel programs can be online or offline. The former generates visu-
als on-the-fly, while the latter saves the events and plays back with another system
(i.e., post-mortem). The advantage of an offline system is that every event related
to the execution of a program is saved and can be replayed at any time. However, its
main disadvantages are: (1) it could be too late for a student to catch any bug, since
it only shows one instance of the program execution; (2) a large volume of output
may be generated that could be incomplete or even corrupted if the program ends
abnormally; (3) the program being visualized must be “instrumented” by adding
extra statements and/or directives, which could directly interfere with the behavior
of the program; and (4) the offline system must also synchronize its own file writing
activities, adding an extra level of complexity that may affect the program’s origi-
nal behavior. The most well-known system of this type is PARADE [Stasko 1995],
which is based on POLKA. Other details can be found in [Flinn and Cowan 1990;
Kraemer 1998; Stasko and Kraemer 1993a; 1993b]. Along this line of research, Zhao
and Stasko [1995] designed an environment for visualizing Pthreads programs using
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POLKA, and Cai et al. [1993] discussed a system for visualizing programs written
in OCCAM. Other useful information may be found in [Bemmerl and Braun 1993;
Chao and Liu 2000; Miller 1993; Pancake 1996; Roman et al. 1992; Zhang et al.
1999].

However, none of the above mentioned systems support multithreaded program-
ming and its visualization tightly, and provides students with an environment for
developing threaded programs and visualizing program execution and synchroniza-
tion activities. Moreover, except for Zhao and Stasko [1995], none of the systems is
able to reveal the low-level synchronization related information. In fact, most of the
visualization systems are for performance and/or debugging rather than designed
as pedagogical platforms to be used by beginners and students. Consequently,
ThreadMentor is perhaps the only comprehensive pedagogical system available for
teaching and learning multithreaded programming.

3. DESIGN ISSUES

The main design goal of ThreadMentor is to build a multi-platform system for help-
ing students learn and visualize the fundamentals of multithreaded programming
in concurrent programming and operating systems courses as described in unit OS3
Concurrency of CC2001 [ACM/IEEE 2001]. ThreadMentor consists of a class library
and a visualization system. Both components support thread management (e.g.,
thread creation, termination and join) and popular synchronization primitives (e.g.,
mutex locks, semaphores, monitors, barriers, and synchronous and asynchronous
channels). The class library uses textbook syntax so that students do not have to
memorize many different parameters, and hides as much system details as possible
from its users. Hence, threaded programs in ThreadMentor look very similar to
textbook examples. Moreover, a user program and the visualization system run in
separate address spaces, and, as a result, problems in one program will not interfere
and propagate to the other.

To make ThreadMentor a multi-platform system, the class library translates many
thread management and synchronization primitive calls to the corresponding sys-
tem supported thread library calls, and the visualization system uses the multi-
platform toolkit GTK [Mattis et al. 2002] for GUI development. As a result,
ThreadMentor only supports user-level threads for maximum portability. A mes-
sage queue is used to support the communication between the class library and
the visualization system. In this way, ThreadMentor can support Windows, Linux
and other Unix variants, and Sun Solaris using Win32 Threads, Pthreads, and So-
laris threads, respectively. It also includes a small portable kernel mtuThread that
supports user-level multithreaded programming [Bedy et al. 1999]. Hence, Thread-
Mentor can run on most popular platforms (Figure 1). Due to the multi-platform
requirement and the use of GTK and other thread libraries, C/C++ is used. Java
is not chosen because of its insecure parallelism [Brinch Hansen 1999]. The class
library has two versions, one version with visualization enabled and the other with-
out visualization. A student may use the version with visualization for learning
and debugging, and the version without visualization for efficiency.

Although this approach provides maximum flexibility, some compromises must
be made. First, since the class library is part of the user program that runs in
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 1. ThreadMentor system design

user address space, ThreadMentor does not have access to system internal data. As
a result, between the time when ThreadMentor detects a synchronization primitive
activity and sends a message to the visualization system and the time the underlying
system actually performs the desired operation, there is a brief delay. Second, since
the message queue between the class library and the visualization system is an
asynchronous channel with a finite capability, it is possible that the visualization
display may also lag behind for another brief moment due to queued messages.
Moreover, since most systems buffer screen output and since ThreadMentor has no
control over system buffering, it is possible that a user program prints much faster
than the activities shown in ThreadMentor’s windows. Third, the information for a
synchronization primitive maintained by ThreadMentor may not be identical to the
information that is maintained by the underlying system for a very brief moment.
For example, it is possible that the semaphore value recorded by ThreadMentor may
be different from the one recorded by the underlying system due to system call delay.
Fourth, after receiving a message from the class library, the visualization system
takes time to update all of its windows. These four factors may cause the program
output and the content of each ThreadMentor’s window to be not fully synchronized.
Fortunately, these have not been serious problems on faster machines; however,
students must be informed of this fact.

4. SYSTEM OVERVIEW

The most important class in the class library is class Thread. A student defines
a thread as a derived class of Thread and supplies a method ThreadFunc() as
the thread body. Class Thread includes methods Begin() for executing a created
thread, Exit() for terminating a running thread, Join() for joining with another
thread, Yield() for relinquishing the execution to another thread, Suspend() for
suspending a thread, and Resume() for resuming the execution of a suspended
thread. A created thread does not run until its Begin() is called. Method Delay(),
which is implemented by calling method Yield() to execute a random number of
context switches, may be used for delaying its caller. A user may use a constructor
for other initialization tasks (e.g., giving the thread a symbolic name). Figure 2,
which implements the quicksort, provides a general feeling of how class Thread is
used. After partitioning, each quicksort thread creates two child threads with new,
runs them with Begin(), waits for their completion with Join(), and exits with
Exit().

