Chapter 13
 Quantifying Uncertainty

CS5811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science Michigan Technological University

Outline

Probability basics

Syntax and semantics

Inference

Independence and Bayes' rule

Motivation

Uncertainty is everywhere. Consider the following proposition. A_{t} : Leaving t minutes before the flight will get me to the airport.

Problems:

1. partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (traffic reports, etc.)
3. uncertainty in action outcomes (flat tire, etc.)
4. immense complexity of modelling and predicting traffic

Knowledge representation

Language	Main elements	Assignments
Propositional logic	facts	T, F, unknown
First-order logic	facts, objects, relations	T, F, unknown
Temporal logic	facts, objects, relations, times	T, F, unknown
Temporal CSPs	time points	time intervals
Fuzzy logic	set membership	degree of truth
Probability theory	facts	degree of belief

The first three do not represent uncertainty, while the last three do.

Probability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.

Probabilities relate propositions to one's own state of knowledge. They might be learned from past experience of similar situations.

$$
\text { e.g., } P\left(A_{25}\right)=0.05
$$

Probabilities of propositions change with new evidence:
e.g., $P\left(A_{25} \mid\right.$ no reported accidents $)=0.06$
e.g., $P\left(A_{25} \mid\right.$ no reported accidents, 5 am$)=0.15$

Probability basics

Begin with a set Ω called the sample space
A sample space is a set of possible outcomes
Each $\omega \in \Omega$ is a sample point (possible world, atomic event) e.g., 6 possible rolls of a die: $\{1,2,3,4,5,6\}$

Probability space or probability model:
Take a sample space Ω, and assign a number $P(\omega)$ (the probability of ω) to every atomic event $\omega \in \Omega$

Probability basics (cont'd)

A probability space must satisfy the following properties:

$$
\begin{aligned}
& 0 \leq P(\omega) \leq 1 \text { for every } \omega \in \Omega \\
& \sum_{\omega \in \Omega} P(\omega)=1
\end{aligned}
$$

e.g., for rolling the die,

$$
P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6 \text {. }
$$

An event A is any subset of Ω
The probability of an event is defined as follows:

$$
P(A)=\sum_{\{\omega \in A\}} P(\omega)
$$

e.g., $\mathrm{P}($ die roll $<4)=$
$P(1)+P(2)+P(3)=1 / 6+1 / 6+1 / 6=1 / 2$

Random variables

A random variable is a function from sample points to some range such as integers or Booleans.
We'll use capitalized words for random variables.
e.g., rolling the die:

$$
\operatorname{Odd}(\omega)= \begin{cases}\text { true } & \text { if } \omega \text { is odd } \\ \text { false } & \text { otherwise }\end{cases}
$$

A probability distribution gives a probability for every possible value.

If X is a random variable, then
$P\left(X=x_{i}\right)=\sum\left\{P(\omega): X(\omega)=x_{i}\right\}$
e.g., $P($ Odd $=$ true $)=P(1)+P(3)+P(5)=$ $1 / 6+1 / 6+1 / 6=1 / 2$
Note that we don't write Odd's argument ω here.

Propositions

Odd is a Boolean or propositional random variable: its range is $\{$ true, false $\}$

We'll use the corresponding lower-case word (in this case odd) for the event that a propositional random variable is true

$$
\begin{aligned}
& \text { e.g., } P(\text { odd })=P(\text { Odd }=\text { true })=3 / 6 \\
& P(\neg \text { odd })=P(\text { Odd }=\text { false })=3 / 6
\end{aligned}
$$

Boolean formula $=$ disjunction of the sample points in which it is true

$$
\begin{aligned}
& \text { e.g., }(a \vee b) \equiv(\neg a \wedge b) \vee(a \wedge \neg b) \vee(a \wedge b) \\
& \Rightarrow P(a \vee b)=P(\neg a \wedge b)+P(a \wedge \neg b)+P(a \wedge b)
\end{aligned}
$$

Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity in one of my teeth?)

