Algebraic Eigenvalue Problem

Computers are useless. They can only give answers.
Pablo Picasso

Fall 2010

Topics to Be Discussed

This unit requires the knowledge of eigenvalues and eigenvectors in linear algebra.
-The following topics will be presented:
> The Power method for finding the largest eigenvalue and its corresponding eigenvector
$>$ Coordinate rotation

- Rotating a symmetric matrix
> Classic Jacobi method (1846) for finding all eigenvalues and eigenvectors of a symmetric matrix

Eigenvalues \& Eigenvectors: 1/3

- Given a square matrix A, if one can find a number (real or complex) λ and a vector x such that $A \cdot x=\lambda x$ holds, λ is an eigenvalue and x an eigenvector corresponding to λ (of matrix A).
- Since the right-hand side of $A \cdot x=\lambda x$ can be rewritten as $\lambda I \cdot x$, where I is the identity matrix, we have $A \cdot x=\lambda I \cdot x$ and $(A-\lambda I) x=0$.
- Solving for λ from equation $\operatorname{det}(A-\lambda I)=0$ yields all eigenvalues of A , where $\operatorname{det}($) is the determinant of a matrix.

Eigenvalues \& Eigenvectors: 2/3

- If A is a $n \times n$ matrix, $\operatorname{det}(A-\lambda I)=0$ is a polynomial of degree n in λ, and has n roots (i.e., n possible values for λ), some of which may be complex conjugates (i.e., $a+b i$ and $a-b i$).
- However, people rarely use this method to find eigenvalues because (1) directly expanding $\operatorname{det}(\mathrm{A}-\lambda \mathrm{I})=0$ to a polynomial is tedious, and (2) there is no close-form solution if $n>4$.
- Many methods transform \mathbf{A} to simpler forms so that $\operatorname{det}(A-\lambda I)=0$ can be obtained easily.

Eigenvalues \& Eigenvectors: 3/3

- The eigenvalues of a diagonal matrix are its diagonal entries.
-For example, if we have a diagonal matrix:

$$
A=\left[\begin{array}{lllll}
d_{1} & & & & \\
& d_{2} & & & \\
& & \ddots & & \\
& & & d_{n-1} & \\
& & & & d_{n}
\end{array}\right]
$$

- Then, $\operatorname{det}(A-\lambda I)=0$ is

$$
\left(d_{1}-\lambda\right)\left(d_{2}-\lambda\right) \ldots\left(d_{n-1}-\lambda\right)\left(d_{n}-\lambda\right)=0
$$

- Hence, the roots of $\operatorname{det}(\mathrm{A}-\lambda \mathrm{I})=0$ are the \boldsymbol{d}_{i} 's.

Power Method: 1/11

- What if we take a guess z and compute $A \cdot z$?
- If z is actually an eigenvector, then $A \cdot z=\lambda z$.
- Let $w=A \cdot z=\lambda z$. Since for every entry of w and z we have $w_{i}=\lambda z_{i}$ and $\lambda=w_{i} / z_{i}$.
- If z is not an eigenvector, then w may be a vector closer to an eigenvector than z is.
- Therefore, we may use w in the next iteration to find an even better approximation.
- From w, we have $u=A \cdot w$; from u we have $v=$ A•u; etc. Hopefully, some vector x will satisfy $A \cdot x=\lambda x$.

Power Method: 2/11

- Note that: if x is an eigenvector, αx is also an eigenvector because $\alpha(A \cdot x)=\alpha(\lambda x)$ and $A \cdot(\alpha x)$ $=\lambda(\alpha x)$!
- Therefore, we may scale an eigenvector. The simplest way is to scale the vector by the component with maximum absolute value. After scaling, the value of each component is in [-1,1].
- Example: Let x be [15, -20, $\mathbf{- 8}$]. Since $|-20|$ is the largest, the scaling factor is -20 and the scaled x is $[-15 / 20,1,8 / 20]$.

Power Method: 3/11

- This scaling has an advantage.
- Given a vector z, we compute $w=A \cdot z$.
- If w is a good approximate of λz, we have $w \approx \lambda_{z}$ = A.z.
- Therefore, we should have $w_{i} \approx \lambda z_{i}$ for every i.
- If vector z is scaled so that its largest entry, say
z_{k}, is 1 , then $w_{k} \approx \lambda z_{k}=\lambda$!
- In other words, the scaling factor is an approximation of an eigenvalue!

Power Method: 4/11

- We may start with $a z$ and compute $w=A \cdot z$.
\bullet The largest component w_{k} of w is an approximation of an eigenvalue λ (i.e., $w_{k} \approx \lambda$).
\bullet Then, w is scaled with its largest component w_{k} and used as a new z (i.e., $\mathrm{z}=\mathrm{w} / w_{k}$).
- This process is applied iteratively until we have $\left|A \cdot z-w_{k} z\right|<\varepsilon$, where ε is a tolerance value.

Power Method: 5/11

- Suppose this process starts with vector x_{0}.
- The computation of x_{i} is $\mathrm{x}_{i}=\mathrm{w}_{i} / w_{i, k}=\left(\mathrm{A} \cdot \mathrm{x}_{i-1}\right) / w_{i, k}$, where $w_{i, k}$ is the maximum component of w_{i}.
-Since $\mathrm{x}_{i-1}=\mathrm{w}_{i-1} / w_{i-1, k}=\left(\mathbf{A} \cdot \mathrm{x}_{i-2}\right) / w_{i-1, k}$, we may rewrite the x_{i} as follows for some c, d and g :

$$
\mathrm{x}_{i}=c\left(\mathrm{~A} \cdot \mathrm{x}_{i-1}\right)=c\left(d \mathrm{~A}\left(\mathrm{Ax}_{i-2}\right)\right)=g \mathrm{~A}^{2} \mathrm{x}_{i-2}
$$

- Continuing this process, we have the following for some p :

$$
\mathrm{x}_{i}=p \mathrm{~A}^{\mathbf{i}} \mathbf{x}_{0}
$$

- Hence, x_{i} is obtained by some power of A, and, hence, the "power" method.

Power Method: 6/11

- Example: Consider the following 2×2 matrix

$$
A=\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right]
$$

-This matrix has eigenvalues 5 and 1 and corresponding eigenvectors $[1,1]$ and $[-3,1]$
\bullet Let us start with $\mathrm{z}=[1 / 2,1]$. Since the maximum entry of z is 1 , no scaling is needed.
\bullet Compute w=A•z = [4,9/2].

