
CS4411 Intro. to Operating Systems Exam 2 Solutions – Fall 2009 1

CS4411 Intro. to Operating Systems Exam 2 Solutions

Fall 2009
1. Recycled Problems

(a) [10 points] Draw the state diagram of a process from its creation to termination, including all
transitions, and briefly elaborate every state and every transition.
Answer: The following state diagram is taken from my class note and was discussed in class. Fill
in the elaboration for each state and transition by yourself.

Waiting

New Ready Running Term.

blocks for some events
(e.g., input/output)

CPU is free

time is up

process
terminates

reclaim system
resouces and
destroy process

create new
process and
allocate system
resources

event occurs

process created
and ready to run

See p. 103 of our text and class notes.

(b) [7 points] Define the meaning of a race condition? Answer the question first and use an execu-
tion sequence to illustrate your answer. You will receive no credit if only an example is
provided without an elaboration.
Answer: A race condition is a situation in which more than one processes or threads access a
shared resource concurrently, and the result depends on the order of execution.
The following is a simple counter updating example discussed in class. The value of count may
be 9, 10 or 11, depending on the order of execution of the machine instructions of count++
and count--.

int count = 10;

Thread_1(...) Thread_2(...)

{ {

// do something // do something

count++; count--;

} }

The following execution sequence shows a race condition. Two threads run concurrently (condition
1). Both threads access the shared variable count at the same time (condition 2). Finally, the
computation result depends on the order of execution of the SAVE instructions (condition 3). The
execution sequence below shows the result being 9; however, switching the two SAVE instructions
yields 11. Since all conditions are met, we have a race condition.

Thread_1 Thread_2 Comment
do somthing do somthing count = 10 initially
LOAD count Thread_1 executes count++
ADD #1

LOAD count Thread_2 executes count--
SUB #1

SAVE count count is 11 in memory
SAVE count Now, count is 9 in memory

Stating that “count++ followed by count--” or “count-- followed by count++” would produce
different results and hence a race condition is incorrect, because the threads do not access the
shared variable count at the same time (i.e., condition 2).

CS4411 Intro. to Operating Systems Exam 2 Solutions – Fall 2009 2

See p. 193 of our text and class notes.

2. Synchronization

(a) [8 points] Enumerate and elaborate all major differences between a semaphore wait/signal and
a condition variable wait/signal. Vague answers and/or inaccurate or missing elaboration receive
no credit.
Answer: The following table has the details:

Semaphores Condition Variables
Can be used anywhere, but not in a monitor Can only be used in monitors
wait() does not always block its caller wait() always blocks its caller
signal() increases the semaphore counter and
may release a process

signal() either releases a process, or the signal
is lost as if it never occurs

If signal() releases a process, the caller and the
released both continue

If signal() releases a process, either the caller
or the released continues, but not both

This is part of the monitors slides discussed in class.

(b) [8 points] What are the differences between a Hoare type monitor and a Mesa type monitor?
Vague answers and/or inaccurate or missing elaboration receive no credit.
Answer: The major difference is the way of releasing waiting threads. With a Hoare monitor,
the signaling thread yields the monitor, allowing the released thread to execute immediately.
With a Mesa monitor, the signaling thread continues and the released thread becomes inactive.
The released thread will run sometime later when the monitor becomes empty. Because of this,
Hoare type monitors require two context switches, while Mesa type monitors need only one.
Moreover, context switching in a Hoare type monitor must be handled properly, making sure that
the signaling thread is switched out and the released thread is switched in immediately to use the
monitor.
See ThreadMentor web page and class notes.

3. Process Scheduling

(a) [8 points] What are preemptive and non-preemptive scheduling policies? Elaborate your answer.
Answer: With the non-preemptive scheduling policy, scheduling only occurs when a process enters
the wait state or terminates. With the preemptive scheduling policy, scheduling also occurs when
a process switches from running to ready due to an interrupt, and from waiting to ready (i.e.,
I/O completion).
See pp. 153–154 of our text.