Cavity $=$ true is a proposition, also written cavity
Discrete random variables (finite or infinite)
e.g., Weather is one of < sunny, rain, cloudy, snow >

Weather $=$ rain is a proposition
Values must be exhaustive and mutually exclusive
Continuous random variables (bounded or unbounded)
e.g., Temp $=21.6 ;$ Temp <22.0

Arbitrary Boolean combinations of basic propositions e.g., \neg cavity means Cavity $=$ false

Probabilities of propositions
e.g., $P($ cavity $)=0.1$ and $P($ Weather $=$ sunny $)=0.72$

Syntax for probability distributions

Represent a discrete probability distribution as a vector of probability values:
$\mathbb{P}($ Weather $)=<0.72,0.1,0.08,0.1>$
The above is an ordered list representing the probabilities of sunny, rain, cloudy, and snow.
Probabilities of sunny, rain, cloudy, and snow must sum to 1 when the vector is normalized

If B is a Boolean random variable, then $P(B)=<P(b), P(\neg b)>$ e.g., if $P($ cavity $)=0.1$ then $P($ Cavity $=$ true $)=0.1$ and $\mathbb{P}($ Cavity $)=<0.1,0.9>$

When the entries in the vector do not add up to 1 , but represent the true ratios, the vector is preceded by a normalizing constant, α, e.g. $\mathbb{P}($ Cavity $)=\alpha<0.01,0.09>$ where α is 10

Syntax for joint probability distributions

A joint probability distribution for a set of n random variables gives the probability of every atomic event on those variables,
i.e., every sample point

Represent it as an n-dimensional matrix, e.g., \mathbb{P} (Weather, Cavity) is a 4×2 matrix.

The entries contain propabilities for all possible combinations of Weather (4), and Cavity (2).

	Weather $=$			
	sunny	rain	cloudy	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity $=$ false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Conditional probability

Prior (unconditional) probabilities refer to degrees of belief in the absence of any other information.

Posterior (conditional) probabilites refer to degrees of belief when we have some information, called evidence.

Consider drawing straws from a set of 1 long and 4 short straws, long refers to drawing a long straw, and short refers to drawing a short straw.

$$
\begin{aligned}
& P(\text { long })=0.2 \\
& P(\text { long } \mid \text { short })=0.25 \\
& P(\text { long } \mid \text { long })=0.0 \\
& P(\text { long } \mid \text { short, short })=\frac{1}{3} \\
& P(\text { long } \mid \text { rain })=0.2
\end{aligned}
$$

Conditional probability (cont'd)

$P($ cavity \mid toothache $)=0.8$ means
the probability of cavity given that toothache is all we know It does not mean "if toothache then 80% chance of cavity

Suppose we get more evidence, e.g., cavity is also given. Then $P($ cavity \mid toothache, cavity $)=1$
Note: the less specific belief remains valid, but is not always useful
New evidence may be irrelevant, allowing simplification, e.g., $P($ cavity \mid toothache, 49 ersWin $)=P($ cavity \mid toothache $)=0.8$

Conditional distibutions are shown as vectors for all possible combinations of the evidence and query.
\mathbb{P} (Cavity \mid Toothache $)$ is a 2 -element vector of 2 -element vectors

Conditional probability definitions

Definition of conditional probability:

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)}
$$

Product rule gives an alternative formulation and holds even if $P(b)=0$

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

A general version holds for an entire probability distribution, e.g.,

$$
\mathbb{P}(\text { Weather, Cavity })=\mathbb{P}(\text { Weather } \mid \text { Cavity }) \mathbb{P}(\text { Cavity })
$$

