FPAvisual: A Tool for Visualizing the Effects of Floating-Point Finite-Precision Arithmetic

Yi Gu, Nilufer Onder, CK Shene, Chaoli Wang Department of Computer Science Michigan Technological University

> Presented by: Nilufer Onder Wednesday, June 18, 2014, 2:15pm-3:45pm Indiana Convention Center, Room 127____

Outline

- Motivation
- Background
 - Rounding
 - Cancellation
- FPAvisual software
 - Roots
 - Pentagon
 - Associative law
 - Sine function
- Evaluation
- Conclusion
- Future work

Motivation

 Help students realize how program correctness may be impacted when floating-point finite-precision arithmetic (FPA) is used

- Help instructors teach
 - Reasons for the inaccuracies caused by FPA
 - Their impact and significance in programs
 - Techniques to improve the accuracy

Outline

Motivation

Background

- Rounding
- Cancellation
- FPAvisual software
 - Roots
 - Pentagon
 - Associative law
 - Sine function
- Evaluation
- Conclusion
- Future work

Rounding

- Computers represent floating-point numbers using a finite number of bits
- When a number contains more digits than allowed by the hardware, it is rounded
- The rounded number is an approximation of the original number

Examples

- Example 1:
 - 123 + 2.46 = 125.46 = 125
- Example 2:
 - 123 + 0.46 = 123.46 = 123

Failure of the Associative Law

Calculate 0.121 × 0.345 × 4.32

Order 1: (0.121×0.345)×4.32

> $= (0.041745 \times 4.21)$ = 0.0417 \times 4.21 = 0.175557 = 0.176

Order 2: 0.121×(0.345×4.32)

 $= 0.121 \times 1.45245$ $= 0.121 \times 1.45$ = 0.17545= 0.175

Cancellation

- Calculate $b^2 4ac$, where a = 1, b = 1.23, and c = 0.374
- $b^2 = 1.23^2 = 1.5129 = 1.51$
- $4ac = 4 \times 1 \times 0.374 = 1.496 = 1.50$
- $b^2 4ac = 1.51 1.50 = 0.01$
- Actually, $b^2 4ac = 1.5129 1.496 = 0.0169$

Outline

- Motivation
- Background
 - Rounding
 - Cancellation
- FPAvisual software
 - Roots
 - Pentagon
 - Associative law
 - Sine function
- Evaluation
- Conclusion
- Future work

Roots

$$ax^2 + bx + c = 0$$

•
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Two problems
 - $b^2 \gg 4ac$

$$\circ\sqrt{b^2 - 4ac} = b$$

 \circ One of the roots is 0

• $b^2 \approx 4ac$

$$\circ \sqrt{b^2 - 4ac} = 0$$

 $\circ\, \text{Two roots}$ are equal

Avoiding Cancellation

- Remove subtraction in computing the first root r₁
 - If b > 0, use $-b \sqrt{b^2 4ac}$
 - If $b \le 0$, use $-b + \sqrt{b^2 4ac}$
- Since the product of roots is $\frac{c}{a}$, use $\frac{c}{ar_1}$ to compute the other root

FPAvisual				
<u>File Examples Help</u>				
Roots Pentagon Ass	ociative Law Sine			
	C	$ax^2 + bx$	+ c = 0	
Input				
a 1.000000	b	10000.000000	c 1.000000	Calculate
Output				
Solution	Naive Single P.	Cancellation Single P.	Naive Double P.	Naive High P.
b^2	1.000000e+008	1.000000e+008	1.00000000000e+008	1.00000000000e+008
4ac	4.000000e+000	4.000000e+000	4.0000000000e+000	4.00000000000e+000
$\sqrt{b^2 - 4ac}$	1.000000e+004	1.000000e+004	9.999999800000e+003	9.999999800000e+003
Large Root	0.000000e+000	-1.000000e-004	-1.00000011118e-004	-1.00000010000e-004
$ax^2 + bx + c =$	1.000000e+000	3.526213e-008	-1.117663073202e-009	6.257499694697e-084
Small Root	-1.000000e+004	-1.000000e+004	-9.999999900000e+003	-9.999999900000e+003
$ax^2 + bx + c =$	1.000000e+000	1.000000e+000	0.00000000000e+000	-1.029308202740e-075

Pentagon

- Inaccuracies when calculating the intersection of two nearly parallel lines
- In operation:
 Red pentagon → Blue pentagon
- Out operation: Blue pentagon \rightarrow Red pentagon

Initial pentagon

Final pentagon

Associative Law

- Given an iterative formula
 - $X_{n+1} = (R+1) \times X_n R \times X_n \times X_n$
- Computing it using five orderings will generate different results
 - $X_{n+1} = (R+1) \times X_n R \times (X_n \times X_n)$
 - $X_{n+1} = (R+1) \times X_n (R \times X_n) \times X_n$
 - $X_{n+1} = ((R+1) R \times X_n) \times X_n$
 - $X_{n+1} = R \times X_n + (1 R \times X_n) \times X_n$
 - $X_{n+1} = X_n + R \times (X_n X_n \times X_n)$