Power Method: 7/11

- Since $w=[4,9 / 2]$ and its largest entry is $9 / 2$,
- The approximate eigenvalue is $9 / 2$
\bullet The scaled $\mathrm{z}=\mathrm{w} /(9 / 2)=[8 / 9,1]$
\bullet Compute w = A•z =[43/9,44/9]. Now, we have
- The approximate eigenvalue is $44 / 9$
-The new $z=[43 / 44,1]$
\bullet Compute w = A•z = [109/22,219/44] and we have
- The approximate eigenvalue is 219/44
\bullet The new $z=[218 / 219,1]$
- After 3 iterations, we have an approximate eigenvalue $219 / 44=4.977 \approx 5$ and eigenvector $[218 / 219,1]=[0.9954,1] \approx[1,1]$.

Power Method: 8/11

- A is the input matrix, z an approx. eigenvector

```
z = random and scaled vector ! initialize
DO ! loop until done
    W = A*Z
    max = 1 ! find the |max| entry
    DO i = 2, n
    IF (ABS(w(i)) > ABS(w(max))) max = i
    END DO
    eigen_value = w(max) ! ABS(w(max)) the largest
    DO i = 1, n ! Scale w(*) to z(*)
    z(i) = w(i)/eigen_value
    END DO
    IF (ABS(A*z - eigen_value*z)) < Tol) EXIT
END DO
```


Power Method: 9/11

-Example: Find an eigenvalue and its corresponding eigenvector of $A, x_{0}=[1,1,1,1]$:

$$
\left[\begin{array}{cccc}
11 & -26 & 3 & -12 \\
3 & -12 & 3 & -6 \\
31 & -99 & 15 & -44 \\
9 & -10 & -3 & -4
\end{array}\right]
$$

- Iter 1: $w=[-24,-12-97-8]$, approx. $\lambda=-97$ and new $\mathrm{z}=\mathrm{w} /(-97)=[0.247423,0.123711,1,0.0824742]$.
- Iter 2: w = [1.51546,1.762896.79381,-2.34021], approx. $\lambda=6.79381, \mathrm{z}=\mathrm{w} /(6.79381)=$ [0.223065,0.259484,1,-0.344461]

Power Method: 10/11

- Iter 3: $\mathrm{w}=$ [2.84067,2.62216,11.3824-2.20941], approx. $\lambda=11.3824$, new $\mathrm{z}=\mathrm{w} / \lambda=[0.249567$, 0.230369,1,-0.194107]
- Iter 4: $\mathrm{w}=[2.08492,2.14891$ 8.47074)-2.28116], $\operatorname{approx} \lambda=8.47074$, new $z=w / \lambda=$ [0.246132,0.253687,1,-0.269299]
- 15 more iterations
- Iter 19: approx. $\lambda=9$ and corresponding eigenvector (i.e., z) $=[0.25,0.25,1,-0.25]$

Power Method: 11/11

- What does power method do?
- It finds the largest eigenvalue (i.e., dominating eigenvalue) and its corresponding eigenvector.
- If vector z is perpendicular to the eigenvector corresponding to the largest eigenvalue, power method will not converge in exact arithmetic.
-Thus, z may be a random vector, initially.
\bullet Convergence rate is $\left|\lambda_{2} / \lambda_{1}\right|$, where λ_{1} and λ_{2} are the largest and second largest eigenvalues.
- If rate is $\ll 1$, faster convergence is possible. If it is close to 1 , convergence will be very slow.

J acobi Method: Basic Idea

\bullet Finding all eigenvalues and their corresponding eigenvectors is not an easy task.
\bullet However, in 1846 Jacobi found a relatively easy way to find all eigenvalues and eigenvectors of a symmetric matrix.

- Jacobi suggested that a symmetric matrix would be diagonal after being transformed repeatedly with appropriate "rotations."
- In what follows, we shall talk about coordinate rotation, rotations applied to a symmetric matrix, and Jacobi's method.

Coordinate Rotation: 1/2

- Suppose rotating system (x, y) an angle of θ yields (x^{\prime}, y^{\prime}). The relationship between (x^{\prime}, y^{\prime}) and (x, y) is

$$
\begin{aligned}
& x^{\prime}=\cos (\theta) x+\sin (\theta) y \\
& y^{\prime}=-\sin (\theta) x+\cos (\theta) y
\end{aligned}
$$

- This can be represented in
 a matrix form:
rotation matrix

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]:\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Coordinate Rotation: 2/2

- An \boldsymbol{n}-dimensional rotation matrix is $\boldsymbol{n} \times \boldsymbol{n}$.
- If rotation is on the $x_{p}-x_{q}$ plane with an angle θ, the (p, q)-rotation matrix $R_{p, q}(\theta)$ is:

Symmetric Matrix Rotation: 1/11

- A symmetric matrix $\mathbf{A}=\left[a_{i, j}\right]_{n \times n}$ is a matrix satisfying $a_{i, j}=a_{j, i}$, where $1 \leq i<j \leq n$.
- In other words, a symmetric matrix is "symmetric" about its diagonal.
- The transpose of matrix B is B^{T}.
- Rotation matrix $R_{p, q}(\theta)$ is not symmetric.
\bullet Rotating a matrix A with rotation matrix R is computed as $A^{\prime}=R^{T} \bullet A \bullet R$
- If \mathbf{A} is symmetric, \mathbf{A}^{\prime} is also symmetric.

Symmetric Matrix Rotation: 2/11

- Given a symmetric matrix $\mathrm{A}=\left[a_{i, j}\right]_{n \times n}$ and a rotation matrix $R_{p, q}(\theta)$, written as R for simplicity, find $A^{\prime} \stackrel{=}{=} R^{T} \bullet A \bullet R$.
\bullet This is an easy task: we compute $H=A \bullet R$, followed by $A^{\prime}=R^{\mathrm{T}} \cdot \mathbf{H}$.
-Do we have to use matrix multiplication?
- NO_{O}, it is not necessary due to the very simple form of the rotation matrix R and R^{T}.

Symmetric Matrix Rotation: 3/11

\bullet Observation: A•R is identical to A except for column p and column $q(C=\cos (\theta)$ and $S=\sin (\theta))$

Symmetric Matrix Rotation: 4/11

$-A \bullet R$ is computed as follows, where C and S are $\cos (\theta)$ and $\sin (\theta)$, respectively.

- Other than column p and column q, all entries are identical to those of A.

Symmetric Matrix Rotation: 5/11

- Suppose we have computed $H=A \bullet R$, how do we compute $A^{\prime}=R^{T} \bullet A \bullet R=R^{T} \bullet H$?
- The transpose of R, R^{T}, is very similar to R

Symmetric Matrix Rotation: 6/11

\bullet Computing $A^{\prime}=R^{T} \bullet H$ is very similar to computing $A \bullet R$.