This is not matrix multiplication, it's a set of 4×2 equations:

```
P(sunny, cavity ) = P(sunny |cavity )P(cavity) P(sunny, \negcavity ) = P(sunny }|\neg\mathrm{ cavity ) P( ᄀcavity)
P(rain, cavity ) = P(rain | cavity )P(cavity ) P(rain, \negcavity ) = P(rain | ᄀcavity )P(\negcavity)
P(cloudy, cavity ) = P(cloudy |cavity )P(cavity) P(cloudy, \negcavity ) = P(cloudy }|\neg\mathrm{ cavity ) P( }\neg\mathrm{ cavity )
P(snow, cavity ) = P(\mathrm{ snow }|\mathrm{ cavity })P(\mathrm{ cavity ) }\quadP(\mathrm{ snow, }\neg\mathrm{ cavity })=P(\mathrm{ snow }|\neg\mathrm{ cavity })P(\neg\mathrm{ cavity )}
```


Chain rule

Chain rule is derived by successive applications of the product rule:

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}, \ldots, X_{n}\right) \\
& \quad=\mathbb{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \mathbb{P}\left(X_{1}, \ldots, X_{n-1}\right) \\
& \quad=\mathbb{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \mathbb{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathbb{P}\left(X_{1}, \ldots, X_{n-2}\right) \\
& \quad=\ldots \\
& \quad=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

For example,

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \\
& \quad=\mathbb{P}\left(X_{1}\right) \mathbb{P}\left(X_{2} \mid X_{1}\right) \mathbb{P}\left(X_{3} \mid X_{1}, X_{2}\right) \mathbb{P}\left(X_{4} \mid X_{1}, X_{2}, X_{3}\right) \\
& \quad=\mathbb{P}\left(X_{4} \mid X_{3}, X_{2}, X_{1}\right) \mathbb{P}\left(X_{3} \mid X_{2}, X_{1}\right) \mathbb{P}\left(X_{2} \mid X_{1}\right) \mathbb{P}\left(X_{1}\right)
\end{aligned}
$$

Inference by enumeration

The Dentist Domain:

What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?
We start with the joint distribution:

	toothache		\sim toothache	
	catch	\sim catch	catch	\sim catch
cavity	$\mathbf{. 1 0 8}$	$\mathbf{. 0 1 2}$	$\mathbf{. 0 7 2}$	$\mathbf{. 0 0 8}$
\sim cavity	$\mathbf{. 0 1 6}$	$\mathbf{. 0 6 4}$	$\mathbf{. 1 4 4}$	$\mathbf{. 5 7 6}$

For any proposition q, add up the atomic events where it is true:

$$
P(q)=\sum_{w: w \models q} P(w)
$$

Computing the probability of a proposition

	toothache		~toothache	
	catch	\sim catch	catch	\sim catch
cavity	$\mathbf{. 1 0 8}$	$\mathbf{. 0 1 2}$	$\mathbf{. 0 7 2}$	$\mathbf{. 0 0 8}$
~cavity	$\mathbf{. 0 1 6}$	$\mathbf{. 0 6 4}$	$\mathbf{. 1 4 4}$	$\mathbf{. 5 7 6}$

For any proposition q, add up the atomic events where it is true:

$$
P(q)=\sum_{w: w \models q} P(w)
$$

Red shows "the world" given what we know so far.
Green shows the (atomic) event we are interested in.
$P($ toothache $)=P($ toothache, catch, cavity $)+P($ toothache,\neg catch, cavity $)+$ $P($ toothache catch,\neg cavity $)+P($ toothache,\neg catch,\neg cavity $)$

$$
=0.108+0.012+0.016+0.064=0.2
$$

Computing the probability of a logical sentence

	toothache		\sim toothache	
	catch	\sim catch	catch	\sim catch
cavity	$\mathbf{. 1 0 8}$	$\mathbf{. 0 1 2}$	$\mathbf{. 0 7 2}$	$\mathbf{. 0 0 8}$
\sim cavity	$\mathbf{. 0 1 6}$	$\mathbf{. 0 6 4}$	$\mathbf{. 1 4 4}$	$\mathbf{. 5 7 6}$