(b) [20 points] Five processes A, B, C, D and E arrived in this order at the same time with the
following CPU burst and priority values. A smaller value means a higher priority.

CPU Burst Priority
A 4 2
B 6 4
C 2 1
D 5 3
E 3 5

Fill the entries of the following table with waiting time and average waiting time for each indicated

CS4411 Intro. to Operating Systems Exam 2 Solutions – Fall 2009 3

scheduling policy and each process. Ignore context switching overhead.

Waiting Time Average

Scheduling Policy A B C D E Waiting Time

First-Come-First-Served

Non-Preemptive Shortest-Job First

Priority

Round-Robin (time quantum=2)

Answer:

Waiting Time Average

Scheduling Policy A B C D E Waiting Time

First-Come-First-Served 0 4 10 12 17 43/5 = 8.6

Non-Preemptive Shortest-Job First 5 14 0 9 2 30/5=6

Priority 2 11 0 6 17 36/5=7.2

Round-Robin (time quantum=2) 8 13 4 15 14 54/5=10.8

0 1 2 3 4 5 6 7 8 9 10 11 12 14 1513 16 17 18 2019

8
8

8
6 6

6

4
3

3

2
A
B
C
D
E

The above diagram shows the execution pattern of the round-robin algorithm with time quantum
2, where dashed arrows indicate waiting periods.
See class notes for the details.

4. Deadlocks

(a) [8 points] What are the necessary conditions for a deadlock to occur? Name these conditions
and provide an elaboration. Stating conditions without elaboration or stating a vague elaboration
receives no credit.
Answer: There are four necessary conditions:

• Mutual Exclusion: Resources are not sharable. That is, the use of resources must be
mutually exclusive.

• Hold and Wait: Processes hold some resources while waiting for additional ones.
• No Preemption: Resources can only be released by processes voluntarily. They cannot be

preempted by the system.
• Circular Waiting: A set of processes P1, P2, . . ., Pn exits such that P1 is waiting for the

resources that are being held by P2; P2 is waiting for the resources that are being held by P3;
...; and Pn is waiting for the resources that are being held by P1.

See p. 285–287 of our text.

CS4411 Intro. to Operating Systems Exam 2 Solutions – Fall 2009 4

(b) [10 points] Consider the following snapshot of a system:

Allocation Max Need Available
U V W X U V W X U V W X U V W X

A 1 1 0 2 1 1 0 3 0 0 0 1 3 4 0 0
B 0 1 2 3 1 2 4 5 1 1 2 2
C 5 1 4 4 5 5 9 5 0 4 5 1
D 0 0 1 1 5 0 1 1 5 0 0 0
E 1 0 2 1 4 3 2 1 3 3 0 0

Is this system in a safe state? Show your computation step-by-step; otherwise, you will
receive no credit.
Answer: The following shows the steps to find a safe sequence (i.e., banker’s algorithm). Note
that we always search for a candidate in the order of A, B, C, D and E.

• Since Available = [3, 4, 0, 0] is greater than E’s Need=[3,3,0,0], E can run. After E completes,
Available = [3,4,0,0]+[1,0,2,1]=[4,4,2,1].

• Since Available=[4.4.2.1] is greater than A’s Need=[0,0,0,1], A can run. After A completes,
Available=[4,4,2,1]+[1,1,0,2]=[5,5,2,3].

• Since Available=[5,5,2,3] is greater than B’s Need=[1,1,2,2], B can run. After B completes,
Available=[5,5,2,3]+[0,1,2,3]=[5,6,4,6].

• Since Available=[5,6,4,6] is greater than D’s Need=[5,0,0,0], D can run. After D completes,
Available=[5,6,4,6]+[0,0,1,1]=[5,6,5,7].

• Since Available=[5,6,5,7] is greater than C’s Need=[0,4,5,1], C can run.

