Multiresolution Modeling
A Very Brief Introduction
Multiresolution Models: Definition

- A *multiresolution model* consists of a collection of
 - Mesh fragments, usually describing small portions of an object with different LOD (i.e., level of details)
 - Suitable relations that allow selecting a subset of fragments (according to user-defined quality criteria) and combining them into a mesh that represents the object.
Multiresolution Models: **LOD**

- There is no universally accepted definition for LOD, level of details. In general, more faces means more details and perhaps higher accuracy.
- Thus, to accurately represent a curvilinear objects, a large number of small faces may be needed (*i.e.*, higher LOD or resolution).
- Not all meshes in a scene require very high resolution. For example, back faces of an object or objects very far away from the camera do not need much details.
Multiresolution Models: Approaches 1/2

- There are in general two different approaches:
 - **On-the-Fly** (i.e., real time): A new mesh with the desired resolution is constructed from scratch whenever it is needed.
 - **Off-Line**: Design a data structure to collect the mesh fragments and relations in a preprocessing step, and generate the new mesh with a given resolution on-line.
Multiresolution Models: Approaches 2/2

- **input model**
- **construction**
- **multi-resolution model**
- **resolution requirements**
- **query processing**
- **desired mesh**

off-line \quad on-line
A modification (of a mesh) M is the basic operation of changing a mesh X_1 locally to mesh X_2 written as $M: X_1 \Rightarrow X_2$, or $M = (X_1, X_2)$.

A modification is a refinement (resp., coarsening) if X_2 has more (resp., less) faces than X_1 has.

The yellow region of X_1 is re-tessellated to yield X_2.

![Diagram of modifications](image)
 Modifications: $\frac{2}{3}$

- Not all modifications are independent of each other.

- M_j removes some faces inserted by M_i.
Given two modifications $M_i = (X_p, X_q)$ and $M_j = (X_s, X_t)$, if modification M_j removes some faces inserted by M_i, we say M_j directly depends on M_i, written as $M_i < M_j$.

Given two modifications, they are either independent of each other, $M_i < M_j$ or $M_j < M_i$.

We may apply all possible modifications to a mesh or to its intermediate results until the simplest mesh is obtained.

The modifications may be the Euler operators used in mesh simplifications.
The base mesh X_0, all modifications M_1, M_2, \ldots, M_k, and the dependency relation $<$ together form a multiresolution model $\mathcal{M} = [X_0, \{M_1, M_2, \ldots, M_k\}, <]$.

Why do we keep track modifications rather than the intermediate results? This is because we can regenerate them from X_0 and the necessary modifications. Storing intermediate results may require very high space consumption.
Multiresolution DAG: 2/3

- A directed graph can be constructed as follows:
 - The root is \(X_0 \), the base mesh
 - The directed arcs from \(X_0 \) are all modifications applied to \(X_0 \)
 - If there is a modification \(M_i < M_j \), draw a directed arc from \(M_i \) to \(M_j \).
 - In this way, we have a directed acyclic graph, DAG. So, those \(M_i \)'s are nodes of this DAG!

- Why is it a DAG?
With a multiresolution model, we can do the following:

1. Given a “resolution/LOD” requirement, we may perform a depth-first search (DFS) or any search from the root until an intermediate result which satisfies the desired resolution.

2. Selected refinement is also possible. Given a region of a mesh and a “resolution/LOD” requirement, we may perform a search and only “refine” the mesh in the indicated region.
The End