- The only difference is row p and row q.

Symmetric Matrix Rotation: 7/11

- Here is the result of $A^{\prime}=R^{T} \bullet A \bullet R=R^{T} \bullet H$:

Because of symmetry, we only .

$$
A_{p, p}^{\prime}=a_{p, p} C^{2}-2 a_{p, q} C \times S+a_{q, q} S^{2} \quad \text { update the upper triangular part. }
$$

$$
A_{q, q}^{\prime}=a_{p, p} S^{2}+2 a_{p, q} C \times S+a_{q, q} C^{2}
$$

$$
\begin{equation*}
A_{p, q}^{\prime}=A_{q, p}^{\prime}=\left(a_{p, p}-a_{q, q}\right) C \times S+a_{p, q}\left(C^{2}-S^{2}\right) \tag{26}
\end{equation*}
$$

Symmetric Matrix Rotation: 8/11

\bullet P art I: Update $\boldsymbol{a}_{p, p}, \boldsymbol{a}_{p, q}$ and $\boldsymbol{a}_{q, q}$, where $\boldsymbol{p}<\boldsymbol{q}$.

$$
\begin{aligned}
& A_{p, p}^{\prime}=a_{p, p} C^{2}-2 a_{p, q} C \times S+a_{p, q} S^{2} \\
& A_{q, q}^{\prime}=a_{p, p} S^{2}+2 a_{p, q} C \times S+a_{p, q} C^{2} \\
& A_{p, q}^{\prime}=A_{q, p}^{p}=\left(a_{p, p}-a_{q, q}\right) C \times S+a_{p, q}\left(C^{2}-S^{2}\right)
\end{aligned}
$$

```
! PART I: Update a(p,p), a(q,q), a(p,q)
! C = cos(0) and S = sin}(0
! a(*,*) is an n\timesn symmetric matrix
! p, q : for (p,q)-rotation, where p < q
App = C*C*a(p,p) - 2*C*S*a(p,q) + S*S*a(q,q)
Aqq = S*S*a(p,p) + 2*C*S*a(p,q) + C*C*a(q,q)
Apq = C*S*(a(p,p)-a(q,q)) + (C*C-S*S)*a(p,q)
a(p,p) = App
a(q,q) = Aqq
a(p,q) = Apq
```


27

NOTE: only the upper triangular portion is updated!

Symmetric Matrix Rotation: 9/11

- Part II: Update Row 1 to Row p-1.

$$
\begin{aligned}
& A_{i, p}^{\prime}=a_{i, p} C-a_{i, q} S \\
& A_{i, q}^{\prime}=a_{i, p} S+a_{i, q} C
\end{aligned}
$$

```
! PART II: Update column p and column q from
! row 1 to row p-1.
!
! h is used to save the new value of a(i,p)
! since a(i,p) is used to compute a(i,q)
! and cannot be destroyed right away!
DO i = 1, p-1
    h = C*a(i,p) - s*a(i,q)
    a(i,q) = S*a(i,p) + C*a(i,q)
    a(i,p) = h
END DO
```


NOTE: only the upper triangular portion is updated!

Symmetric Matrix Rotation: 10/11

- Part III: Update Row p+1 to Row q-1.

Symmetric Matrix Rotation: 11/11

- Part IV: Update Row q+1 to Row n.
! PART IV: Update column q+1 to column n
! PART IV: Update column q+1 to column n
!
!
! h is used to save the new value
! h is used to save the new value
! of a(p,i) because a(p,i) is used to
! of a(p,i) because a(p,i) is used to
! compute a(q,i) and cannot be
! compute a(q,i) and cannot be
! destroyed right away!
! destroyed right away!
! Due to symmetry, this part actually
! Due to symmetry, this part actually
! updates the last sections of row p
! updates the last sections of row p
! and Row q
! and Row q
DO i = q+1, n
DO i = q+1, n
h = C*a(p,i) - s*a(q,i)
h = C*a(p,i) - s*a(q,i)
a(q,i) = S*a(p,i) + C*a(q,i)
a(q,i) = S*a(p,i) + C*a(q,i)
a(p,i) = h
a(p,i) = h
END DO
END DO
Note the symmetry in the update!

Eigenvalues of 2×2 Symmetric Matrices: 1/4

- Consider a 2×2 symmetric matrix A :

$$
A=\left[\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right] \text { where } a_{1,2}=a_{2,1}
$$

- Applying a rotation in the $x y$-plane yields the following symmetric matrix A^{\prime} for some angle θ, where $C=\cos (\theta)$ and $S=\sin (\theta)$:

$$
A^{\prime}=R^{T} \cdot A \cdot R=\left[\begin{array}{lc}
a_{1,1} C^{2}-2 a_{1,2} C \times S+a_{2,2} S^{2} & \left(a_{1,1}-a_{2,2}\right) C \times S+a_{1,2}\left(C^{2}-S^{2}\right) \\
a_{1,1} S^{2}+2 a_{1,2} C \times S+a_{2,2} C^{2}
\end{array}\right]
$$

Eigenvalues of 2×2 Symmetric Matrices: 2/4

-The off-diagonal element is

$$
\left(a_{1,1}-a_{2,2}\right) C \times S+a_{1,2}\left(C^{2}-S^{2}\right)
$$

- If a $\boldsymbol{\theta}$ can be chosen so that the off-diagonal elements $a_{1,2}$ and $a_{2,1}$ are 0 , matrix A is diagonal and the diagonal entries are eigenvalues!

```
(al,1}-\mp@subsup{a}{2,2}{})C\timesS+\mp@subsup{a}{1,2}{}(\mp@subsup{C}{}{2}-\mp@subsup{S}{}{2})=
|
```

$\frac{-a_{1,2}}{a_{1,1}-a_{2,2}}=\frac{C \times S}{C^{2}-S^{2}}=\frac{\cos (\theta) \sin (\theta)}{\cos ^{2}(\theta)-\sin ^{2}(\theta)}$
\Downarrow
simple facts from trigonometry
$\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$
$\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)$
$\frac{a_{1,2}}{a_{2,2}-a_{1,1}}=\frac{2}{2} \times \frac{\cos (\theta) \sin (\theta)}{\cos ^{2}(\theta)-\sin ^{2}(\theta)}=\frac{1}{2} \frac{\sin (2 \theta)}{\cos (2 \theta)}=\frac{\tan (2 \theta)}{2}$
\Downarrow
$\tan (2 \theta)=\frac{2 a_{1,2}}{a_{2,2}-a_{1,1}} \quad \theta=\frac{1}{2} \tan ^{-1}\left(\frac{2 a_{1,2}}{a_{2,2}-a_{1,1}}\right) \quad \begin{aligned} & \text { if } \boldsymbol{a}_{\mathbf{1 , 1}} \neq \boldsymbol{a}_{\mathbf{2 , 2}} \\ & \text { otherwise, } \boldsymbol{\theta}=\pi / \mathbf{4}\end{aligned}$