Since all visualization activities are monitored and controlled within the class
library, a user does not have to alter his/her program in order to generate visu-
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#include "ThreadClass.h"

class QuickSortThread : public Thread

{

public:

QuickSortThread(int Lower, int Upper, int Input[]);

private:

void ThreadFunc(); // thread body

int lower, upper; // lower & upper bounds

int *a; // pointing to array to be sorted

};

void QuickSortThread::ThreadFunc()

{

Thread::ThreadFunc(); // required!

QuickSortThread *leftThread, *rightThread;

int pivotIndex;

..........

if (lower >= upper)

Exit(); // nothing to be sorted

pivotIndex = Partition(lower, upper, a); // partition

Swap(&a[pivotIndex], &a[lower]); // swap

leftThread = new QuickSortThread(lower, pivotIndex-1, a);

leftThread->Begin(); // sort the left portion

rightThread = new QuickSortThread(pivotIndex+1, upper, a);

rightThread->Begin(); // sort the right portion

leftThread->Join(); // wait for the child threads

rightThread->Join();

Exit(); // done and exit

}

void main(int argc, char *argv[])

{

QuickSortThread *quicksortthread;

int n, *a;

// read the input of n integers into a[]

quicksortthread = new QuickSortThread(0, n-1, a);

quicksortthread->Begin(); // start the thread

quicksortthread->Join(); // wait for its completion

// print the sorted array

Exit(); // done and exit.

}

Fig. 2. A typical way of using class Thread

alization. If a program is linked with the visualization enabled class library, the
visualization system will be brought up automatically. The visualization system is
basically an event-driven system. Methods of the class library know what events
are important and send the events to the visualization system through a message
queue. The visualization system receives the events from the message queue and
ACM Journal Name, Vol. V, No. N, Month 20YY.
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displays them in various windows on-the-fly. However, a user may also save all
events for post-mortem display, and, in this case, the visualization system works as
a stand-alone post-mortem system.

When the visualization system is activated by a user program, it displays the
Main Window as shown in Figure 3, which is the entry-point of all features sup-
ported by ThreadMentor. The large white area, called the display area, is used for
showing the first-level information of the selected primitive. The display area in
Figure 3 shows History Graph and Thread Hierarchy, meaning the History Graph
Window and the Thread Hierarchy Window are selected. The buttons on the right
side of the Main Window permit a user to select synchronization primitives. For
example, if Semaphore is selected, the display area will show all semaphores cre-
ated so far in the running program. A click on the name of a semaphore brings
up the second-level, detailed information of the selected semaphore. Currently, the
supported synchronization primitives include mutex locks, semaphores, monitors,
readers-writers locks, barriers, and synchronous and asynchronous channels. The
lower-right corner of the Main Window has a speed-bar and buttons for a user to
control the execution speed, pause and resume the execution of the running pro-
gram, and step through the thread management and synchronization activities.
Since ThreadMentor does not have access to compiler generated data due to its
multi-platform nature, it cannot step through statements.

The lower-left corner of the Main Window has three thread management relat-
ed buttons. The Thread Hierarchy Window displays the parent-child family tree
and the current state of every thread. Figure 4 is a snapshot of the Thread Hier-
archy Window while the quicksort program is running. A thread in this window
has a symbolic name, assigned by the user, of form Sorting(a:b), meaning this
sorting thread sorts the array portion with lower bound a and upper bound b.
From this figure, we learn the following (1) the main program receives eight in-
tegers to be sorted by Sorting(0:7), (2) the pivot element is the seventh and
two partitions are being sorted by Sorting(0:5) and Sorting(7:7), (3) thread
Sorting(0:5) finds the pivot element being the fifth and the two partitions are be-
ing sorted by threads Sorting(0:3) and Sorting(5:5), (4) thread Sorting(0:3)
creates threads Sorting(0:1) and Sorting(3:3), and (5) threads Sorting(7:7)
and Sorting(5:5) have terminated.

The History Graph Window shows the execution history of all threads (Figure 5).
In this window, each created thread has a history bar running from left to right.
Each history bar is color coded with green, blue and red for running, joining and
blocked by a synchronization primitive, respectively. Each history bar is also tagged
by two-letter tags representing synchronization events, which are chronologically or-
dered from left-to-right. There is only one type of tag in Figure 5, the join tag JN,
because no other synchronization primitives are being used in the quicksort pro-
gram. Since a thread must be running in order to execute a join and since after the
execution of a join the thread is in the joining state, to the left (resp., right) of a JN
tag, the history bar is colored in green (resp., blue). When a tag is clicked, a Source
Window appears in which the source program is displayed with the line that con-
tains the corresponding synchronization primitive highlighted. Consequently, the
History Graph Window is perhaps the most commonly used ThreadMentor window
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Fig. 3. ThreadMentor’s Main Window

because, for every thread, it provides the state, the relative time of execution and
description of a synchronization event with history bar tags, and a link between
a tag and the corresponding source statement. With this window, one can easily
reconstruct the events of the execution of a threaded program.

In addition to showing the events of a threaded program, these windows may also
provide solid evidence of the dynamic behavior of a threaded program, since the
change of states and relative execution speed on different platforms and on the same
platform but with a different load mix can easily be visualized with ThreadMentor.