Therefore, if the five processes are run in the order of E, A, B, D and C, all of them can finish
and the system is safe (i.e., < E, A, B, D, C > is a safe sequence). Note that safe sequence is not
unique. See pp. 256–260 of our text.

(c) [8 points] Consider the following snapshot of a system with four resource types R1, R2, R3 and
R4, and four processes A, B, C and D:

Allocation Request Available
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

A 1 0 1 1 0 1 0 0 0 0 0 0
B 1 1 0 0 0 1 1 0
C 1 0 1 1 0 0 0 0
D 0 0 0 0 1 0 1 0

Is the system in a deadlock state? If the system is in a deadlock state, list all processes that
involve in a deadlock. Show your computation step-by-step; otherwise, you will receive
no credit.
Answer: Since Available = [0, 0, 0, 0], only C can run as its request is [0, 0, 0, 0]. After C completes,
it returns its allocation [1, 0, 1, 1], making the new Available = [1, 0, 1, 1] = [0, 0, 0, 0]+ [1, 0, 1, 1].
Now, D can run because its request is [1, 0, 1, 0], which is smaller than Available = [1, 0, 1, 1]. After
D’s completion, it returns its allocation [0, 0, 0, 0]. As a result, the Available is still [1, 0, 1, 1]. At
this time, neither A nor B can run, because both A and B require one R2 which is not available.
Therefore, the system is in a deadlock state, and the involved processes are A and B.

5. Memory Management

(a) [8 points] Define external and internal fragments. Consider the following memory management
schemes: fixed-size partitions, variable-size partitions, and paging. Which schemes have external
fragments, and which schemes have internal fragments? Why? Note that there are three
questions. Elaborate your answer. Otherwise, you will receive no credit.
Answer: An external fragment is an unused memory block between two allocated (i.e., used) ones.
An internal fragment is an unused memory area within an allocated memory block. Fixed-size

CS4411 Intro. to Operating Systems Exam 2 Solutions – Fall 2009 5

partitions and paging do not have external fragments because all partitions and page frames are
pre-allocated with fixed sizes. However, they may have internal fragments since a process may
not use all the allocated space. Variable-size partitions do not have internal fragment; but, they
have external fragments. Note that even though the variable-size partition scheme may allocate a
bit more memory than requested, say to fit the boundary alignment requirement, we still consider
its allocation being exact.
See p. 327 of our text.

(b) [16 points] Given memory holes (i.e., unused memory blocks) of 100K, 500K, 200K, 300K and
600K (in address order) as shown below, how would each of the first-fit, next-fit, best-fit and
worst-fit algorithms allocate memory requests for 290K, 420K, 110K and 350K (in this order)?
The shaded areas are used/allocated regions and are not available. Write your answer into the
following diagrams. You should clearly write down the size of each memory block and indicate
its status (i.e., allocated or free). Otherwise, you will receive no credit for that part.

i. First-fit:
100k 500k 200k 300k 600k

290k

1
1
0
k

420k

The 350K allocation request does not fit.

ii. Next-fit: The current area is the 100K region.
100k 500k 200k 300k 600k

290k 420k 11
0k

The 350K allocation request does not fit.

iii. Best-fit:
100k 500k 200k 300k 600k

420k 350k11
0k 290k

iv. Worst-fit:
100k 500k 200k 300k 600k

420k 290k 11
0k

The 350K allocation request does not fit.

(c) [6 points] A paging system uses 16-bit address and 4K pages. The following shows the page
tables of two running processes, Process 1 and Process 2. Translate the logical addresses in the
table below to their corresponding physical addresses, and fill the table entries with your answers.

Process 1
0 3
1 7
2 1
3 5

Process 2
0 2
1 0
2 6
3 4

CS4411 Intro. to Operating Systems Exam 2 Solutions – Fall 2009 6

Process Address Page # Offset Physical Address

Process 1 11,034

Process 2 12,345

Answer: Consider the logical address 11034 generated by process 1. Since page size is 4K =
4096, logical address 11034 is in page 2 = 11034/4096, and the offset is 11034 - 2× 4096 = 2842.
From process 1’s page table, page 2 is in page frame 1, and, hence, the corresponding physical
address is 1× 4096 + 2842 = 6938. The second logical address 12345 is translated the same way
with process 2’s page table.