Eigenvalues of 2×2 Symmetric Matrices: 3/4

-Consider this A:

$$
A=\left[\begin{array}{cc}
2 & \sqrt{3} \\
\sqrt{3} & 4
\end{array}\right]
$$

- From matrix A, we have $a_{1,1}=2, a_{2,2}=4$ and $a_{1,2}=$ $a_{2,1}=\sqrt{3}$.
- Since $\tan (2 \theta)=2 a_{1,2}\left(\left(a_{2,2^{-}} a_{1,1}\right)=\sqrt{ } 3\right.$, we have $2 \theta=$ $\pi / 3, \quad \theta=\pi / 6, S=\sin (\theta)=1 / 2, C=\cos (\theta)=(\sqrt{3}) / 2$.
- The new $a_{1,1}$ is $a_{1,1} C^{2}-a_{1,2} C \times S+a_{2,2} S^{2}=1$, the new $a_{2,2}$ is $a_{1,1} S^{2,}+a_{1,2} C \times S+a_{2,2} C^{2}=5$, and the new $a_{1,2}=$ $a_{2,1}=0$.
- Therefore, eigenvalues of \mathbf{A} are +1 and +5!

Eigenvalues of 2×2 Symmetric Matrices: 4/4

- Let us verify the result. Since $S=\sin (\theta)=1 / 2$ and $C=\cos (\theta)=(\sqrt{ } 3) / 2$, the rotation matrix R is:

$$
R=\left[\begin{array}{ll}
C & S \\
-S & C
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]
$$

-The rotated A is $A^{\prime}=R^{T} \cdot A \cdot R$:

$$
A^{\prime}=R^{T} \cdot A \cdot R=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & \sqrt{3} \\
\sqrt{3} & 4
\end{array}\right] \cdot\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right]
$$

- A' is diagonal and eigenvalues of A are 1 and 5.

Classic J acobi Method: 1/13

- Jacobi published a method in 1846 capable of finding all eigenvalues and eigenvectors of a symmetric matrix with repeated rotations.
\bullet Find an off-diagonal entry with maximum absolute value, say $a_{p, q}$, where $p<q$.
- If $\left|a_{p, q}\right|<\varepsilon$, where ε is a given tolerance, stop.
\bullet Apply a (p, q)-rotation to eliminate $a_{p, q}$ and $a_{q, p}$.
- Repeat this process until all off-diagonal elements become very small (i.e., absolute value $<\varepsilon$).
- The diagonal entries are eigenvalues.
- Rotations do not alter eigenvalues!

Classic J acobi Method: 2/13

- Basically, Jacobi method starts with a symmetric matrix $A_{0}=A$.
-Find a rotation matrix R_{1} so that an off-diagonal entry of $A_{1}=R_{1}{ }^{\mathrm{T}} \cdot \mathrm{A}_{0} \cdot \mathrm{R}_{1}$ becomes 0 .
-Then, find a rotation matrix R_{2} so that an offdiagonal entry of $A_{2}=R_{2}{ }^{T} \cdot A_{1} \cdot R_{2}$ becomes 0 .
\bullet The entry of \mathbf{A}_{1} eliminated by \mathbf{R}_{1} can become nonzero in A_{2}; however, it would be smaller.
- Note the following fact:

$$
\begin{aligned}
& A_{2}=R_{2}^{T} \cdot A_{1} \cdot R_{2}=R_{2}^{T} \cdot\left(R_{1}^{T} \cdot A_{0} \cdot R_{1}\right) \cdot R_{2} \\
& A_{2}=R_{2}^{T} \cdot R_{1}^{T} \cdot A_{0} \cdot R_{1} \cdot R_{2}
\end{aligned}
$$

Classic J acobi Method: 3/13

- Repeating this process, for iteration i, a rotation matrix R_{i} is found to eliminate one off-diagonal entry of $A_{i}=R_{i}^{T} \cdot A_{i-1} \cdot R_{i}$.
-Thus, A_{i} is computed as follows:
$A_{i}=R_{i}^{T} \cdot R_{i-1}{ }^{T} \cdots \cdots R_{2}^{T} \cdot R_{1}^{T} \cdot A_{0} \cdot R_{1} \cdot R_{2} \cdots R_{i-1} \cdot R_{i}$
- Jacobi showed that after some number of iterations, all off-diagonal entries are small and the resulting matrix A_{m} is diagonal.
- Therefore, the diagonal entries of A_{m} are the eigenvalues of A.

Classic J acobi Method: 4/13

- Here is a template of the Jacobi method.

```
DO
```


Classic J acobi Method: 5/13

- The only remaining part is an efficient and accurate way of "applying a (p, q)-rotation."
- We saw the 2×2 case earlier: find an appropriate rotation angle θ, compute $C=\cos (\theta)$ and $S=\sin (\theta)$, and update matrix A.
-This approach requires $\tan ^{-1}(\theta)$, which can be time consuming and may lose significant digits.
- Therefore, we need a faster and more accurate method.

Classic J acobi Method: 6/13

- The following shows the new $a_{p, p}, a_{q, q}$ and $a_{p, q}$ after rotation.

$$
\begin{aligned}
& A_{p, p}^{\prime}=a_{p, p} C^{2}-2 a_{p, q} C \times S+a_{q, q} S^{2} \\
& A_{q, q}^{\prime}=a_{p, p} S^{2}+2 a_{p, q} C \times S+a_{q, q} C^{2} \\
& A_{p, q}^{\prime}=A_{q, p}^{\prime}=\left(a_{p, p}-a_{q, q}\right) C \times S+a_{p, q}\left(C^{2}-S^{2}\right)
\end{aligned}
$$

- Setting the new $A_{p, q}$ to 0 yields an angle θ that can eliminate $A_{p, q}$ and $A_{q, p}$.
- We shall use a different way to find $\tan (\theta)$, from which $\sin (\theta)$ and $\cos (\theta)$ can be computed easily without the use of the $\tan ^{-1}()$ function.