5. SYNCHRONIZATION PRIMITIVE: SEMAPHORES

ThreadMentor supports semaphores with class Semaphore and methods Wait() and
Signal(). Methods that provide access to the internal data of a semaphore (e.g.,
retrieving the semaphore value and the number of waiting threads) are left out
intentionally. In our experience, students can easily mis-use these features. For
example, a student may retrieve the value of a semaphore, test it for zero, and
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 4. ThreadMentor’s Thread Hierarchy Window

Fig. 5. ThreadMentor’s History Graph Window

access a protected shared resource if the semaphore value is positive (i.e., no waiting
threads). However, this can cause race conditions because after the testing of the
semaphore value and before the access to the protected shared resource, other
threads may call the Wait() method and decrease the semaphore value to zero. As
a result, two or more threads may modify a shared data item at the same time. To
force a proper use of semaphores, ThreadMentor removes these potential problems
entirely.

Figure 6 shows a portion of a program that solves the well-known smokers prob-
lem. Smokers who need paper and match, match and tobacco, and tobacco and
paper are blocked by semaphores PaperMatch, MatchTobacco and TobaccoPaper,
respectively. Each smoker thread waits on its semaphore for the needed ingredi-
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ents, takes the ingredients when they are available, clears the table by signaling
the agent, and smokes for a while simulated with method Delay(). The agent
takes a rest, randomly generates the ingredients, signals the corresponding smoker
to indicate ingredients are available, and waits for the table to be cleared. All four
semaphores are initialized to zero with symbolic names.

#include "ThreadClass.h"

static Semaphore PaperMatch("PaperMatch", 0);

static Semaphore MatchTobacco("MatchTobacco", 0);

static Semaphore TobaccoPaper("TobaccoPaper", 0);

static Semaphore *Sem[3] = {&PaperMatch, &MatchTobacco, &TobaccoPaper};

static Semaphore Table("Table", 0);

class SmokerThread : public Thread { .......... }

class AgentThread : public Thread { .......... }

void SmokerThread::ThreadFunc()

{

SmokerThread::ThreadFunc();

for (.....) {

Sem[ID]->Wait(); // wait for ingredients

Table.Signal(); // clear the table

Delay(); // smoke for a while

}

}

void AgentThread::ThreadFunc()

{

AgentThread::ThreadFunc();

for (.....) {

Delay(); // take a rest

i = random integer in [0..2];

Sem[i]->Signal();// let the smoker know

Table.Wait(); // wait for the table

}

}

Fig. 6. The smokers problem

Figure 7 is a snapshot of the Main Window while the smokers program is running.
The display area shows the semaphore value and number of waiting threads of each
semaphore. For example, semaphore PaperMatch has a value of 0 and one waiting
thread, while semaphore Table has a value of 0 but no waiting thread.

The History Graph Window in Figure 8 provides the execution history of the
smoker program. There are a few more tags associated with semaphores. Tags
SS and SW indicate a thread executed a Signal() and a Wait(), respectively. The
event that occurs when a thread is released from a semaphore due to a Signal() has
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 7. Main Window when running the smokers program

a SE tag. Since a thread must be blocked by a Wait() before it can be released by
a Signal(), the history bar of this thread before (resp., after) a SE tag is colored
red (resp., green). A click on the Semaphore button in the upper-left corner of
the History Graph Window will display the signal-release links that connect a signal
event with its release event. With the History Graph Window, we learn that (1)
the main program created all threads and is in the joining state (i.e., the JN tag);
(2) the Agent thread signals the Smoker(Match) thread indicating the ingredients
(i.e., paper and tobacco) are available, and then waits for the table (i.e., its first SW
tag) to be cleared; (3) initially all smoker threads are blocked (i.e., the first SW tag
on each history bar); (4) thread Smoker(Match) is released by Agent’s signal (i.e.,
the SS-SE link), signals Agent to indicate the table is free, smokes for a while (i.e.,
the green portion of its history bar), and finally goes back for the next round (i.e.,
the second SW tag); (5) Agent is released by Smoker(Match)’s signal, generates the
next pair of ingredients, signals Smoker(Paper), and waits for the table; and (6)
Smoker(Paper) is released by Agent’s signal, takes the ingredients, signals Agent,
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and smokes. Thus, currently, there are two running threads: Agent is preparing
for the third pair of ingredients, and Smoker(Paper) is smoking. The other two
smoker threads, Smoker(Tobacco) and Smoker(Match), are blocked, waiting for
their ingredients. Again, a click on an event tag brings up the Source Window to
display the source program with the line containing the call to the corresponding
synchronization event highlighted.

Fig. 8. History Graph Window when running the smokers program

A click on the name of a semaphore displayed in the display area of the Main
Window brings up its Semaphore Window. Figure 9 shows all four Semaphore Win-
dows. Each window has the name of the semaphore as the window name, and
displays the current semaphore value and all waiting threads. For example, threads
Smoker(Tobacco) and Smoker(Match) are waiting on semaphores PaperMatch and
TobaccoPaper, respectively. The content of each semaphore (i.e., semaphore val-
ue and waiting threads) is updated on-the-fly. Combined with the History Graph
Window, a user will be able to easily keep track of all semaphore related activities.

6. SYNCHRONIZATION PRIMITIVE: MONITORS

In ThreadMentor, a monitor is declared as a derived class of class Monitor. Con-
structors are used for initializing the local data of a monitor and methods are moni-
tor procedures. Public monitor procedures must begin with a call to MonitorBegin()
to establish monitor mutual exclusion, and must end with a call to MonitorEnd()
to release the monitor lock. Without doing so, two threads that make calls to
public monitor procedures may be in the monitor at the same time. However, pri-
vate monitor procedures that can only be accessed within a monitor should not use
MonitorBegin() and MonitorEnd() because the monitor has already been locked
when a thread is executing in a monitor.