Process Address Page # Offset Physical Address

Process 1 11,034 2 2842 6,938

Process 2 12,345 3 57 16,441

(d) [8 points] Construct an inverted page table from the system snapshot of the page tables in
Problem (5c).
Answer: Each entry in an inverted page table has two fields: the owner (i.e., process ID) and
the page number of the owner. From the two given page tables, the corresponding inverted page
table is

Process ID Page Number
0 2 1
1 1 2
2 2 0
3 1 0
4 2 3
5 1 3
6 2 2
7 1 1

6. Programming

(a) [25 points] Each thread in a system has a unique ID, which is a positive integer. The system also
has a shared file that can be accessed by multiple threads simultaneously as long as the sum of
the ID’s of all threads that are currently accessing the file is less than a predefined value MAXIMUM.
Design a Hoare monitor Strange and monitor procedures Access(id) and Release(id), where
id is the ID of the calling thread. Monitor procedure Access(id) allows the caller to access
the file if the sum of the all ID’s and id is less than MAXIMUM. In this case, Access(id) returns.
Otherwise, the caller is blocked until the condition will be met in the future. On the other hand,
when a thread finishes accessing the shared file, it calls monitor procedure Release(id) to release
the file.
Use ThreadMentor syntax to write the monitor code. You must elaborate and justify your
solution. Otherwise, you will receive low or even no grade.
Answer: This is not a difficult problem; however, there is a hidden trap. The following is the
class definition. Condition variable block blocks those threads that are not allowed to access the
file, and sum is the sum of the ids of those processes that are currently accessing the file.

CS4411 Intro. to Operating Systems Exam 2 Solutions – Fall 2009 7

class Strange : public Monitor {

public:

Strange(); // constructor

Access(int id); // monitor procedure Access()

Release(int id); // monitor procedure Release()

private:

Condition block; // C.V. for blocking threads

int sum; // the current sum of PIDs

};

Strange::Strange(): Monitor(HOARE) // constructor

{

sum = 0;

}

Monitor procedure Access(id) is the place where you have to pay special attention. The caller
can have access if the sum of sum and id is less than or equal to MAXIMUM. Otherwise, the caller
blocks. Based on this observation, many would immediately come up with the following code,
which, unfortunately, is not a correct solution. After the caller is released by a signal from another
thread, it does not go back and makes sure if the condition still holds, and, hence, has the potential
to access the file incorrectly.

void Strange::Access(int id)

{

MonitorBegin(); // enter monitor

if (sum + id > MAXIMUM) // can I access the file?

block.Wait(); // block myself since I cannot access

sum += id; // Now, I can. Update the sum

MonitorEnd(); // exit monitor

}

A natural way would be replacing the if with while so that the caller loops back and checks the
condition again as shown below. However, this is still incorrect. Suppose Release(id) signals to
release a thread. What if the released thread loops back and finds out it cannot access the file?
This thread blocks itself again and the monitor becomes empty (i.e., no executing thread) even
though one or more threads blocked on block can fulfill the condition.

void Strange::Access(int id)

{

MonitorBegin(); // enter monitor

while (sum + id > MAXIMUM) // can I access the file?

block.Wait(); // block myself since I cannot access

sum += id; // Now, I can. Update the sum

MonitorEnd(); // exit monitor

}

The following is a possible solution. If the condition is not met, the caller releases a waiting thread
and blocks itself. The released thread can verify the condition again, and access the file if the
condition is met. Otherwise, the released thread releases another thread and blocks. Since this is
a Hoare type monitor, the chain of events “check ⇒ Signal() ⇒ yield ⇒ Wait()” will occur to
every thread blocked on condition variable block. As a result, all threads will be released one by
one to verify the condition. This is usually referred to as cascaded signal or cascaded wake. The
monitor procedure Release(id) is easy.

