
1

Part IV

Other Systems: I
Java Threads

Fall 2015

C is quirky, flawed, and an enormous success.

Dennis M. Ritchie

2

Java Threads: 1/6

 Java has two ways to create threads:

Create a new class derived from the Thread

class and overrides its run() method. This is

similar to that of ThreadMentor.

Define a class that implements the Runnable

interface.

3

Java Threads: 2/6

 Method #1: Use the Thread class

public class HelloThread extends Thread

{

 public void run()

 {

 System.out.println(“Hello World”);

 }

 public static void main(String[] args)

 {

 HelloThread t = new HelloThread();

 t.start();

 }

}

4

Java Threads: 3/6

 Method #2: Use the Runnable interface

defined as follows:

public interface Runnable

{

 public abstract void run();

}

5

Java Threads: 4/6
class Foo {

 String name;

 public Foo(String s) { name = s; }

 public void setName(String s) { name = s; }

 public String getName() { return name; }

}

class FooBar extends Foo implements Runnable {

 public FooBar(String s) { super(s); }

 public void run() {

 for (int i = 0; i < 10; i++)

 System.out.println(getName()+”: Hello World”);

 }

 public static void main(String[] args) {

 FooBar f1 = new FooBar(“Romeo”);

 Thread t1 = new Thread(f1); t1.start();

 FooBar f2 = new FooBar(“Juliet”);

 Thread t2 = new Thread(f2); t2.start();

 }

}

6

Java Threads: 5/6
public class Fibonacci extends Thread {

 int n, result;

 public Fibonacci(int n) { this.n = n; }

 public void run()

 {

 if ((n == 0)||(n == 1))

 result = 1;

 else {

 Fibonacci f1 = new Fibonacci(n-1);

 Fibonacci f2 = new Fibonacci(n-2);

 f1.start(); f2.start();

 try {

 f1.join(); f2.join();

 } catch (InterruptedException e) {};

 result = f1.getResult()+f2.getResult();

 }

 }

 public int getResult() { return result; }

Part 1/2

7

Java Threads: 6/6

 public static void main(String [] args) {

 Fibonacci f1 =

 new Fibonacci(Integer.parseInt(args[0]));

 f1.start();

 try {

 f1.join();

 } catch (InterruptedException e) {};

 System.out.println(“Ans = “+f1.getResult());

 }

}

Part 2/2

8

The synchronized Keyword

 The synchronized keyword of a block

implements mutual exclusion.

public class Counter{

 private int count = 0;

 public int inc()

 {

 synchronized(this)

 { return ++count; }

 }

}

this is a critical section

9

Java ReentrantLock: 1/2

 A lock provides exclusive access to a shared

resource: only one thread at a time can acquire the

lock and all access to the shared resource requires

that the lock be acquired first.

 A ReentrantLock is similar to the

synchronized keyword.

 You may use lock() to acquire a lock and

unlock() to release a lock.

 There are other methods (e.g., tryLock()).

10

Java ReentrantLock: 2/2

 The following is a typical use of locks in Java.

Lock myLock = new ReentrantLock();

myLock.lock(); // acquire a lock

try {

 // in critical section now

 // catch exceptions and

 // restore invariants if needed

} finally {

 myLock.unlock();

}

11

Java wait() and notify(): 1/7

 Method wait() causes a thread to release the

lock it is holding on an object, allowing another

thread to run.

 wait() should always be wrapped in a try

block because it throws IOException.

 wait() can only be invoked by the thread that

owns the lock on the object.

 The thread that calls wait() becomes inactive

until it is notified. Note that actual situation can

be more complex than this.

12

Java wait() and notify(): 2/7

 A thread uses the notify() method of an object

to release a waiting thread or the notifyAll()

method to release all waiting threads.

 After notify() or notifyAll(), a thread may

be picked by the thread scheduler and resumes its

execution.

 Then, this thread regains its lock automatically.

 Using notify() and notifyAll() as the last

statement can avoid many potential problems.

13

Java wait() and notify(): 3/7
public class Counter implements BoundedCounter {

 protected long count = MIN;

 public synchronized long value() { return count; }

 public synchronized long inc()

 { awaitINC(); setCount(count+1); }

 public synchronized long dec()

 { awaitDEC(); setCount(count-1); }

 protected synchronized void setCount(long newVal)

 { count = newVal; notifyAll(); }

 protected synchronized void awaitINC() {

 while (count >= MAX)

 try { wait();} catch(InterruptedException e){};

 }

 protected synchronized void awaitDEC() {

 while (count <= MIN)

 try { wait();} catch(InterruptedException e){};

 }

}

14

Java wait() and notify(): 4/7
public final class CountingSemaphore {

 private int count = 0;

 public CountingSemaphore(int initVal)

 { count = initVal; }

 public synchronized void P() // semaphore wait

 {

 count--;

 while (count < 0)

 try { wait();} catch (InterruptedException e){}

 }

 public synchronized void V() // semaphore signal

 {

 count++;

 notify();

 }

}

they are different from our definition

can you see they are equivalent?

why is testing for count <= 0 unnecessary?

15

Java wait() and notify(): 5/7
public class Buffer implements BoundedBuffer {

 protected Object[] buffer;

 protected int in;

 protected int out;

 protected int count;

 public Buffer(int size)

 throws IllegalArgumentException {

 if (size <= 0)

 throw new IllegalArgumentException();

 buffer = new Object[size];

 }

 public int GetCount() { return count; }

 public int capacity() { return Buffer.length; }

 // methods put() and get()

}

Part 1/3

16

Java wait() and notify(): 6/7

public synchronized void put(Object x)

{

 while (count == Buffer.length)

 try { wait(); }

 catch(InterruptedException e){};

 Buffer[in] = x;

 in = (in + 1) % Buffer.length;

 if (count++ == 0)

 notifyAll();

}

Part 2/3

17

Java wait() and notify(): 7/7

public synchronized void get(Object x)

{

 while (count == 0)

 try { wait(); }

 catch(InterruptedException e){};

 Object x = Buffer[out];

 Buffer[out] = null;

 out = (out + 1) % Buffer.length;

 if (count-- == Buffer.length)

 notifyAll();

 return x;

}

Part 3/3

18

The End

