FPAvisual: A Tool for Visualizing the Effects of Floating-Point Finite-Precision Arithmetic

Yi Gu, Nilufer Onder, CK Shene, Chaoli Wang
Department of Computer Science
Michigan Technological University
Presented by: Nilufer Onder
Wednesday, June 18, 2014, 2:15pm-3:45pm Indiana Convention Center, Room 127

Outline

- Motivation
- Background
- Rounding
- Cancellation
- FPAvisual software
- Roots
- Pentagon
- Associative law
- Sine function
- Evaluation
- Conclusion
- Future work

Motivation

- Help students realize how program correctness may be impacted when floating-point finite-precision arithmetic (FPA) is used
- Help instructors teach
- Reasons for the inaccuracies caused by FPA
- Their impact and significance in programs
- Techniques to improve the accuracy

Outline

- Motivation
- Background
- Rounding
- Cancellation
- FPAvisual software
- Roots
- Pentagon
- Associative law
- Sine function
- Evaluation
- Conclusion
- Future work

Rounding

- Computers represent floating-point numbers using a finite number of bits
- When a number contains more digits than allowed by the hardware, it is rounded
- The rounded number is an approximation of the original number

Examples

- Example 1:
- $123+2.46=125.46=125$
- Example 2:
- $123+0.46=123.46=123$

Failure of the Associative Law

Calculate $0.121 \times 0.345 \times 4.32$

$$
\begin{aligned}
& \text { Order 1: } \\
& \begin{aligned}
(0.121 \times 0.345) \times 4.32 \\
\quad=(0.041745 \times 4.21) \\
\quad=0.0417 \times 4.21 \\
\quad=0.175557 \\
\quad=0.176
\end{aligned}
\end{aligned}
$$

Order 2:
$0.121 \times(0.345 \times 4.32)$

$$
=0.121 \times 1.45245
$$

$$
=0.121 \times 1.45
$$

$=0.17545$
$=0.175$

Cancellation

- Calculate $b^{2}-4 a c$, where $\mathrm{a}=1, \mathrm{~b}=1.23$, and $\mathrm{c}=0.374$
- $b^{2}=1.23^{2}=1.5129=1.51$
- $4 a c=4 \times 1 \times 0.374=1.496=1.50$
- $b^{2}-4 a c=1.51-1.50=0.01$
- Actually, $b^{2}-4 a c=1.5129-1.496=0.0169$

Outline

- Motivation
- Background
- Rounding
- Cancellation
- FPAvisual software
- Roots
- Pentagon
- Associative law
- Sine function
- Evaluation
- Conclusion
- Future work

Roots

- $a x^{2}+b x+c=0$
- $x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- Two problems
- $b^{2}>4 a c$

$$
o \sqrt{b^{2}-4 a c}=b
$$

o One of the roots is 0

- $b^{2} \approx 4 a c$
$0 \sqrt{b^{2}-4 a c}=0$
o Two roots are equal

Avoiding Cancellation

- Remove subtraction in computing the first root r_{1}
- If $b>0$, use $-b-\sqrt{b^{2}-4 a c}$
- If $b \leq 0$, use $-b+\sqrt{b^{2}-4 a c}$
- Since the product of roots is $\frac{c}{a}$, use $\frac{c}{a r_{1}}$ to compute the other root

Pentagon

- Inaccuracies when calculating the intersection of two nearly parallel lines
- In operation:

Red pentagon \rightarrow Blue pentagon

- Out operation:

Blue pentagon \rightarrow Red pentagon

Initial
pentagon

Final
pentagon

Associative Law

- Given an iterative formula
- $X_{n+1}=(R+1) \times X_{n}-R \times X_{n} \times X_{n}$
- Computing it using five orderings will generate different results
- $X_{n+1}=(R+1) \times X_{n}-R \times\left(X_{n} \times X_{n}\right)$
- $X_{n+1}=(R+1) \times X_{n}-\left(R \times X_{n}\right) \times X_{n}$
- $X_{n+1}=\left((R+1)-R \times X_{n}\right) \times X_{n}$
- $X_{n+1}=R \times X_{n}+\left(1-R \times X_{n}\right) \times X_{n}$
- $X_{n+1}=X_{n}+R \times\left(X_{n}-X_{n} \times X_{n}\right)$ NDonigentern

Sine Function using Taylor Series

- $\sin (x)=$

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

- Problems:
- If x is very large or small, $x^{2 n+1}$ may overflow or underflow when n is large
- Overflow may occur when calculating $(2 n+1)$!
- Cancellation may occur in the summation of terms with alternating sign values

Dealing with Large X

- Reduce the user input x (in degrees) to $[0,90$)
- Since $\sin (x)=-\sin (-x)$, if $x<0$, we use $-\sin (|x|)$
- Since $\sin (x)$ has a period of 360 , we can reduce x to $[0,360$) by letting $x=x \% 360$
- Since $\sin (x+180)=-\sin (x)$, if $x \geq 180$, we may reduce x to $[0,180$) by letting $x=x-180$ and changing the sign of the computed result
- Since $\sin (180-x)=\sin (x)$, if x is in $[90,180)$, we may reduce x to $[0,90)$ by letting $x=180-x$