Sine Function using Taylor Series

- Problems:
 - If x is very large or small, x^{2n+1} may overflow or underflow when n is large
 - Overflow may occur when calculating (2n + 1)!
 - Cancellation may occur in the summation of terms with alternating sign values

Dealing with Large X

- Reduce the user input x (in degrees) to [0, 90)
- Since sin(x) = -sin(-x), if x < 0, we use -sin(|x|)
- Since sin(x) has a period of 360, we can reduce x to [0, 360) by letting x = x%360
- Since sin(x + 180) = −sin(x), if x ≥ 180, we may reduce x to [0, 180) by letting x = x − 180 and changing the sign of the computed result
- Since sin(180 x) = sin(x), if x is in [90, 180), we may reduce x to [0, 90) by letting x = 180 x

Computing the Factorial

- Use a floating-point number to store the value
- Update the term from the previous one

$$\frac{x^{2n+1}}{(2n+1)!} = \frac{x^{2n-1}}{(2n-1)} \times \frac{x^2}{(2n)(2n+1)}$$

Avoiding Cancellation in Summation

- Use the positive-negative algorithm to reduce the probability of subtracting two similar values:
 - Add all positive terms
 - Add all negative terms
 - Add the above two values
- Use Kahan's summation algorithm

Outline

- Motivation
- Basic knowledge
 - Rounding
 - Cancellation
- FPAvisual software
 - Roots
 - Pentagon
 - Associative law
 - Sine function
- Evaluation
- Conclusion
- Future work

Usefulness

	Fa	all	Spr	ing
	μ	σ	μ	σ
The "Roots" component helped me understand the effects of floating-point errors.	3.9	0.7	4.0	0.9
The "Roots" component helped me understand how to compute the roots of a quadratic equation more accurately.	3.6	0.8	3.8	0.8
The "Pentagon" component helped me understand the effects of floating-point errors.	3.9	1.1	3.8	1.0
The "Pentagon" component helped me understand that calculating the intersection points of two almost parallel lines can lead to noticeable errors.	3.9	0.9	4.1	0.9
The "Associative Law" component helped me understand how executing floating-point operations in different orders affects the computed results.	4.2	0.7	4.0	1.0
The "Associative Law" component helped me understand that there are no general techniques to detect and correct the errors coming from the failure of the associative law.	4.2	0.7	3.9	1.1
The "Sine" component helped me understand the effects of floating-point errors.	3.5	1.0	3.5	1.3
The "Sine" component helped me compare the effects of reducing X to the [0,90] range, using the term update method, and using Kahan's summation algorithm.	3.3	1.1	3.6	1.0
FPAvisual was a useful complement to the material presented in class.	3.8	0.6	3.9	1.0

Usability

	Fa	all	Spr	ing
	μ	σ	μ	σ
The example inputs provided in the "Roots" component helped me to see what kind of input values cause noticeable floating-point errors.	3.8	0.8	4.1	0.8
In the "Roots" component, seeing the results of computations in different colors helped me notice the differences between the approaches.	4.0	0.9	4.1	1.0
The animated examples in the "Pentagon" component helped me compare the results of in-out operations for differently shaped pentagons.	3.9	0.9	3.9	1.0
Being able to select pentagons for comparison was useful for me to see the accumulated floating-point errors.	3.8	0.9	3.8	1.0
The animations in the "Associative Law" component were useful for me to gain an impression of the effect of floating-point errors.	4.1	0.7	3.9	1.1
The color encoding in the "Associative Law" component was useful for me to track the trend of the five computations.	4.3	0.7	4.0	0.8
The animations in the "Sine" component helped me track the trend of different approaches.	3.7	0.9	3.8	1.0
Overall, I'm satisfied with the color encoding.	4.2	0.6	4.2	0.9
The freedom of manual input was useful to select inputs that cause noticeable floating-point errors.	4.0	0.7	4.3	0.8

Outline

- Motivation
- Basic knowledge
 - Rounding
 - Cancellation
- FPAvisual software
 - Roots
 - Pentagon
 - Associative law
 - Sine function
- Evaluation
- Conclusion
- Future work

Conclusion

- Instructors are able to present the effects of different types of floating-point errors: one-time, accumulated, unexpected errors
- FPAvisual software complements the lectures by helping students see various methods to reduce errors: domain specific and domain independent techniques
- The evaluation results suggest that FPAvisual is a useful complement to class teaching: flexible, allows exploration, can fit into most courses

Outline

- Motivation
- Basic knowledge
 - Rounding
 - Cancellation
- FPAvisual software
 - Roots
 - Pentagon
 - Associative law
 - Sine function
- Evaluation
- Conclusion
- Future work

Future Work

- Visualize what the errors are and where they occur
- Make the Sine Function component more understandable by distinguishing between the 12 approaches
- Add detailed explanation text for the components
- Develop a MacOS version
- Expand the type and number of the examples in the program
- Conduct a summative assessment of the software

Thank you!