Classic J acobi Method: 7/13

- We follow the 2×2 case.

$$
\begin{aligned}
& A_{p, q}=\left(a_{p, p}-a_{q, q}\right) C \times S+a_{p, q}\left(C^{2}-S^{2}\right)=0 \\
& \Downarrow \\
& \frac{a_{p, q}}{a_{q, q}-a_{p, p}}=\frac{C \times S}{C^{2}-S^{2}}=\frac{\cos (\theta) \sin (\theta)}{\cos ^{2}(\theta)-\sin ^{2}(\theta)}=\frac{2}{2} \times \frac{\cos (\theta) \sin (\theta)}{\cos ^{2}(\theta)-\sin ^{2}(\theta)} \\
& \Downarrow \\
& \frac{a_{p, q}}{a_{q, q}-a_{p, p}}=\frac{1}{2} \times \frac{\sin (2 \theta)}{\cos (2 \theta)}=\frac{1}{2} \tan (2 \theta) \\
& \Downarrow \\
& \tan (2 \theta)=\frac{2 a_{p, q}}{a_{q, q}-a_{p, p}}=\cot (2 \theta)=\frac{a_{q, q}-a_{p, p}}{2 a_{p, q}}
\end{aligned}
$$

Classic J acobi Method: 8/13

- But, what we really need is $\tan (\theta)$!
\bullet Let $t=\tan (\theta)$, and we have $t=S / C$.
- From cot(20), we have the following:

$$
\cot (2 \theta)=\frac{\cos (2 \theta)}{\sin (2 \theta)}=\frac{\cos ^{2}(\theta)-\sin ^{2}(\theta)}{2 \sin (\theta) \cos (\theta)}=\frac{C^{2}-S^{2}}{2 S \times C}
$$

\bullet Divide the numerator and denominator with C^{2} :

$$
\cot (2 \theta)=\frac{\left(C^{2}-S^{2}\right) / C^{2}}{(2 S \times C) / C^{2}}=\frac{1-S^{2} / C^{2}}{2(S / C)}=\frac{1-t^{2}}{2 t}
$$

- Therefore, we have:

$$
\Delta=\frac{1-t^{2}}{2 t} \text { where } \Delta=\cot (2 \theta)=\frac{a_{q, q}-a_{p, p}}{2 a_{p, q}}
$$

Classic J acobi Method: 9/13

- From $\Delta=\left(1-t^{2}\right) /(2 t)$, we have $t^{2}+2 \Delta t-1=0$.
- This means the desired $t=\tan (\theta)$ is one of the two roots of $t^{2}+2 \Delta t-1=0$.
-The roots of $t^{2}+2 \Delta t-1=0$ are

$$
t=-\Delta \pm \sqrt{\Delta^{2}+1}
$$

- Which root is better?
- Important Fact: If x_{1} and x_{2} are roots of

- Since the product of the roots of $t^{2}+2 \Delta t-1=0$ is -1 , the smaller (or desired) one must be in [-1,1].

Classic J acobi Method: 10/13

- Consider the following manipulation:

$$
\left(-\Delta \pm \sqrt{\Delta^{2}+1}\right) \times \frac{-\Delta \mp \sqrt{\Delta^{2}+1}}{-\Delta \mp \sqrt{\Delta^{2}+1}}=\frac{1}{\Delta \pm \sqrt{\Delta^{2}+1}}
$$

- We have to avoid cancellation witen Δ is large.
- If $\Delta>0$, use + . The denominator is $\Delta+\left(\Delta^{2}+1\right)^{1 / 2}>$ 1 and the positive root is less than 1.
- If $\Delta<0$, use - . The denominator is $\Delta-\left(\Delta^{2}+1\right)^{1 / 2}<-$ 1 and the negative root is greater than -1.

Classic J acobi Method: 11/13

- If $\Delta>0$ (resp., $\Delta<0$), the desired "smaller" root is $1 /\left(\Delta+\left(\Delta^{2}+1\right)^{1 / 2}\right)\left(\right.$ resp., $1 /\left(\Delta-\left(\Delta^{2}+1\right)^{1 / 2}\right)$.
-This root can be rewritten as follows:

$$
t=\frac{\operatorname{sign}(\Delta)}{|\Delta|+\sqrt{\Delta^{2}+1}} \quad \text { and } \quad|t| \leq 1
$$

- Since $|t| \leq 1$, the angle of rotation is in $[-\pi / 4, \pi / 4]$.
- After $t($ i.e., $\tan (\theta))$ is computed, $C=\cos (\theta)$ and $S=\sin (\theta)$ are the following

$$
C=\cos (\theta)=\frac{1}{\sqrt{1+t^{2}}} \quad \text { and } \quad S=\sin (\theta)=C \times t
$$

Classic J acobi Method: 12/13

Compute Δ and t, and obtain $C=\cos (\theta)$ and $S=\sin (\theta)$

```
! This section computes C and S
! From a(p,p), a(q,q) and a(p,q)
t = 1.0
IF (a(p,p) != a(q,q)) THEN
    D = (a(q,q), a(p, po)) )/~(2*a(porq))
    t = :SiIGN(1/(ABS (D)+SQRT(D*D+1)),DD:D:
END IF
C = 1/SQRT(1+t*t)
S = C*t
```

In Fortran 90, SIGN (a, b) means using the sign of b with the absolute value of a. Thus, SIGN $(10,-1)$ and SIGN ($-15,1$) yield -10 and 15 , respectively. ${ }^{46}$

Classic J acobi Method: 13/13

-Finally, the classic Jacobi method is shown below.

- Scan the upper triangular portion for max $|a(p, q)|$, where $p<q$.
\bullet A (p, q)-rotation based on the values of C and S sets $a(p, q)$ and $a(q, p)$ to zero.

Classic Jacobi Method

DO

Find the max $|a(p, q)|$ entry, $p<q$
IF (|a(p,q)| < Tol) EXIT
From $a(p, p), a(q, q)$ and $a(p, q)$ compute t
From t compute C and S
Perform a (p, q)-rotation with $a(p, q)=a(q, p)=0$ END DO

Computation Example: 1/5

- Consider the following symmetric matrix:

$$
A=\left[\begin{array}{ccc}
12 & 6 & -6 \\
6 & 16 & 2 \\
-6 & 2 & 16
\end{array}\right]
$$

- The largest element is on row 1 and column 2.
- Since $a_{1,1}=12, a_{1,2}=6$ and $a_{2,2}=16$, we have $\Delta=$ $\left(a_{2,2}-a_{1,1}\right) /\left(2 a_{1,2}\right)=0.33333334$, and $t=0.7207582$.
\bullet From $t=0.7207582$, we have $C=0.8112422$ and $S=0.5847103$.

$$
R_{1,2}=\left[\begin{array}{ccc}
0.8112422 & 0.5847103 & \\
-0.5847103 & 0.8112422 & \\
& & 1
\end{array}\right]
$$

Computation Example: 2/5

- The new $A=R_{1,2}{ }^{\mathbf{T}} \cdot \mathbf{A} \cdot \mathbf{R}_{1,2}$ is

$$
A=\left[\begin{array}{ccc}
7.6754445 & 0.0 & -6.036874 \\
0.0 & 20.32456 & -1.885777 \\
-6.036874 & -1.885777 & 16.0
\end{array}\right]
$$

-The off-diagonal entry with the largest absolute value is $a_{1,3}=-6.036874$.