Condition variables are declared using class Condition, a private class in Monitor.
As a result, no condition variable can be used outside of a monitor. Class Condition
has two methods Wait() and Signal() for waiting on and signaling a condition
variable, respectively. If a Signal() call causes the release of a thread that is
waiting on the signaled condition variable, only one of the released thread and the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) Semaphore Table (b) Semaphore PaperMatch

(c) Semaphore MatchTobacco (d) Semaphore TobaccoPaper

Fig. 9. Semaphore Windows

signaling thread can continue. In a monitor of Hoare type, the signaling thread
yields the monitor to the released thread, while in a monitor of Mesa type, the sig-
naling thread continues [Buhr et al. 1995]. A user can specify the type of a monitor
in a constructor.

Figure 10 shows a monitor of Hoare type for the bridge-crossing problem. Con-
sider a very narrow bridge that can only allow three vehicles in the same direction
to cross at the same time. If there are three vehicles on the bridge, any incoming
vehicle must wait. When a vehicle exits the bridge, if there are other vehicles on
the bridge, one waiting vehicle in the same direction should be allowed to proceed.
Otherwise, we have two possibilities: (1) if there are vehicles waiting in the oppo-
site direction, one of them should be allowed to proceed to make the scheduling
fair, and (2) if there is no vehicle waiting in the opposite direction, let one waiting
vehicle in the same direction proceed. Monitor BridgeMonitor has two monitor
procedures ArriveBridge() and ExitBridge() for a vehicle to make a request to
get on and off the bridge, respectively. Private monitor procedure isSafe() tests
if a vehicle can be on the bridge safely. Monitor BridgeMonitor also includes some
private variables: WaitingLine[] is an array of two condition variables for block-
ing incoming vehicles; CurrentDirection records the crossing direction of vehicles;
VehicleCount is the number of vehicles on the bridge; and Waiting[] is an array
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of two integers for counting the number of waiting vehicles. For convenience, the
moving directions of vehicles are east-to-west and west-to-east.

class BridgeMonitor: public Monitor

{

public:

BridgeMonitor(char* Name); // constructor

void ArriveBridge(int Direction);

void ExitBridge(int Direction);

private:

int isSafe(int Direction);

Condition *WaitingLine[2]; // blocks vehicles

int CurrentDirection; // current direction of cars

int VehicleCount; // # of vehicle on the bridge

int Waiting[2]; // # of east/west bound waiting

char *Names[2];

};

Fig. 10. The bridge-crossing problem using monitor: class definition

Figure 11 shows a constructor and isSafe(). The constructor clears the counters
and sets the monitor to the Hoare type. Procedure isSafe() receives the direction
of a vehicle, and returns TRUE if the bridge has no vehicle or the vehicles on the
bridge have the same direction as that of the requesting vehicle and the number of
vehicles on bridge is not the maximum count. Otherwise, it returns FALSE.

BridgeMonitor::BridgeMonitor(char* Name): Monitor(Name, HOARE)

{

VehicleCount = 0; // no. vehicle on bridge

Waiting[0] = Waiting[1] = 0; // no. vehicle waiting

Names[0] = "EastWest";

Names[1] = "WestEast";

WaitingLine[0] = new Condition(Names[0]); // E->W waiting line

WaitingLine[1] = new Condition(Names[1]); // W->E waiting line

}

int BridgeMonitor::isSafe(int Direction)

{

if (VehicleCount == 0) // if no vehicle on bridge

return TRUE; // safe to cross

else if ((VehicleCount<MAX_VEHICLE) && (CurrentDirection==Direction))

return TRUE; // if < max in the same direction

else

return FALSE; // otherwise, do not proceed

}

Fig. 11. The bridge-crossing problem using monitor: constructor and isSafe()
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Figure 12 has the procedures ArriveBridge() and ExitBridge(). Procedure
ArriveBridge() receives the direction of a vehicle and determines if that vehicle
can be on the bridge. If not, the calling vehicle is blocked. It first checks if it is safe
to allow the calling vehicle to be on the bridge using isSafe(). If it is safe, the
on-bridge-vehicle counter is increased, the direction is set, and the calling vehicle
has the permission to cross the bridge. Otherwise, before blocking the calling
vehicle on a condition variable, the waiting vehicle count in the given direction is
increased, and, after the release of a vehicle from the condition variable, the count
is decreased. ExitBridge() takes the direction of an exiting vehicle and decreases
the vehicle count. If the result is still positive, there still are vehicles on the bridge
and a vehicle waiting in the same direction will be released. If the vehicle count
reduces to zero, ExitBridge() allows a vehicle in the opposite direction to proceed
if there are vehicles waiting in the opposite direction; otherwise, a vehicle in the
same direction is allowed to proceed.

void BridgeMonitor::ArriveBridge(int Direction)

{

MonitorBegin();

if (!isSafe(Direction)) { // is it safe to be on the bridge

Waiting[Direction]++; // no, wait at the bridge

WaitingLine[Direction]->Wait(); // block this vehicle

Waiting[Direction]--; // released

}

VehicleCount++; // go on bridge

CurrentDirection = Direction; // set direction

MonitorEnd(); // release monitor

}

void BridgeMonitor::ExitBridge(int Direction)

{

MonitorBegin(); // lock the monitor

VehicleCount--; // one vehicle exits

if (VehicleCount > 0)

WaitingLine[Direction]->Signal(); // release the same direction

else { // no vehicle on bridge

if (Waiting[1-Direction] != 0)// opposite direction non-empty?

