
1

Part IV

Other Systems: I
Java Threads

Fall 2015

C is quirky, flawed, and an enormous success.

Dennis M. Ritchie

2

Java Threads: 1/6

 Java has two ways to create threads:

Create a new class derived from the Thread

class and overrides its run() method. This is

similar to that of ThreadMentor.

Define a class that implements the Runnable

interface.

3

Java Threads: 2/6

 Method #1: Use the Thread class

public class HelloThread extends Thread

{

 public void run()

 {

 System.out.println(“Hello World”);

 }

 public static void main(String[] args)

 {

 HelloThread t = new HelloThread();

 t.start();

 }

}

4

Java Threads: 3/6

 Method #2: Use the Runnable interface

defined as follows:

public interface Runnable

{

 public abstract void run();

}

5

Java Threads: 4/6
class Foo {

 String name;

 public Foo(String s) { name = s; }

 public void setName(String s) { name = s; }

 public String getName() { return name; }

}

class FooBar extends Foo implements Runnable {

 public FooBar(String s) { super(s); }

 public void run() {

 for (int i = 0; i < 10; i++)

 System.out.println(getName()+”: Hello World”);

 }

 public static void main(String[] args) {

 FooBar f1 = new FooBar(“Romeo”);

 Thread t1 = new Thread(f1); t1.start();

 FooBar f2 = new FooBar(“Juliet”);

 Thread t2 = new Thread(f2); t2.start();

 }

}

6

Java Threads: 5/6
public class Fibonacci extends Thread {

 int n, result;

 public Fibonacci(int n) { this.n = n; }

 public void run()

 {

 if ((n == 0)||(n == 1))

 result = 1;

 else {

 Fibonacci f1 = new Fibonacci(n-1);

 Fibonacci f2 = new Fibonacci(n-2);

 f1.start(); f2.start();

 try {

 f1.join(); f2.join();

 } catch (InterruptedException e) {};

 result = f1.getResult()+f2.getResult();

 }

 }

 public int getResult() { return result; }

Part 1/2

7

Java Threads: 6/6

 public static void main(String [] args) {

 Fibonacci f1 =

 new Fibonacci(Integer.parseInt(args[0]));

 f1.start();

 try {

 f1.join();

 } catch (InterruptedException e) {};

 System.out.println(“Ans = “+f1.getResult());

 }

}

Part 2/2

8

The synchronized Keyword

 The synchronized keyword of a block

implements mutual exclusion.

public class Counter{

 private int count = 0;

 public int inc()

 {

 synchronized(this)

 { return ++count; }

 }

}

this is a critical section

9

Java ReentrantLock: 1/2

 A lock provides exclusive access to a shared

resource: only one thread at a time can acquire the

lock and all access to the shared resource requires

that the lock be acquired first.

 A ReentrantLock is similar to the

synchronized keyword.

 You may use lock() to acquire a lock and

unlock() to release a lock.

 There are other methods (e.g., tryLock()).

10

Java ReentrantLock: 2/2

 The following is a typical use of locks in Java.

Lock myLock = new ReentrantLock();

myLock.lock(); // acquire a lock

try {

 // in critical section now

 // catch exceptions and

 // restore invariants if needed

} finally {

 myLock.unlock();

}

11

Java wait() and notify(): 1/7

 Method wait() causes a thread to release the

lock it is holding on an object, allowing another

thread to run.

 wait() should always be wrapped in a try

block because it throws IOException.

 wait() can only be invoked by the thread that

owns the lock on the object.

 The thread that calls wait() becomes inactive

until it is notified. Note that actual situation can

be more complex than this.

12

Java wait() and notify(): 2/7

 A thread uses the notify() method of an object

to release a waiting thread or the notifyAll()

method to release all waiting threads.

 After notify() or notifyAll(), a thread may

be picked by the thread scheduler and resumes its

execution.

 Then, this thread regains its lock automatically.

 Using notify() and notifyAll() as the last

statement can avoid many potential problems.

13

Java wait() and notify(): 3/7
public class Counter implements BoundedCounter {

 protected long count = MIN;

 public synchronized long value() { return count; }

 public synchronized long inc()

 { awaitINC(); setCount(count+1); }

 public synchronized long dec()

 { awaitDEC(); setCount(count-1); }

 protected synchronized void setCount(long newVal)

 { count = newVal; notifyAll(); }

 protected synchronized void awaitINC() {

 while (count >= MAX)

 try { wait();} catch(InterruptedException e){};

 }

 protected synchronized void awaitDEC() {

 while (count <= MIN)

 try { wait();} catch(InterruptedException e){};

 }

}

14

Java wait() and notify(): 4/7
public final class CountingSemaphore {

 private int count = 0;

 public CountingSemaphore(int initVal)

 { count = initVal; }

 public synchronized void P() // semaphore wait

 {

 count--;

 while (count < 0)

 try { wait();} catch (InterruptedException e){}

 }

 public synchronized void V() // semaphore signal

 {

 count++;

 notify();

 }

}

they are different from our definition

can you see they are equivalent?

why is testing for count <= 0 unnecessary?

15

Java wait() and notify(): 5/7
public class Buffer implements BoundedBuffer {

 protected Object[] buffer;

 protected int in;

 protected int out;

 protected int count;

 public Buffer(int size)

 throws IllegalArgumentException {

 if (size <= 0)

 throw new IllegalArgumentException();

 buffer = new Object[size];

 }

 public int GetCount() { return count; }

 public int capacity() { return Buffer.length; }

 // methods put() and get()

}

Part 1/3

16

Java wait() and notify(): 6/7

public synchronized void put(Object x)

{

 while (count == Buffer.length)

 try { wait(); }

 catch(InterruptedException e){};

 Buffer[in] = x;

 in = (in + 1) % Buffer.length;

 if (count++ == 0)

 notifyAll();

}

Part 2/3

17

Java wait() and notify(): 7/7

public synchronized void get(Object x)

{

 while (count == 0)

 try { wait(); }

 catch(InterruptedException e){};

 Object x = Buffer[out];

 Buffer[out] = null;

 out = (out + 1) % Buffer.length;

 if (count-- == Buffer.length)

 notifyAll();

 return x;

}

Part 3/3

18

The End