Computing the Factorial

- Use a floating-point number to store the value
- Update the term from the previous one

$$
\frac{x^{2 n+1}}{(2 n+1)!}=\frac{x^{2 n-1}}{(2 n-1)} \times \frac{x^{2}}{(2 n)(2 n+1)}
$$

Avoiding Cancellation in Summation

- Use the positive-negative algorithm to reduce the probability of subtracting two similar values:
- Add all positive terms
- Add all negative terms
- Add the above two values
- Use Kahan's summation algorithm

Outline

- Motivation
- Basic knowledge
- Rounding
- Cancellation
- FPAvisual software
- Roots
- Pentagon
- Associative law
- Sine function
- Evaluation
- Conclusion
- Future work

Usefulness

	Fall		Spring	
	$\boldsymbol{\mu}$	σ	$\boldsymbol{\mu}$	$\boldsymbol{\sigma}$
The "Roots" component helped me understand the effects of floating-point errors.	3.9	0.7	4.0	0.9
The "Roots" component helped me understand how to compute the roots of a quadratic equation more accurately.	3.6	0.8	3.8	0.8
The "Pentagon" component helped me understand the effects of floating-point errors.	3.9	1.1	3.8	1.0
The "Pentagon" component helped me understand that calculating the intersection points of two almost parallel lines can lead to noticeable errors.	3.9	0.9	4.1	0.9
The "Associative Law" component helped me understand how executing floating-point operations in different orders affects the computed results.	4.2	0.7	4.0	1.0
The "Associative Law" component helped me understand that there are no general techniques to detect and correct the errors coming from the failure of the associative law.	4.2	0.7	3.9	1.1
The "Sine" component helped me understand the effects of floating-point errors.	3.5	1.0	3.5	1.3
The "Sine" component helped me compare the effects of reducing X to the $[0,90]$ range, using the term update method, and using Kahan's summation algorithm.	3.3	1.1	3.6	1.0
FPAvisual was a useful complement to the material presented in class.	3.8	0.6	3.9	1.0

Usability

	Fall		Spring	
	$\boldsymbol{\mu}$	$\boldsymbol{\sigma}$	$\boldsymbol{\mu}$	$\boldsymbol{\sigma}$
The example inputs provided in the "Roots" component helped me to see what kind of input values cause noticeable floating-point errors.	3.8	0.8	4.1	0.8
In the "Roots" component, seeing the results of computations in different colors helped me notice the differences between the approaches.	4.0	0.9	4.1	1.0
The animated examples in the "Pentagon" component helped me compare the results of in-out operations for differently shaped pentagons.	3.9	0.9	3.9	1.0
Being able to select pentagons for comparison was useful for me to see the accumulated floating-point errors.	3.8	0.9	3.8	1.0
The animations in the "Associative Law" component were useful for me to gain an impression of the effect of floating-point errors.	4.1	0.7	3.9	1.1
The color encoding in the "Associative Law" component was useful for me to track the trend of the five computations.	4.3	0.7	4.0	0.8
The animations in the "Sine" component helped me track the trend of different approaches.	3.7	0.9	3.8	1.0
Overall, I'm satisfied with the color encoding.	4.2	0.6	4.2	0.9
The freedom of manual input was useful to select inputs that cause noticeable floating-point errors.	4.0	0.7	4.3	0.8

Outline

- Motivation
- Basic knowledge
- Rounding
- Cancellation
- FPAvisual software
- Roots
- Pentagon
- Associative law
- Sine function
- Evaluation
- Conclusion
- Future work

Conclusion

- Instructors are able to present the effects of different types of floating-point errors:
one-time, accumulated, unexpected errors
- FPAvisual software complements the lectures by helping students see various methods to reduce errors: domain specific and domain independent techniques
- The evaluation results suggest that FPAvisual is a useful complement to class teaching: flexible, allows exploration, can fit into most courses

Outline

- Motivation
- Basic knowledge
- Rounding
- Cancellation
- FPAvisual software
- Roots
- Pentagon
- Associative law
- Sine function
- Evaluation
- Conclusion
- Future work

Future Work

- Visualize what the errors are and where they occur
- Make the Sine Function component more understandable by distinguishing between the 12 approaches
- Add detailed explanation text for the components
- Develop a MacOS version
- Expand the type and number of the examples in the program
- Conduct a summative assessment of the software

Thank you!

FPAvisual: A Tool for Visualizing the Effects of Floating-Point FinitePrecision Arithmetic

Yi Gu, Nilufer Onder, CK Shene, Chaoli Wang Department of Computer Science
Michigan Technological University

Mohigenter

alichiquatico