FPAvisual: A Tool for Visualizing the Effects of Floating-Point Finite-Precision Arithmetic

Yi Gu, Nilufer Onder, CK Shene, Chaoli Wang Department of Computer Science Michigan Technological University

* FPAvisual				* Photoal	 192/mul 	To Province and the second sec
Elle Examples Help				File Toop Refi	Ele Jools Help	The News Carl
Rotts Dertagon Americana I a	an Gra		8	Roots Pentagin Associative Law Sine	Roote Bandware Association Law Same	Roots Perlagon Associative Law Dre
Compact Production	2			Wede	E E E E E E E E E E E E E E E E E E E	
	ax^2	+ br + c = 0)	C Animated example		X for sin(x) in degree: 250
Enex	uu	100100		G Tolerance (english)		Maximum iterations: 300
a 1.000000	b 1000	00.000000 c 1.	Calculate	© Enter five points man	A A A A A A A A A A A A A A A A A A A	Original X + Birset res + Yalas gets as errore UsderErp Calculate
Denie				Reset	Maximum iterations: 300	Estect Items
Palating No.	laive Cano	ellation Naive	Naive	Epsion		Trend ines
Solution Sin	ngle P. Sing	gle P. Double P.	High P.	0.025 0.05		
12 10000	100		100000000000000000000000000000000000000	0,075 0,1	V Select news	X-Y lines
0- 1.0000	1,000		100000000000000000000000000000000000000	0.125 0.15		X grid lines
400 40000	4 0000	4 0000000000000	+000 4 000000000000+000		- / 20 × grid lines	
- Auc Auto					A A A A A A A A A A A A A A A A A A A	28 Y gna lines
1/12 100 10000	10004004 1 0000	00++004 9 599595500000+	999999990000e+003			2 X labels
$\sqrt{b^2 - 4ac}$				Operations		2 V labele
Large Root 0.0000	-1.0000	-1.000000011118e	-004 -1.000000010000e-004		SQ Y labels	Maximal absolute energenapeer to C++ Math Meary: 4.768372e-007
						Func labels
$ar^2 + br + c = 1.0000$	00e+000 3.5252	1.117663073202e	-009 6.257499694697e-084		$x_{n+1} = (n+1) \times x_n - n \times (x_n \times x_n)$	Error comparison
				Ciear	$x_{n+1} = (R+1) \times x_n - (R \times x_n) \times x_1$	Company A state of A s
Small Root -1.0000	000e+004 -1.0000	000e+004 -9.999999900000e	+003 -9.99999900000e+003	Select kerne	$x_{n+1} = ((R \neq 1) - R \times x_n) \times x_1$	Original X + Ieun splate + Naive Original X + Ierm update + NegPos Original X + Ierm splate + Kahan
				V ord lines	$x_{n+1} = R \times x_n + (1 - R \times x_n) \times x_n$ Accelerate	Roduced X + Dürect exa + Naihe Reduced X + Direct exa + NegPus Roduced X + Dürect exa + Kalkan Accelerate
$ax^2 + bx + c = 1.0000$	000e+000 1.0000	00e+000 0.0000000000e	+000 -1.029308202740e-075		$x_{n+1} = x_n + R \times (x_n - x_n \times x_n)$	Reduced X + Term update + Naire Roduced X + Term update + NajPer Reduced X + Term update + Ealan
				(2) Y gnd anes	0 10 279 Decelerate	0 0 279
				X labels	Resume	Resume
				🔀 Y labels		
			£		d	
					_	

FPAvisual				
File Examples Help Roots Pentagon As Input a 1.000000	ssociative Law Sine	$ax^2 + bx$	+ $c = \begin{bmatrix} \text{Roots} \\ \text{four ap} \\ \text{a guadr} \\ \text{the eff} \\ \text{c} \end{bmatrix}$	component utilizes proaches to calculate ratic equation to show ect of rounding error nd cancellation.culate
Solution	Naive Single P.	Roots compor students to type	ent allows in any input.	Naive High P.
b^2	1.000000e+006	1.000000e+006	1.00000000000e+006	1.00000000000e+006
4ac	4.000000e+000	4.000000e+000	4.00000000000e+000	4.00000000000e+000
$\sqrt{b^2 - 4ac}$	9.999980e+002	9.999980e+002	9.999979999980e+002	9.999979999980e+002
Large Root	-1.007080e-003	-1.000001e-003	-1.000001000023e-003	-1.000001000002e-003
$ax^2 + bx + c =$	-7.079064e-003	2.118193e-008	-2.062106041478e-011	-8.284350495550e-085
Small Root	Colors are u	sed to highlight	-9.999989999990e+002	-9.99998999990e+002
$ax^2 + bx + c =$	the different first three	es between the approaches.	1.164153218269e-010	-7.120167205345e-075
l l)	
				a,
				Michiga

- Create the Future

Tach