- Since $a_{1,1}=7.6754445, a_{1,3}=-6.036874$ and $a_{3,3}=16$, $\Delta=\left(a_{3,3}-a_{1,1}\right) /\left(2 a_{1,3}\right)=-0.68947533, t=-0.5251753$, $C=0.885334$, and $S=-0.4645553$.

Computation Example: 3/5

- The rotation matrix $R_{1,3}$ is:
$R_{1,3}=\left[\begin{array}{ccc}0.885334 & & -0.46495553 \\ & 1 & \\ 0.46495553 & & 0.885334\end{array}\right]$
- The new matrix $A=R_{1,3}{ }^{T} \cdot A \cdot R_{1,3}$ is

Computation Example: 4/5

\bullet The largest entry is $a_{2,3}=-1.669543$.

- Since $a_{2,2}=20.32456, a_{2,3}=-1.669543$, $a_{3,3}=19.17042, \Delta=\left(a_{3,3}-a_{2,2}\right) /\left(2 a_{2,3}\right)=0.34564623$, and $t=0.71240422$.
\bullet Therefore, $C=0.81445753$ and $S=0.58022314$.
\bullet The new rotation matrix $R_{2,3}$ is:

$$
R_{2,3}=\left[\begin{array}{lrr}
1 & & \\
& 0.81445753 & 0.58022314 \\
& -0.58022314 & 0.81445753
\end{array}\right]
$$

Computation Example: 5/5

-The new matrix $\mathbf{A}=\mathbf{R}_{2,3}{ }^{\mathrm{T}} \cdot \mathbf{A} \cdot \mathbf{R}_{2,3}$ is: \quad They were 0 !

$$
A=\left[\begin{array}{ccc}
4.505028 & -0.7141185 & -0.5087411 \\
& 21.51395 & 0.0) \text { ellminated } \\
& & 17.98103
\end{array}\right]
$$

- With 5 more iterations, the new matrix A becomes

$$
A=\left[\begin{array}{lll}
4.455996 & & \\
& 21.54401 & \\
& & 18.0
\end{array}\right]
$$

- The eigenvalues are 4.455996, 21.54401, 18.0
- In hand calculation of small matrices, direct matrix multiplication may be more convenient!

Where Are the Eigenvectors: 1/6

-An important fact: If \mathbf{R} is a rotation matrix, then $R^{-1}=R^{T}$! So, R 's inverse is R 's transpose.
Note that $C^{2}+S^{2}=1$!

Where Are the Eigenvectors: 2/6

-Two more simple facts: (A•B) ${ }^{-1}=\mathbf{B}^{\mathbf{- 1}} \cdot \mathbf{A}^{\mathbf{- 1}}$ and $(A \cdot B)^{T}=B^{T} \cdot A^{T}$.

- Jacobi method uses a sequence of rotation matrices $R_{1}, R_{2}, \ldots, R_{m}$ to transform the given matrix A to a diagonal form \mathbf{D} :

$$
R_{m}^{T} \cdot\left(R_{m-1}^{T} \cdot\left(\cdots \cdot\left(R_{2}^{T} \cdot\left(R_{1}^{T} \cdot A \cdot R_{1}\right) \cdot R_{2}\right) \cdots\right) \cdot R_{m-1}\right) \cdot R_{m}=D
$$

- The above is equivalent to:

$$
\left(R_{m}^{T} \cdot R_{m-1}^{T} \cdots \cdots R_{2}^{T} \cdot R_{1}^{T}\right) \cdot A \cdot\left(R_{1} \cdot R_{2} \cdots \cdots R_{m-1} \cdot R_{m}\right)=D
$$

-Since $(A \cdot B)^{\mathrm{T}}=B^{\mathrm{T}} \cdot A^{\mathrm{T}}$, we have the following:

$$
\left(R_{1} \cdot R_{2} \cdot \ldots \cdot R_{m-1} \cdot R_{m}\right)^{T} \cdot A \cdot\left(R_{1} \cdot R_{2} \cdot \ldots \cdot R_{m-1} \cdot R_{m}\right)=D
$$

Where Are the Eigenvectors: 3/6

\bullet Let $\mathrm{V}=\mathrm{R}_{1} \cdot \mathbf{R}_{2} \cdot \ldots \cdot \mathrm{R}_{m}$. Then, we have $\mathrm{V}^{\mathrm{T}} \cdot \mathrm{A} \cdot \mathrm{V}=\mathrm{D}$.
\bullet We shall show $\mathbf{V}^{-1}=V^{T}$. Since $R^{-1}=R^{T}$ and

$$
V^{-1}=\left(R_{1} \cdot R_{2} \cdots \cdot R_{m}\right)^{-1}=R_{p}^{-1} \cdots \cdots R_{2}^{-1} \cdot R_{1}^{-1}
$$

we have
$V^{-1}=R_{m}^{-1} \cdots \cdots R_{2}^{-1} \cdot R_{1}^{-1}=R_{m}^{T} \cdots \cdot R_{2}{ }^{T} \cdot R_{1}^{T}=\left(R_{1} \cdot R_{2} \cdots \cdots R_{m}\right)^{T}=V^{T}$

- Therefore,, $\mathbf{V}^{-1} \cdot \mathbf{A} \cdot \mathbf{V}=\mathbf{D}$ holds.
\bullet Multiplying both sides by V yields $\mathrm{A} \cdot \mathrm{V}=\mathrm{V} \cdot \mathrm{D}$.

$$
V^{-1} \cdot A \cdot V=\underset{\left(V^{-1} \cdot A \cdot V\right) \fallingdotseq \square}{D}
$$

$$
A \cdot V=V \cdot D
$$

Where Are the Eigenvectors: 4/6

- Let the column vectors of V be $v_{1}, v_{2}, \ldots, v_{n}$ (i.e., $\left.\mathbf{V}=\left[\mathbf{v}_{\mathbf{1}}\left|\mathbf{v}_{\mathbf{2}}\right| \mathbf{v}_{\mathbf{3}}|\ldots| \mathbf{v}_{\boldsymbol{n}}\right]\right)$.
-Then, $\mathrm{V} \cdot \mathrm{D}=\left[d_{1} \mathbf{v}_{1}\left|d_{2} \mathbf{v}_{2}\right| \ldots \mid d_{n} \mathbf{v}_{n}\right]$ and $A \cdot \mathbf{v}_{i}=d_{i} \mathbf{v}_{i}$, and the eigenvectors are the columns of V !

