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Temporal constraint satisfaction problems (CSPs)

A temporal constraint satisfaction problem consists of

I a finite set of variables, where each variable takes on time
values

I a set of constraints that show temporal ordering or duration
constraints



Qualitative reasoning example

John was not in the room when I touched the switch to
turn on the light, but John was in the room later when
the light went out.

Represent the events as time intervals:

Switch: time of touching the switch
Light: time the light was on
Room: time that John was in the room

Reasoning tasks:
Is this information consistent?
If it is consistent, what are the possible scenarios?



Quantitative reasoning example

Let’s schedule an hour meeting before or after lunch. I go
to lunch before my 1:00 o’clock class. The lunch period
starts at 12:00. Eating lunch takes half an hour to an
hour. I have class at 11:00.

Have variables represent time points, usually the beginning or
ending of an event. The constraints show the lower bound and
upper bound of the time interval between two time points. For
example, the constraint between lunchb and lunche is [30, 60]
minutes.

Reasoning tasks:
Is it possible that a proposition P holds at time t1?
What are the possible times at which a proposition P holds?
What are the possible temporal relationships between two
propositions P and Q?



Temporal representation and reasoning framework

I Temporal knowledge base
I Temporal objects: points or intervals
I Temporal constraints: qualitative or quantitative

I Temporal inference
I Consistency check routines
I Inference routines
I Query answering mechanisms



Interval algebra example

John was not in the room when I touched the switch to
turn on the light, but John was in the room later when
the light went out.

Represent the events as time intervals:

Switch: time of touching the switch
Light: time the light was on
Room: time that John was in the room

Represent the constraints:

I Switch overlaps or meets Light

I Light overlaps, starts, or is during Room

I Switch is before, meets, meets-inverse, or starts Room



IA constraint graph (network), minimal network, solution
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Original constraints: (in solution)

Switch overlaps or meets Light (m)
Light overlaps, starts, or is during room (s)
Switch is before, meets, meets−inverse,
  or starts Room (m)



Reasoning tasks for IA networks

I decide consistency

I find one or more solutions

I compute the minimal network

All are generally intractable, so

I improve exponential search algorithms such as backtracking,
or

I resort to local inference procedures



Interval algebra constraints
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Representation

I{r1, . . . rk} J represents (I r1 J) ∨ . . . (I rk J)

For example I{s, si , d , di , f , fi , o, oi ,=} J expresses the fact that
intervals I and J intersect (it exludes b, bi ,m,mi).

John was not in the room when I touched the switch to turn on
the light, but John was in the room later when the light went out.

1. Switch {o,m} Light

2. Switch {b,m,mi , a} Room

3. Light {o, s, d} Room



IA Constraint graph terms

I In a constraint graph, the nodes represent the variables and
an edge represents a direct constraint (coming from the IA
relation set)

I A universal constraint permits all relationships between two
variables and is represented by the lack of an edge between
the variables.

I A constraint C ′ can be tighter than constraint C ′′, denoted by
C ′ ⊆ C ′′, yielding a partial order between IA networks. A
network N ′′ is tighter than network N ′ if the partial order ⊆ is
satisfied for all the corresponding constraints.

I The minimal network of M is the unique equivalent network
of M which is minimal with respect to ⊆.



Path Consistency in CSPs

I Given a constraint network R = (X ,D,C ), a two-variable set
{xi , xj} is path-consistent relative to variable xk iff for every
consistent assignment (< xi , ai >,< xj , aj >) there is a value
ak ∈ Dk such that the assignment (< xi , ai >,< xk , ak >) is
consistent and (< xk , ak >,< xj , aj >) is consistent.

I Alternatively, a binary constraint Rij is path-consistent relative
to xk iff for every pair (ai , aj) ∈ Rij where ai and aj are from
their respective domains, there is a value ak ∈ Dk such that
(ai , ak) ∈ Rik and (ak , aj) ∈ Rkj .



Path-consistency in CSPs (cont’d)

I A subnetwork over three variables {xi , xj , xk} is
path-consistent iff for any permutation of (i , j , k), Rij is
path-consistent relative to xk .