WaitingLine[1-Direction]->Signal(); // release one of them

else // release the same direction

WaitingLine[Direction]->Signal();

}

MonitorEnd();

}

Fig. 12. The bridge-crossing problem using monitor: monitor procedures

A thread involved in a monitor procedure call may be in one of the four states:
(1) Active – the thread is executing in the monitor and holding the monitor lock, (2)
Waiting – the thread is blocked on a condition variable, (3) Entering – the thread
has called MonitorBegin() and is waiting to enter, and (4) Re-Entering – the thread
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has yielded the monitor and not yet regained the control. For example, in a Hoare
type monitor, since the signaling thread must yield the monitor to the released
thread, once the Signal() call completes, the signaling thread and released thread
are in the Re-Entering state and Active state, respectively. On the other hand, in
a Mesa type monitor, after the execution of a Signal(), the signaling thread and
the released thread are in the Active state and Re-Entering state, respectively. In
ThreadMentor, priority will be given to the threads in the Re-Entering state. More
specifically, when a thread exits or yields the monitor due to a condition variable
wait, ThreadMentor will bring a thread in the Re-Entering state to the Active state.
If there is no thread in the Re-Entering state, ThreadMentor will bring a thread in
the Entering state to the Active state. Those Re-Entering threads and threads
blocked on condition variables are said to be in the monitor and those Entering
threads are outside of the monitor. This information is shown in the Main Window
when the Monitor button is selected. Figure 13 shows a snapshot of running the
bridge-crossing program: thread Vehicle7 is executing in the monitor (i.e., active),
three vehicle threads are waiting to enter, and four vehicle threads are blocked on
condition variables or re-entering.

Fig. 13. Main Window when running the bridge-crossing program
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A click on the monitor name in the display area of the Main Window brings up the
Monitor Window of the selected monitor. The Monitor Window displays the name of
the active thread in the top and the type of the monitor (i.e., Hoare or Mesa) in the
bottom, and has two rows of subwindows. The top row always has two subwindows,
the left and right ones showing the names of all entering and re-entering threads,
respectively. Each condition variable has a subwindow on the bottom row to show
the threads that are blocked on the condition variable. The Monitor Window in
Figure 14 provides the following information: (1) the active thread is Vehicle7;
(2) three vehicles are in the Entering state, Vehicle5, Vehicle4, and Vehicle3;
(3) one vehicle is in the Re-Entering state, Vehicle2; (4) two vehicles are blocked
on condition variable EastWest, Vehicle1 and Vehicle6; and (5) one vehicle is
blocked on condition variable WestEast, Vehicle8.

Fig. 14. Monitor Window when running the bridge-crossing program

The History Graph Window has seven tags that are related to a Hoare type mon-
itor. Tags MB and ME indicate monitor calls MonitorBegin() and MonitorEnd(),
respectively. Since a thread that calls MonitorBegin() may not be granted the
permission to enter the monitor, after tag MB the history bar of the caller is in
red. Later, when the monitor becomes empty, another thread will be allowed to
enter the monitor, and, as a result, this thread will have a MA (monitor active) tag.
Tag CW indicates a thread issued a condition variable Wait(). Thus, following a CW
tag, the history bar is in red. Since this is a Hoare monitor, the signaling thread
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yields the monitor to the released thread, and tags CY (i.e., condition yield) and CA
(i.e., condition active) are shown on the history bars of the signaling and released
threads, respectively. A thread having a CY tag means it is in the Re-Entering state.
A thread in the Re-Entering state will be allowed to run when the monitor has no
running thread, and a MR (monitor reactive) tag will follow a CY tag.

A click on the Monitor button in the History Graph Window displays the wait-
active and signal-active links. Since tags ME and CW indicate that the monitor is
released by the executing thread, another thread can enter or re-enter the monitor.
If this thread is in the Entering state (i.e., tagged with a MB on its history bar),
the line segment between a ME and a MA or between a CW and a MA is referred to as
a wait-active link. If the selected thread is in the Re-Entering state (i.e., tagged
with a CY), the line segment between a CY and a CA is referred to as a signal-active
link. In this way, all monitor related synchronization events and the relationship
between two corresponding events are clearly shown by the tags and links.

Figure 15 is a snapshot of the History Graph Window of the bridge-crossing pro-
gram. From this snapshot, we learn the following: (1) Vehicle1 is released by
the exit of Vehicle6 as shown by a wait-active link; (2) Vehicle1 waits to get
on the bridge and yields the monitor to Vehicle2 as shown by a wait-active
link; (3) Vehicle2 exits the monitor, which causes Vehicle5 to become active
as shown by a wait-active link, crosses the bridge, and comes back by calling
ExitBridge() as shown by a MB tag; (4) Vehicle5 becomes active, exits the mon-
itor, which causes Vehicle3 to become active, crosses the bridge, and comes back
to call ExitBridge(); (5) Vehicle3 becomes active, calls Signal(), which causes
Vehicle4 to become active as shown by a signal-active link, and yields the mon-
itor to Vehicle4; (6) Vehicle4 becomes active, exits the monitor, which causes
Vehicle3 to become active immediately as shown by a wait-active link, crosses
the bridge, and comes back to call ExitBridge(); and (7) Vehicle3 regains the
monitor (i.e., the ME tag and MR tag), exits (i.e., off the bridge), and comes back
to cross the bridge again. The other events are similar. Again, a click on an event
tag brings up the Source Window to display the source program with the line that
contains the corresponding synchronization event highlighted.

Fig. 15. History Graph Window when running the bridge-crossing program

ACM Journal Name, Vol. V, No. N, Month 20YY.