CS4411 Intro. to Operating Systems Exam 2 Solutions – Fall 2009 8

void Strange::Access(int id)

{

MonitorBegin(); // enter monitor

while (sum + id > MAXIMUM) { // can I access the file?

block.Signal(); // no, let someone else to try

block.Wait(); // block myself since I cannot access

}

sum += id; // Now, I can. Update the sum

MonitorEnd(); // exit monitor

}

void Strange::Release(int id)

{

MonitorBegin(); // enter monitor

sum -= id; // reduce the current sum

block.Signal(); // allow one of the blocked to try

MonitorEnd(); // exit monitor

}

Some may switch the order of block.Wait() and block.Signal() like the one below. This is
not a “good” solution. Since the thread that calls Signal() yields the monitor to the released
thread, this version will release “all” threads blocked on condition variable block before they
can do any testing. In other word, the chain of events “Wait()⇒Signal()⇒yield ⇒ check”
will release every thread blocked on condition variable block. After the last blocked thread is
released, executes Signal() and yields, the monitor becomes empty, and either a released thread
runs or a new thread enters the monitor. In the latter case, the newcomer can cut in and change
the condition, and, as a result, every released thread could be blocked again. Compared with the
above solution, this one is certainly not good enough.

void Strange::Access(int id)

{

MonitorBegin(); // enter monitor

while (sum + id > MAXIMUM) { // can I access the file?

block.Wait(); // block myself since I cannot access

block.Signal(); // no, let someone else to try

}

sum += id; // Now, I can. Update the sum

MonitorEnd(); // exit monitor

}

Some used a counter to count the number of waiting threads and signal that number of times in
Release(id) as shown below. Unfortunately, this is still not correct. Keep in mind that this is
a Hoare type monitor (i.e., the signaler yields). The first signal call forces the caller to yield the
monitor to the released. This released thread goes back to check the condition, and waits if it
cannot access the file. The control is then switched back for the second signal. However, since
there is no scheduling policy for which thread should be released from condition variable block,
the worse case could be the same thread released every time, and, as a result, no other threads
blocked on block would have a chance to check for the condition. Of course, this is not a correct
solution.

CS4411 Intro. to Operating Systems Exam 2 Solutions – Fall 2009 9

void Strange::Access(int id)

{

MonitorBegin(); // enter monitor

while (sum + id > MAXIMUM) { // can I access the file?

count++; // increase waiting count

block.Wait(); // block myself since I cannot access

count--; // decrease waiting count

}

sum += id; // Now, I can. Update the sum

MonitorEnd(); // exit monitor

}

void Strange::Release(int id)

{

int i;

MonitorBegin(); // enter monitor

sum -= id; // reduce the current sum

for (i = 1; i <= count; i++)

block.Signal(); // release all waiting threads

MonitorEnd(); // exit monitor

}

Some of you computed the value of sum, like the following, before a thread is granted the access.
This is also wrong. After the signal call in Access(id), the caller yields the monitor to the
released. This released thread checks the condition; however, since the value of sum was updated
and became larger, the released thread will use an incorrect value of sum in its check. Consequently,
as more threads are blocked, the value of sum increases and eventually many threads will use the
wrong sum value in their condition tests until some threads start to decrease the value of sum.

void Strange::Access(int id)

{

MonitorBegin(); // enter monitor

sum += id; // compute the new sum

while (sum > MAXIMUM) { // can I access the file?

block.Signal(); // no, let someone else to try

sum -= id; // restore the sum value

block.Wait(); // block myself since I cannot access

}

MonitorEnd(); // exit monitor

}

This is a simple problem that can test if you have understood the basic merit of a monitor, its
type, and the semantics of the signal and wait methods. If you are not careful, your program can
easily become an incorrect one.