I A network is path-consistent iff for every Rij (including
universal binary relations) and for every k 6= i , j , Rij is
path-consistent relative to xk .



Path-consistency in IA

I An IA network is path-consistent if for every three variables
xi , xj , xk , Cij ⊆ Cik ⊗ Ckj .

I The intersection of two IA relations R ′ and R ′′, denoted by
R ′ ⊕ R ′′, is the set-theoretic intersection R ′ ∩ R ′′.

I The composition of two IA relations, R ′ ⊗ R ′′, R ′ between
intervals I and K and R ′′ between intervals K and J, is a new
relation between intervals I and J, induced by R ′ and R ′′ as
follows.



Composition (⊗)

I The composition of two basic relations r ′ and r ′′ is defined by
a transitivity table (see a portion of it on the next slide).

I The composition of two composite relations R ′ and R ′′,
denoted by R ′ ⊗ R ′′, is the composition of the constituent
basic relations:

R ′ ⊗ R ′′ = {r ′ ⊗ r ′′|r ′ ∈ R ′, r ′′ ∈ R ′′}



Composition of basic relations

b s d o m

b b b b o m d s b b
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m b m o d s b b



Composition examples

X Y

Y Z

X Y

Y
Z

before

X Y

Y

X before Y, Y before Z                     X before Z

X before Y, Y during Z                     X {b, o, m, d, s} Z

Z

overlaps



Qualitative Path Consistency (QPC) Algorithm

function QPC-1 (T )
returns a path consistent IA network
input: T, an IA network with n variables

repeat
S ← T
for k ← 1 to n do
for i,j ← 1 to n do

Cij ← Cij ⊕ Cik ⊗ Ckj

until S = T
return T



Example

Apply CSR ← CSR ⊕ (CSL ⊗ CLR)

CSR ← {b,m, i , a} ⊕ ({o,m} ⊗ {o, s, d})
CSR ← {b,m, i , a} ⊕ {b, o,m, d , s}
CSR ← {b,m}

o ⊗ o = b, o,m
o ⊗ s = o
o ⊗ d = o, d , s
m ⊗ o = b
m ⊗ s = m
m ⊗ d = o, d , s



Minimizing networks using path-consistency

I In some cases, path-consistency algorithms are exact—they
are guaranteed to generate the minimal network and therefore
decide consistency.

I In general, IA networks are NP-complete, backtracking search
is needed to generate a solution.

I Even when the minimal network is available, it is not
guaranteed to be globally consistent to allow backtrack-free
search.

I Path-consistency can be used for forward checking.



The point algebra (PA)

I It is a model alternative to IA: the nodes represent time points
rather than intervals

I It is less expressive: there are three basic types of constraints
between points P and Q:

I P < Q
I P = Q
I P > Q

I Reasoning tasks over PAs are polynomial



Example

Fred put the paper down and drank the last of his coffee.
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Interval algebra vs. point algebra constraints

I I{s, d , f ,=}J where I = [x , y ] and J = [z , t] can be
represented with

x < y , z < t, x < t, x ≥ z , y ≤ t, y > z

I However, I{b, a}J where I = [x , y ] and J = [z , t] cannot be
represented with a PA network



Composition in the PA

< = >

< < < ?
= < = >
> ? = >

“?” expresses the universal relation.



Path consistency

I It is defined using composition and the transitivity table

I Path consistency decides the consistency of a PA network in
O(n3) steps.

I Consistency and solution generation of PA networks can also
be accomplished in O(n2).

I The minimal network of a PA consistent network can be
obtained using 4-consistency in O(n4) steps.

I The minimal network of CPA networks can be obtained by
path-consistency in O(n3).
Convex PA (CPA) networks have only {<,≤,=,≥, >} and
not 6=.



Quantitative Temporal Networks

I Ability to express metric information on duration and timing
of events

I John travels to work either by car (30–40 minutes) or by bus
(at least 60 minutes). Fred travels to work either by car
(20–30 minutes) or in a carpool (40–50 minutes). Today John
left home between 7:10 and 7:20A.M., and Fred arrived at
work between 8:00 and 8:10A.M. We also know that John
arrived at work 10-20 minutes after Fred left home.