ThreadMentor:A Pedagogical Tool for Multithreaded Programming · 19

For a Mesa type monitor, since the condition at the time a thread being released
from a condition variable and the time of its execution may have been modified
by other threads, re-testing the condition becomes necessary. Figure 16 is the
procedure ArriveBridge() for the Mesa type. When a thread is released from a
condition variable, it must go back to make sure it is safe to get on the bridge.

void BridgeMonitor::ArriveBridge(int Direction)

{

MonitorBegin();

if (!isSafe(Direction)) {

Waiting[Direction]++; // not safe, wait

while (!isSafe(Direction)) // always re-check

WaitingLine[Direction]->Wait();

Waiting[Direction]--;

}

VehicleCount++;

CurrentDirection = Direction;

MonitorEnd();

}

Fig. 16. The bridge-crossing problem using monitor: Mesa version

There are two more tags for a Mesa type monitor. Tag SC means a signal has
been made to a condition variable, and tag SR means a signal has been received by
a condition variable. Due to the semantics of a Mesa type monitor, the history bar
portions following SC and SR are colored in green and red, respectively, because the
signaling thread continuous to run and the released thread is re-entering. Figure 17
is a snapshot of the History Graph Window when running the Mesa version of the
bridge-crossing program. From this figure, we learn that (1) Vehicle8 executes
a Wait() and yields the monitor to Vehicle1; (2) Vehicle1 becomes active, exe-
cutes a Signal() (i.e., tag SC) which causes Vehicle4 to be released (i.e., tag SR),
exits the bridge which causes Vehicle2 to become active, and comes back to call
ArriveBridge(); and (3) later, the exit of Vehicle3 causes Vehicle4 to become
active. It is clear that the signal-release pattern of this Mesa monitor is much
simpler than that of the Hoare monitor.

In addition to the above standard monitor features, Wait() can take a priority
value as its only argument, method Empty() tests if there are waiting threads on
a condition variable, and method Broadcast() (Mesa monitor only) releases all
threads waiting on a condition variable.

7. SYNCHRONIZATION PRIMITIVE: CHANNELS

In ThreadMentor, a channel is a bi-directional communication link for threads to
send messages to and receive messages from another thread. The capacity of a
channel is its buffer size. If the capacity is zero, no message can be waiting in
a channel, and a sender must wait until a receiver receives the message. The
sender and receiver are synchronized for a message transfer to occur. Consequently,
channels with zero capacity are usually referred to as synchronous channels (i.e.,
blocking send and blocking receive), and the synchronization is a rendezvous. If the

ACM Journal Name, Vol. V, No. N, Month 20YY.



20 · S. Carr, J. Mayo and C.-K. Shene

Fig. 17. History Graph Window when running the bridge-crossing program: Mesa version

capacity is non-zero, messages may wait in the buffer of a channel. A sender (resp.,
receiver) waits if the buffer is full (resp., empty), and the channel is asynchronous.
However, if the buffer size is unbounded, a sender never waits. Messages that wait in
a channel may not be in the first-in-first-out order; however, ThreadMentor always
collects the messages in the incoming order (i.e., FIFO).

Channels are divided into three types, one-to-one, many-to-one and many-to-
many. With a one-to-one channel, the relationship among the channel, the sender,
and the receiver is fixed throughout the execution of the program, and only the
specified threads can send messages to and receive messages from this channel. With
a many-to-one channel, only the receiver end is fixed and every thread can send
messages to the receiver. Any thread can send messages to and receive messages
from a many-to-many channel. If the capacity of a many-to-many channel is finite
but non-zero, this channel is simply a variation of a bounded-buffer. While one-
to-one channels are commonly used in parallel and distributed computing [Lynch
1996], many-to-one channels are also being used frequently [Andrews 1991; 2000].
A Unix message queue is a finite but non-zero capacity many-to-many channel.
ThreadMentor supports all channel types mentioned above. The default capacity
of an asynchronous channel is unbounded; however, a user may set the capability
when a channel is constructed.

In ThreadMentor, synchronous and asynchronous one-to-one channels are declared
using classes SynOneToOneChannel and AsynOneToOneChannel, respectively. Three
arguments are required to declare a one-to-one channel: a symbolic name and two
user-defined IDs each of which identifies a thread at one end of the channel. A
user defined ID is a unique non-negative integer chosen by the user for thread
identification purpose. Each channel has three methods: Send() for sending a
message into the channel, Receive() for receiving a message from the channel,
and Empty() for testing if there are messages in the channel. Methods Send() and
Receive() require two arguments. The first is a pointer to a data item and the
second is message length.
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Consider the sieve problem. Initially, there are two threads, the pump thread
and sieve thread 2, connected with a synchronous one-to-one channel. The pump
thread keeps sending integers 3, 4, 5, . . . to sieve thread 2 which memorizes the
first prime number 2. When a sieve thread receives a number from its incoming
channel, if the received number is a multiple of the memorized one, the received
number is ignored and the sieve thread retrieves the next number from its incoming
channel. If the received number is not a multiple of the memorized one, this sieve
thread passes the received number to the next sieve thread through its outgoing
channel. Otherwise, this sieve thread creates a new sieve thread, which builds an
incoming channel from this thread and memorizes the first number. Repeating this
process, eventually every sieve thread memorizes a prime number. Figure 18 shows
three sieve threads that memorize prime numbers 2, 3 and 5. The pump thread just
sends 10 to sieve thread 2. At the same time, sieve thread 2 sends 9 to sieve thread
3, because 9 is not a multiple of 2. Similarly, sieve thread 3 sends 7 to sieve thread
5. In the next round, sieve thread 5 creates sieve thread 7 which memorizes 7,
sieve thread 3 ignores the incoming number 9, sieve thread 2 ignores the incoming
number 10, and the pump thread sends out the next number 11.