$$
\left[\begin{array}{l|l|l|l|l}
\mathbf{V}_{\mathbf{1}} & \mathbf{V}_{\mathbf{2}} & \ldots & \mathbf{V}_{\boldsymbol{n}-\mathbf{1}} & \mathbf{V}_{\boldsymbol{n}} \\
v_{1,1} & v_{1,2} & \cdots & v_{1, n-1} & v_{1, n} \\
v_{2,1} & v_{2,2} & \cdots & v_{2, n-1} & v_{2, n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
v_{n-1,1} & v_{n-1,2} & \cdots & v_{n-1, n-1} & v_{n-1, n} \\
v_{n, 1} & v_{n, 2} & \cdots & v_{n, n-1} & v_{n, n}
\end{array}\right] \cdot\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \mathbf{0} \\
& & \ddots & \\
& \mathbf{0} & & d_{n-1} \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}\right]=\left[d_{1} \cdot \mathrm{v}_{1}\left|d_{2} \cdot \mathrm{v}_{2}\right| \cdots \mid d_{n} \cdot \mathrm{v}_{n}\right]
$$

Where Are the Eigenvectors: 5/6

-The following shows an inefficient way using matrix multiplication.

```
! A is the input n\timesn symmetric matrix
V = the identify matrix
DO
    find the largest off-diagonal entry |a(p,q)|
    IF (|a(p,q)| < Tol) EXIT
    compute }\Delta,t,S\mathrm{ and C
    update matrix a(*,*)
    V = V*R ! eigenvectors
END DO
! Eigenvalues are the diagonal entries of A
! Eigenvectors are the columns of V
```


Where Are the Eigenvectors: 6/6

-The computation of $\mathrm{V}=\mathrm{V} \cdot \mathrm{R}$ is similar to $\mathrm{A} \cdot \mathrm{R}$!

- $\mathrm{V}=\left[v_{i, j}\right]$ is not symmetric, and two complete columns (i.e., columns p and q) must be updated.

Example-Continued: 1/4

- The input matrix is:

$$
A=\left[\begin{array}{ccc}
12 & 6 & -6 \\
6 & 16 & 2 \\
-6 & 2 & 16
\end{array}\right]
$$

- Since $a_{1,2}$ is the largest, rotation matrix $R_{1,2}$ is:

$$
R_{1,2}=\left[\begin{array}{ccc}
0.8112422 & 0.5847103 & \\
-0.5847103 & 0.8112422 & \\
\ldots & 1
\end{array}\right]
$$

- Matrix V, approx. eigenvectors, is $\mathbf{I} \cdot \mathbf{R}_{1,2}$

$$
V=I \cdot R_{1,2}=\left[\begin{array}{ccc}
0.8112422 & 0.5847103 & \\
-0.5847103 & 0.8112422 & \\
& & 1
\end{array}\right]
$$

Example-Continued: 2/4

- Now, the new matrix A is:

$$
A=\left[\begin{array}{ccc}
7.6754445 & 0.0 & -6.036874 \\
0 & 20.32456 & -1.885777 \\
-6.036874 & -1.885777 & 16.0
\end{array}\right]
$$

- The largest off-diagonal is $a_{1,3}$ and $R_{1,3}$ is

$$
R_{1,3}=\left[\begin{array}{ccc}
0.885334 & & -0.46495553 \\
& 1 & \\
0.46495553 & & 0.885334
\end{array}\right]
$$

- Therefore, new approx. eigenvectors matrix V is

$$
V=V \cdot R_{1,3}=\left[\begin{array}{ccc}
0.7182204 & 0.5847103 & -0.3771916 \\
-0.5176639 & 0.8112422 & 0.27186423 \\
0.4649555 & 0 & 0.885334
\end{array}\right]
$$

Example-Continued: 3/4

- For iteration 3, matrix A is:

$$
A=\left[\begin{array}{ccc}
4.505028 & -0.8768026 & 0.0 \\
& 20.32456 & -1.669543 \\
& & 19.17042
\end{array}\right]
$$

- Since $\boldsymbol{a}_{2,3}$ is the largest, $\mathbf{R}_{2,3}$ is:

$$
R_{2,3}=\left[\begin{array}{ccc}
1 & & \\
& 0.81445753 & 0.58022314 \\
& -0.58022314 & 0.81445753
\end{array}\right]
$$

- The approx. eigenvector matrix V is:

$$
V=V \cdot R_{2,3}=\left[\begin{array}{ccc}
0.7182204 & 0.6950770 & 0.03205594 \\
-0.5176639 & 0.5029804 & 0.6921234 \\
0.4649555 & -0.5136913 & 0.7210670
\end{array}\right]
$$

Example-Continued: 4/4

- Five more iterations yields the new matrix A:
- The approx. eigenvector matrix V is:

$$
V=\begin{array}{|c|c|c|}
\hline 0.7473423 & 0.6644393 & -0.3606413 \mathrm{E}-6 \\
-0.4698294 & 0.5284512 & 0.7071065 \\
0.4698295 & -0.5284505 & 0.7071069 \\
\hline
\end{array}
$$

Normally eigenvalues are sorted and eigenvectors are normalized

Convergence of J acobi Method

-The classic Jacobi method always converges.

- Let $S(\mathrm{~A})$ be the sum of squares of all off-diagonal entries, where $\mathrm{A}=\left[a_{i, j}\right]$ is a $n \times n$ symmetric matrix:

$$
S(A)=\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} a_{i, j}^{2}=2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i, j}^{2}
$$

-Then, the sequence of values $S\left(\mathrm{~A}_{k}\right)$ decreases monotonically to zero, where A_{k} is the result of the k-th rotation.
-This means eventually all off-diagonal entries will become zeros (i.e., diagonal).

Two Improvements: 1/4

- The following two useful improvements are due to H. Rutishauser.
-The following formula was used to compute $t=$ $\boldsymbol{\operatorname { t a n }}(\theta)$:

$$
t=\frac{\operatorname{sign}(\Delta)}{|\Delta|+\sqrt{\Delta^{2}+1}} \text { where } \Delta=\frac{a_{q, q}-a_{p, p}}{2 a_{p, q}}
$$

- If Δ is large, Δ^{2} may cause overflow.
- To avoid overflow, one may set t to $1 /(2 \Delta)$ if Δ is large because $\Delta^{2}+1$ is close to Δ^{2}.
- How large is large enough so that Δ^{2} will not overflow? Exercise!