$P($ cavity \vee toothache $)$
$=0.108+0.012+0.072+0.008+0.016+0.064$
$=0.28$

Computing a conditional probability

	toothache		\sim toothache	
	catch	\sim catch	catch	\sim catch
cavity	$\mathbf{. 1 0 8}$	$\mathbf{. 0 1 2}$	$\mathbf{. 0 7 2}$	$\mathbf{. 0 0 8}$
\sim cavity	$\mathbf{. 0 1 6}$	$\mathbf{. 0 6 4}$	$\mathbf{. 1 4 4}$	$\mathbf{. 5 7 6}$

Once toothache comes as evidence the world is restricted to those cells where Toothache is true as shown in red.

General idea:
Compute the distribution on the query variable (Cavity) (Cavity) by fixing the evidence variables (Toothache) and summing over all possible values of hidden variables (Catch, Cavity)

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Computing a conditional probability (cont'd)

	toothache		\sim toothache	
	catch	\sim catch	catch	\sim catch
cavity	$\mathbf{. 1 0 8}$	$\mathbf{. 0 1 2}$	$\mathbf{. 0 7 2}$	$\mathbf{. 0 0 8}$
\sim cavity	$\mathbf{. 0 1 6}$	$\mathbf{. 0 6 4}$	$\mathbf{. 1 4 4}$	$\mathbf{. 5 7 6}$

General idea: Fix the evidence variable (Toothache) and sum over all possible values of hidden variables (Catch for the numerator, Cavity and Catch for the denominator) $P(Y=y \mid E=e)=\frac{P(Y=y, E=e)}{P(E=e)}=\frac{\sum_{h} P(Y=y, E=e, H=h)}{\sum_{h} P(E=e, H=h)}$
$P(\neg c a v \mid t t h)=\frac{P(\neg c a v, t t h)}{P(t t h)}=\frac{\sum_{h} P(\neg c a v, t t h, H=h)}{\sum_{h} P(t t h, H=h)}$
$=\frac{P(\neg c a v, t t h, c a t)+P(\neg c a v, \text { tth }, \neg c a t)}{P(t t h, c a v, c a t)+P(t t h, c a v, \neg c a t)+P(t t h, \neg c a v, c a t)+P(t t h, \neg c a v, \neg c a t)}$
$=\frac{0.016+0.064}{0.108+0.012+0.016+0.064}$

Normalization

	toothache		\sim toothache	
	catch	\sim catch	catch	\sim catch
cavity	$\mathbf{. 1 0 8}$	$\mathbf{. 0 1 2}$	$\mathbf{. 0 7 2}$	$\mathbf{. 0 0 8}$
\sim cavity	$\mathbf{. 0 1 6}$	$\mathbf{. 0 6 4}$	$\mathbf{. 1 4 4}$	$\mathbf{. 5 7 6}$

Recall that events are lower case, random variables are Capitalized General idea: The denominator can be viewed as a normalization constant α We take the probability distribution over the values of the hidden variables.
$\mathbb{P}($ Cavity \mid toothache $)=\alpha \mathbb{P}($ Cavity, toothache $)$
$=\alpha[\mathbb{P}($ Cavity, toothache, catch $)+\mathbb{P}($ Cavity, toothache,\neg catch $)]$
$=\alpha[<P($ cavity, toothache, catch $), P(\neg$ cavity, toothache, catch $)>+$
$<P($ cavity, toothache,\neg catch $), P(\neg$ cavity, toothache,\neg catch $)>]$
$=\alpha[<0.108,0.016>+<0.012,0.064>]$
$=\alpha[<0.108+0.012,0.016+0.64>]=\alpha[<0.12,0.08>]$
$=<0.6,0.4>$ because the entries must add up to 1
Compute α from $\frac{1}{0.12+0.08}$