52 3 7910
pump sieve sieve sieve

Fig. 18. The sieve problem with synchronous channels

Figure 19 shows the class definitions of the pump thread and the sieve thread.
Private variable prime is the prime number memorized by a sieve thread. Figure 20
has the constructors. In the construction of a channel between two sieve threads,
the user defined IDs are numbered sequentially. The pump thread receives 0, sieve
thread 2 receives 1, and subsequent sieve threads receive 2, 3, 4, and so on. When
a sieve thread is created, it saves the assigned thread ID into private variable
UserDefinedThreadID for identification purpose, sets nextSieve to indicate that
this is the last sieve thread in chain, memorizes the prime number, and creates
a channel between this sieve thread and its creator (i.e., predecessor). The pump
thread also saves the assigned user thread ID into UserDefinedThreadID. For every
send and receive operation, ThreadMentor uses UserDefinedThreadID to verify if
the sender and the receiver are the ones specified when the channel was created.

Figure 21 has the thread bodies of the pump thread and sieve thread, where STOP
is a global integer with a negative value, and sieve is a global variable pointing
to the channel, constructed by the main program, between the pump thread and
sieve thread 2. A sieve thread keeps looping until it receives STOP, indicating that
the prime finding process ends. Then, it passes the STOP mark to its successor if
it has one, and terminates. If the received number is a multiple of the memorized
one, it is ignored and the thread loops back to receive the next number. There are
two cases to consider if the received number is not a multiple of the memorized
one. If this sieve thread is not the last in the chain, the received number is sent
to the successor. Otherwise, this sieve thread creates a new sieve thread, passes
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class SieveThread : public Thread

{

public:

SieveThread(int prime, int threadID);

SynOneToOneChannel *channel;

private:

void ThreadFunc();

int prime;

SieveThread *nextSieve; // next Sieve thread

};

class PumperThread : public Thread

{

public:

PumperThread(int Limit, int threadID);

private:

void ThreadFunc();

int limit;

};

Fig. 19. Class definition of the sieve program

SieveThread::SieveThread(int prime, int threadID)

{

UserDefinedThreadID = threadID;

nextSieve = NULL;

this->prime = prime;

channel = new SynOneToOneChannel(name, threadID - 1, threadID);

}

PumperThread::PumperThread(int Limit, int threadID)

{

limit = Limit;

UserDefinedThreadID = threadID;

}

Fig. 20. The constructors of the sieve program

the incoming number to it, and runs the newly created sieve thread. Therefore, all
threads are in a linear list with the head being the pump thread.

A click on the Channel button in the Main Window displays all channels cre-
ated so far (Figure 22). For each channel, its name, type (i.e., synchronous or
asynchronous), and state (i.e., Sending, Received, Acknowledged and Empty) are
shown. In the figure, channel Channel(0)(1) between the pump thread and sieve
thread 2 has a waiting message; channel Channel(1)(2) between sieve thread 2
and sieve thread 3 has received a message and acknowledged by sieve thread 3; and
channel channel(2)(3) between sieve thread 3 and sieve thread 5 has been created
and is empty.

The History Graph Window has three tags for channels. Tags CS, CR and CK indi-
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void SieveThread::ThreadFunc()

{

Thread::ThreadFunc();

int number;

while (true) {

channel->Receive(&number, sizeof(int)); // get a number

if (number == STOP) // is it a STOP?

break; // yes, bail out

if (number % prime != 0) { // a composite?

if (nextSieve != NULL) // successor?

nextSieve->channel->Send(&number, sizeof(int));

else { // no, create one

nextSieve = new SieveThread(number, UserDefinedThreadID + 1);

nextSieve->Begin(); // run the succ

}

}

}

if (nextSieve != NULL) { // am I the last?

nextSieve->channel->Send(&number, sizeof(int));

nextSieve->Join(); // no, pass STOP

}

Exit();

}

void PumperThread::ThreadFunc()

{

Thread::ThreadFunc();

int i;

for(i = 3; i <= limit; i++)

sieve->channel->Send(&i, sizeof(int));

sieve->channel->Send(&STOP, sizeof(int));

}

Fig. 21. The sieve and pump threads

cate a message is sent, received and acknowledged, respectively. With a synchronous
channel, a sender waits until its message is received by the indicated receiver. As
a result, the sender’s history bar between tags CS and CK is in red, meaning the
sender is blocked. A click on the Channels button in the upper-right corner of the
History Graph Window displays all send-receive links and receive-acknowledge links.
The former consist of all line segments between a tag CS and its corresponding CR
tag, and the latter are line segments between a tag CR and its corresponding CK
tag. In this way, the behavior of synchronous channels is clearly shown.

Figure 23 is a snapshot of the History Graph Window when running the sieve
program. Since the main program creates sieve thread 2 first, followed by the
pump thread, the second and third history bars are for sieve thread 2 and pump
thread, respectively. Then, sieve thread 2 creates sieve thread 3 (i.e., the fourth
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Fig. 22. Main Window when running the sieve program

history bar), which, in turn, creates sieve thread 5 (i.e., the fifth history bar). From
this figure, we learn the following: (1) the pump thread sends 3 to sieve thread 2
(i.e., the first CS-CR-CK triplet); (2) sieve thread 2 receives 3 and creates sieve thread
3; (3) the pump thread sends 4 to sieve thread 2 (i.e., the second CS-CR-CK triplet);
(4) sieve thread 2 ignores the received number 4; (5) the pump thread sends 5 to
sieve 2 (i.e., the third CS-CR-CK triplet); (6) sieve thread 2 receives 5 and sends 5 to
sieve thread 3 (i.e., the CS-CR-CK triplet between sieve thread 2 and sieve thread 3);
(7) the pump thread sends 6 to sieve thread 2; and (8) sieve thread 3 creates sieve
thread 5. Thus, with these tags, the relative timing of message passing activities
are shown vividly.