Two Improvements: 2/4

\bullet The updating formulas for the new $a_{p, p}$ and $a_{q, q}$, and the formulas for rows p and q and columns p and q of matrix A can be modified so that they are computationally more stable than the original.

- Reminder: The following formulas were used:

$$
\begin{aligned}
& \frac{C^{2}-S^{2}}{2 C \times S}=\cot (2 \theta)=\frac{a_{q, q}-a_{p, p}}{2 a_{p, q}} \\
& C=\cos (\theta) \quad S=\sin (\theta) \quad t=\frac{S}{C}=\tan (\theta)
\end{aligned}
$$

Two Improvements: 3/4

- Simplify the formula for the new $\boldsymbol{a}_{p, p}$:
$A_{p, p}^{\prime}=a_{p, p} C^{2}-2 a_{p, q} C \times S+a_{q, q} S^{2}$
$=a_{p, p}\left(1-S^{2}\right)-2 a_{p, q} C \times S+a_{q, q} S^{2}$
$=a_{p, p}+S^{2}\left(a_{q, q}-\ldots a_{p, p}\right)-2 a_{p, q} C \times S$
$=a_{p, p}+S^{2}:\left(\begin{array}{l}\because \cdots \\ \because \because a_{p, q} \\ C^{2}-S^{2} \cdot \\ 2 C \times S .\end{array}\right)-2 a_{p, q} C \times S$
$=a_{p, p}-t a_{p, q}$
- The one for $a_{q, q}$ is similar:

$$
A_{q, q}^{\prime}=a_{q, q}+t a_{p, q}
$$

$$
\frac{C^{2}-S^{2}}{2 C \times S}=\frac{a_{q, q}-a_{p, p}}{2 a_{p, q}}
$$

Two Improvements: 4/4

- Columns p and q of $A^{\prime}=A \cdot R$ and $V^{\prime}=V \cdot R$ (eigenvector matrix) were updated as follows: $A_{i, p}^{\prime}=C \times a_{i, p}-S \times a_{i, q}$ and $A_{i, q}^{\prime}=S \times a_{i, p}+C \times a_{i, q}$
- Let $\tau=\tan (\theta / 2)=S /(1+C)$.
- Note the following trigonometry identity:

$$
\tau=\tan (\theta / 2)=\frac{S}{1+C}=\frac{1-C}{S} \Rightarrow C=1-S \times \tau
$$

- Now, we have

$$
\begin{array}{rlrc}
A_{i, p}^{\prime} & =C \times a_{i, p}-S \times a_{i, q} & A_{i, q}^{\prime} & = \\
& =(1-S \times \tau) a_{i, p}-S \times a_{i, q} & & =S \times a_{i, p}+(1-S \times \tau) \times a_{i, q} \\
& =a_{i, p}-S\left(a_{i, q}+\tau \times a_{i, p}\right) & & = \\
& a_{i, q}+S\left(a_{i, p}-\tau \times a_{i, q}\right)
\end{array}
$$

Cyclic J acobi Methods: 1/5

-To find the max entry, the upper diagonal $n(n$ 1)/2 entries must be scanned.

- However, performing a rotation only requires $4 n$ multiplication (i.e., updating two columns).
\bullet Is this "search" worthwhile? In other word, would this search for the max entry requires more time than updating the matrix?
- What if we forget about the search and just perform rotations in some order?
- Cyclic Jacobi methods just does that.

Cyclic J acobi Methods: 2/5

- A version of cyclic Jacobi methods scans the matrix in row order:

- If the encountered entry $\mid a_{p, q} \stackrel{(n-1, n)}{\longrightarrow}$, do a (p, q) rotation to eliminate it.
- A complete round is called a sweep.
- If a sweep does not eliminate any entry, all entries are small enough and stop!

Cyclic J acobi Methods: 3/5

- Here is a template of this special cyclic method:

```
DO
    NO_change = .TRUE. one sweep
    DO p = 1, n-1
        DO q = p+1, n
        IF (ABS (a(p,q)) >= TO1) THEN
            NO_change = .FALASE.
            perform a (p,q)-rotation
            update eigenvectors
        END IF
        END DO
    END DO
    IF (NO_change) EXIT
END DO
```


Cyclic J acobi Methods: 4/5

-This cyclic Jacobi method converges, and the sum of squares of off-diagonal entries $S\left(A_{k}\right)$ is a monotonic, non-increasing sequence.
-Observation: Since $S\left(A_{k}\right)$ is the sum of squares of all off-diagonal entries, if it decreases to zero all off-diagonal entries should be even smaller!

- Therefore, $S\left(\mathrm{~A}_{k}\right)$ can be used as a tolerance.
- Instead of recomputing $S\left(A_{k}\right)$ for each $(p, q)-$ rotation, we may update it after each sweep!

Cyclic J acobi Methods: 5/5

- Here is another, better version:

Since this double DO only goes through the upper triangular part, S should be doubled to compute $S(\mathrm{~A})$.
-•••This actually means

$$
\sqrt{S(A)}=\sqrt{\sum_{i=1}^{n-1} \sum_{j=1, j \neq i}^{n} a_{i, j}^{2}}<\varepsilon
$$

A Few Notes: 1/3

- Computing eigenvalues and eigenvectors is not easy for general matrices.
\bullet Methods (e.g., Givens and Householder) are available to reduce a symmetric matrix to the tridiagonal form from which eigenvalues and eigenvectors can be computed efficiently.

$$
\left[\begin{array}{cccccccc}
\alpha_{1} & \gamma_{2} & & & & & & \\
\gamma_{2} & \alpha_{2} & \gamma_{3} & & & & \mathbf{O} & \\
& \gamma_{3} & \alpha_{3} & \gamma_{4} & & & & \\
& & & \ddots & & & & \\
& & & & \ddots & & & \\
& \mathbf{O} & & & \alpha_{n-2} & \gamma_{n-1} & \\
& & & & \gamma_{n-1} & \alpha_{n-1} & \gamma_{n} \\
& & & & & & \gamma_{n} & \alpha_{n}
\end{array}\right]
$$

A Few Notes: 2/3

- Methods are available to reduce a general matrix to the Hessenberg form.

- Then, other methods are used to find eigenvalues and eigenvectors of a matrix in Hessenberg form.

A Few Notes: 3/3

- One of the most powerful and recommended methods is the QR algorithm, which can be used with tridiagonal and Hessenberg forms.
- However, Jacobi's method is more accurate than QR! ${ }^{[1]}$
- Check http: / /www. netlib. org/lapack/ for free linear algebra Fortran programs.
- You may also find useful programs in Numerical Recipes by Press, at el. There are commercial products such as the IMSL and NAG libraries, and Matlab.

The End