Inference by enumeration, summary

Let X be the set of all variables. Typically, we are interested in the posterior (conditional) joint distribution of the query variables Y given specific values e from the evidence variables E

Let the hidden variables be $H=X-Y-E$
Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathbb{P}(Y \mid E=e)=\alpha \mathbb{P}(Y, E=e)=\alpha \sum_{h} \mathbb{P}(Y, E=e, H=h)
$$

i.e., sum over every possible combination of values $h=<h_{1}, \ldots, h_{n}>$ of the hidden variables $H=<H_{1}, \ldots, H_{n}>$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Inference by enumeration, issues

Consider that number of random variables is n, and d is the largest arity

- Worst case time complexity is $O\left(d^{n}\right)$
- Space complexity of $O\left(d^{n}\right)$, to store the entire joint distribution
- How to find the numbers for the $O\left(d^{n}\right)$ entries?

Independence

Random variables A and B are independent iff

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A) \text { or } \mathbb{P}(B \mid A)=\mathbb{P}(B) \text { or } \mathbb{P}(A, B)=\mathbb{P}(A) \mathbb{P}(B)
$$

\mathbb{P} (Toothache, Catch, Cavity, Weather)
$=\mathbb{P}($ Toothache, Catch, Cavity $) \mathbb{P}($ Weather $)$
$2 \times 2 \times 2 \times 4=32$ entries reduced to $(2 \times 2 \times 2)+4=12$ entries
For n independent biased coins, 2^{n} entries reduced to n
Absolute independence powerful but rare
E.g., dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

Consider \mathbb{P} (Toothache, Cavity, Catch)
If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
$P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$
The same independence holds if I haven't got a cavity:

$$
P(\text { catch } \mid \text { toothache }, \neg \text { cavity })=P(\text { catch } \mid \neg \text { cavity })
$$

Thus Catch is conditionally independent of Toothache given Cavity:
$\mathbb{P}($ Catch \mid Toothache, Cavity $)=\mathbb{P}($ Catch \mid Cavity $)$
Or equivalently:
$\mathbb{P}($ Toothache \mid Catch, Cavity $)=\mathbb{P}($ Toothache \mid Cavity $)$
$\mathbb{P}($ Toothache, Catch \mid Cavity $)=$ $\mathbb{P}($ Toothache \mid Cavity $) \mathbb{P}($ Catch \mid Cavity $)$

Conditional independence (cont'd)

Write out full joint distribution using chain rule:
\mathbb{P} (Toothache, Catch, Cavity)
$=\mathbb{P}($ Toothache \mid Catch, Cavity $) \mathbb{P}($ Catch, Cavity $)$
$=\mathbb{P}($ Toothache \mid Catch, Cavity $) \mathbb{P}($ Catch \mid Cavity $) \mathbb{P}($ Cavity $)$
$=\mathbb{P}($ Toothache \mid Cavity $) \mathbb{P}($ Catch \mid Cavity $) \mathbb{P}($ Cavity $)$
In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust from of knowledge about uncertain environments.

Bayes' rule

Product rule: $\quad P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$
Bayes' rule: $\quad P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}$
or in probability distribution form,

$$
\mathbb{P}(Y \mid X)=\frac{\mathbb{P}(X \mid Y) \mathbb{P}(Y)}{\mathbb{P}(Y)}=\alpha \mathbb{P}(X \mid Y) \mathbb{P}(Y)
$$

Useful for assessing diagnostic probability from causal probability:

$$
P(\text { Cause } \mid \text { Effect })=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

Bayes' rule example

Useful for assessing diagnostic probability from causal probability:

$$
P(\text { Cause } \mid \text { Effect })=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

E.g., let M be meningitis, S be stiff neck:

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

Note: posterior probability of meningitis is still very small

Bayes' rule and conditional independence

$\mathbb{P}($ Cavity \mid toothache \wedge catch $)$
$=\mathbb{P}($ toothache \wedge catch \mid Cavity $) \mathbb{P}($ Cavity $) / P($ toothache \wedge catch $)$
$=\alpha \mathbb{P}($ toothache \wedge catch \mid Cavity $) \mathbb{P}($ Cavity $)$
$=\alpha \mathbb{P}($ toothache \mid Cavity $) \mathbb{P}($ catch \mid Cavity $) \mathbb{P}($ Cavity $)$
A naive Bayes model is a mathematical model that assumes the effects are conditionally independent, given the cause
$\mathbb{P}\left(\right.$ Cause, Effect $_{1}, \ldots$, Effect $\left._{n}\right)=\mathbb{P}($ Cause $) \prod_{i} \mathbb{P}\left(\right.$ Effect $_{i} \mid$ Cause $)$

Naive Bayes model \Rightarrow total number of parameters is linear in n

The wumpus world

1,4		2,4	3,4	4,4
1,3		2,3	3,3	4,3
1,2 B OK	2,2	3,2	4,2	
1,1		2,1 B OK	3,1	4,1
OK				

The agent is navigating the wumpus world in search of gold.

The agent can perceive a breeze, a smell, or the gold.

Each cell has 0.2 probability of containing a pit. Falling into a pit kills the agent.
The wumpus won't fall into a pit.
$P_{i, j}=$ true iff $[i, j]$ contains a pit.
$\forall i, j P\left(p_{i, j}\right)=0.2$
Each pit causes a breeze in the adjacent cells. $B_{i, j}=$ true iff $[i, j]$ is breezy.

There is one wumpus. Being in the same cell as the wumpus kills the agent. The cells adjacent to where the wumpus have a stench.

After finding a breeze in both [1,2] and [2,1], there is no safe place to explore.

Specifying the probability model for pits

The only breezes we care about are $B_{1,1}, B_{1,2}, B_{2,1}$. We can ignore the others.

The full joint distribution is:

1,4		2,4	3,4	4,4
1,3		2,3	3,3	4,3
1,2 B OK	2,2	3,2	4,2	
1,1		2,1 B OK	3,1	4,1
OK				

Apply the product rule to get $P($ Effect \mid Cause $)$: $\mathbb{P}\left(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \ldots, P_{4,4}\right) \mathbb{P}\left(P_{1,1}, \ldots, P_{4,4}\right)$

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: Pits are placed independently. Calculate using probability 0.2 for each of the n pits. For example:

$$
\begin{aligned}
& P\left(p_{1,1}, \ldots, p_{4,4}\right)=0.2^{16} \times 0.8^{0}, \text { as } n=0 \\
& P\left(\neg p_{1,1}, \ldots, p_{4,4}\right)=0.2^{15} \times 0.8^{1}, \text { as } n=1
\end{aligned}
$$

Observations and query

1,4		2,4	3,4	4,4
1,3		2,3	3,3	4,3
1,2	B	2,2	3,2	4,2
OK				
1,1		2,1	B	3,1
OK	OK		4,1	

We know the following facts (evidence):
$b=\neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$
known $=\neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$
The query is $\mathbb{P}\left(P_{1,3} \mid\right.$ known, $\left.b\right)$
We need to sum over the hidden variables, so define Unknown $=P_{i, j} \mathrm{~s}$ other than $P_{1,3}$ and Known

For inference by enumeration, we have $\mathbb{P}\left(P_{1,3} \mid\right.$ known, $\left.b\right)=$
$\alpha \sum_{\text {unknown }} \mathbb{P}\left(P_{1,3}\right.$, unknown, known, b)
Exponential number of combinations based on the number of cells in unknown

Using conditional independence

Basic insight: Given the frontier squares, b is conditionally independent of the other hidden squares

$$
\begin{aligned}
& \text { Define Unknown }=\text { Frontier } \cup \text { Other } \\
& \mathbb{P}\left(b \mid P_{1,3}, \text { Known, Unknown }\right) \\
& =\mathbb{P}\left(b| |_{1,3}, \text { Known, Frontier, Other }\right) \\
& =\mathbb{P}\left(b \mid P_{1,3}, \text { Known, Frontier }\right)
\end{aligned}
$$

We want to manipulate the query into a form where we can use the above conditional independence.