A click on a channel name in the display area of the Main Window brings up
the Channel Window of the selected channel (Figure 24). The top portion of the
Channel Window displays the state of the channel. The status of a channel may
be Sending Message, Message Received or Last Message Acknowledged. The
left Message on Channel subwindow shows the incoming messages, and the right
Received Message History subwindow has the message received history. The bottom
part of the Channel Window displays the type of the channel and the lower-right
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Fig. 23. History Graph Window when running the sieve program

corner has buttons for selecting the number of messages to be kept in the Message
Received History subwindow. Figure 24 is the Channel Window for the channel be-
tween the pump thread and sieve thread 2. The Messages on Channel subwindow
shows that the pump thread has sent 6 into the channel, and the Received Messages
History subwindow shows that this channel has received three messages 3, 4 and
5, in this order, and that the sender and receiver are the pump thread and sieve
thread 2, respectively. When the send operation completes, which means the chan-
nel has successfully received and delivered the message to the receiver, this message
is moved to the Received Messages History subwindow and the channel state changes
to Message Received. At this point, a send-receive link will be shown between the
corresponding CS and CR tags. Because this is a synchronous channel, the sender
can continue only if the receiver has received the message. Thus, once the receiv-
er receives the message completely, the status will be changed to Last Message
Acknowledged, both the sender and receiver continue, and a receive-acknowledge
link appears between the corresponding CR and CK tags.

Fig. 24. Channel Window when running the sieve program

Since asynchronous channels use non-blocking send, the CK tag does not appear in
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the History Graph Window, the Last Message Acknowledged state never appears in
the Channel Window, and more than one message may be waiting in the Message on
Channel subwindow. Consequently, a program that uses only asynchronous channels
will have no red portion on any history bar of its History Graph Window.

8. CONCLUSIONS

We have presented a detailed overview of the class library and visualization of
ThreadMentor. ThreadMentor was used twice in the programming track of our In-
troduction to Operating Systems course [Shene 1998; 2002] to replace Sun
Solaris threads, and at three workshops [Carr et al. 2001; 2002; 2003]. It was also
site-tested at a number of schools. Reactions from site testers and participants
of our workshops were very positive and encouraging. Typical comments include
“the visualization is excellent” and “[ThreadMentor] is a useful tool for OS classes.”
In the attitude surveys that were conducted at the end of the above mentioned
course, students indicated overwhelmingly that the visualization system of Thread-
Mentor “helps pinpoint errors quickly” and “helps to see what is happening with
the threads.” The complete system is “wonderful,” “ease of use and straightfor-
ward,” “a good learning tool and very handy” and “[taking] a lot of trouble out of
using threads,” and has “easy semantics and calling convention” and “a common
interface between Linux and Solaris [and Windows].” Two students indicated that
they never used the visualization because it is not their programming style. There
are only a few negative comments, most of which are due to unfamiliarity with the
system. For example, a handful of students indicated that ThreadMentor does not
perform properly on a remote machine (e.g., remote login). Since the GUI of the vi-
sualization system must transmit a large amount of graphical information, running
ThreadMentor on a remote machine and displaying the windows locally cannot be
very efficient. Thus, ThreadMentor is designed to run on a local machine, although
it is possible to execute ThreadMentor on a remote machine. A few students men-
tioned that ThreadMentor’s behavior could be different on different machines and
on different operating systems. This is normal because the behavior of a thread-
ed program cannot be identical across platforms. It is also interesting to mention
that two students, one per year, criticized ThreadMentor for being proprietary and
not used in the “real world.” They prefer Pthreads or Sun Solaris threads over
ThreadMentor. Since the number of negative comments is very few, we believe that
ThreadMentor is currently a reasonably mature system. A detailed analysis of the
effectiveness of using ThreadMentor in the above mentioned course with pre- and
post- tests will be published elsewhere.

Based on the experience we gained from site testers, workshop participants and
our students, some improvements can be made to the current version of ThreadMen-
tor. The most important task is to make the system more stable across platforms,
including possibly Mac OS X, and support more compilers (e.g., Microsoft and
Borland). The channel component can also be improved to include more primi-
tives (e.g., channel broadcasting and empty testing), better visualization support
(e.g., buffer content and sender-receiver pair of many-to-one and many-to-many
channels), and a tighter topology editor support [Carr et al. 2002]. Moreover, we
are developing a sister system ConcurrentMentor, based on channels, for distributed
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programming with a similar visualization support [Carr et al. 2002; 2003]. We hope
to keep the channel interfaces and visualization and topology editor components
of both systems consistent. Currently, ThreadMentor is being ported to Java and
IBM’s Eclipse platform. A more ambitious plan is to extend ThreadMentor and
ConcurrentMentor with two more layers: a protocol visualization layer and a dis-
tributed algorithm animation layer. The former helps students visualize various
protocols (e.g., leader election, distributed mutual exclusion and distributed dead-
lock detection) and the latter, which is built on top of the former, provides students
with an environment for distributed algorithm animation. In this way, our system-
s will support multithreaded and distributed programming as well as distributed
algorithms studies.

The interested readers may find more about our work, software availability, course
materials, a ThreadMentor tutorial, and future announcements at the following site:

http://www.cs.mtu.edu/~shene/NSF-3

The URLs of the home pages of ThreadMentor and ConcurrentMentor are

http://www.cs.mtu.edu/ThreadMentor

http://www.cs.mtu.edu/ConcurrentMentor
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