Translating to use conditional independence

$$
\begin{aligned}
& \mathbb{P}\left(P_{1,3} \mid \text { known, } b\right) \\
& =\mathbb{P}\left(P_{1,3}, \text { known, } b\right) / \mathbb{P}(\text { known, } b) \\
& =\alpha \mathbb{P}\left(P_{1,3}, \text { known, } b\right) \\
& =\alpha \sum_{\text {unknown }} \mathbb{P}\left(P_{1,3}, \text { known, } b, \text { unknown }\right) \\
& =\alpha \sum_{\text {unknown }} \mathbb{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathbb{P}\left(P_{1,3}, \text { known, unknown }\right) \\
& =\alpha \sum_{\text {frontier }} \sum_{\text {other }} \mathbb{P}\left(b \mid P_{1,3}, \text { known, frontier, other }\right) \mathbb{P}\left(P_{1,3}, \text { known, frontier, other }\right) \\
& =\alpha \sum_{\text {frontier }} \sum_{\text {other }} \mathbb{P}\left(b \mid P_{1,3}, \text { known, frontier }\right) \mathbb{P}\left(P_{1,3}, \text { known, frontier, other }\right) \\
& =\alpha \sum_{\text {frontier }} \mathbb{P}\left(b \mid P_{1,3}, \text { known, frontier }\right) \sum_{\text {other }} \mathbb{P}\left(P_{1,3}, \text { known, frontier, other }\right) \\
& =\alpha \sum_{\text {frontier }} \mathbb{P}\left(b \mid P_{1,3}, \text { known, frontier }\right) \sum_{\text {other }} \mathbb{P}\left(P_{1,3}\right) P(\text { known }) P(\text { frontier }) P(\text { other }) \\
& =\alpha P(\text { known }) \mathbb{P}\left(P_{1,3}\right) \sum_{\text {frontier }} \mathbb{P}\left(b \mid P_{1,3}, \text { known, frontier }\right) \sum_{\text {other }} P(\text { frontier }) P(\text { other }) \\
& =\alpha^{\prime} \mathbb{P}\left(P_{1,3}\right) \sum_{\text {frontier }} \mathbb{P}\left(b \mid P_{1,3}, \text { known, frontier }\right) \sum_{\text {other }} P(\text { frontier }) P(\text { other }) \\
& =\alpha^{\prime} \mathbb{P}\left(P_{1,3}\right) \sum_{\text {frontier }} \mathbb{P}\left(b \mid P_{1,3}, \text { known, frontier }\right) P(\text { frontier }) \sum_{\text {other }} P(\text { other }) \\
& =\alpha^{\prime} \mathbb{P}\left(P_{1,3}\right) \sum_{\text {frontier }} \mathbb{P}\left(b \mid P_{1,3}, \text { known, frontier }\right) P(\text { frontier })
\end{aligned}
$$

Results using conditional independence

Summary

Probability is a rigorous formalism for uncertain knowledge Joint probability distribution specifies probability of every atomic event

Queries can be answered by inference by enumeration (summing over atomic events)

Can reduce combinatorial explosion using independence and conditional independence

Sources for the slides

- AIMA textbook (3 ${ }^{\text {rd }}$ edition)
- Dana Nau's CMSC421 slides. 2010. http://www.cs.umd.edu/~nau/cmsc421/chapter13.pdf
- Mausam's CSL333 slides. 2014. http://www.cse.iitd.ac. in/~mausam/courses/csl333/spring2014/lectures/ 15-uncertmausam-15-uncertainty.pdf