I Is the information in the story consistent?

I Is it possible that John took the bus and Fred used the
carpool?

I What are the possible times at which Fred left home?



Representation

I Proposition P1: John was traveling to work ([x1, x2])

I Proposition P2: Fred was traveling to work ([x3, x4])

I John travels to work either by car (30–40 minutes) or
by bus (at least 60 minutes).
30 ≤ x2 − x1 ≤ 40 or x2 − x1 ≥ 60

I Fred travels to work either by car (20–30 minutes) or
in a carpool (40–50 minutes).
20 ≤ x4 − x3 ≤ 30 or 40 ≤ x4 − x3 ≤ 50



Representation (cont’d)

I Proposition P1: John was traveling to work ([x1, x2])

I Proposition P2: Fred was traveling to work ([x3, x4])

I Today John left home between 7:10 and 7:20AM
(Assign x0 = 7:00AM)
10 ≤ x1 − x0 ≤ 20

I Fred arrived at work between 8:00 and 8:10AM
60 ≤ x4 − x0 ≤ 70

I John arrived at work 10-20 minutes after Fred left home.
10 ≤ x4 − x0 ≤ 20



The constraint graph
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Temporal Constraint Satisfaction Problem (TCSP)

A temporal constraint satisfaction problem (TCSP) involves a set
of variables {x1, . . . , xn} having continuous domains; each variable
represents a time point. Each constraint is represented by a set of
intervals {I1, . . . Ik} = {[a1, b1], . . . , [ak , bk ]}.

A unary constraint Ti restricts the domain of a variable xi to the
given set of intervals; that is, it represents the disjunction

(a1 ≤ xi ≤ b1) ∨ . . . ∨ (ak ≤ xi ≤ bk)

A binary constraint Tij constrains the permissible values for the
distance xj − xi ; it represents the disjunction

(a1 ≤ xj − xi ≤ b1) ∨ . . . ∨ (ak ≤ xj − xi ≤ bk)



TCSP (cont’d)

I Assume that constraints are given in a canonical form in
which all intervals are pair-wise disjoint.

I A special time point, x0, represents the “beginning of the
world.” Each unary constraint can be represented as a binary
constraint relative to x0.

I A tuple x = {a1, . . . , an} is called a solution if the assignment
{x1 = a1, . . . , xn = an} does not violate any constraint.



Minimal and binary decomposable networks

I Given a TCSP, a value v is a feasible value for variable xi if
there exists a solution in which xi = v .

I The set of all feasible values of a variable is called the minimal
domain.

I A minimal constraint Tij between xi and xj is the set of all
feasible values for xi − xj .

I A network is minimal iff its domains and constraints are
minimal.

I A network is binary decomposable if every consistent
assignment of values to a set of variables S can be extended
to a solution.



Binary operators on constraints

−2 −1 0 1 2 3 4 5 6 7 8 9

T

S

T + S

T x S

T = {[−1.25, 0.25]}, [2.75, 4.25]}
S = {[−0.25, 1.25]}, [3.75, 4.25]}

T ⊕ S = {[−0.25, 0.25]}, [3.75, 4.25]}
T ⊗ S = {[−1.50, 1.50], [2.50, 5.50], [6.50, 8.50]}



Binary operators on constraints (cont’d)

Let T = {I1, . . . , Il} and S = {J1, . . . , Jm} be two constaints.
Each is a set of intervals of a temporal variable or a temporal
binary constraint.

I The union of T and S , denoted by T ∪ S , only admits values
that are allowed by either T or S , that is, T ∪ S =
{I1, . . . , Il , J1, . . . , Jm}.

I The intersection of T and S , denoted by T ⊕ S , admits only
values that are allowed by both T and S , that is,
T ⊕ S = {K1, . . . ,Kn} where Kk = Ii ∩ Jj for some i and j .
Note that n ≤ l + m.



Binary operators on constraints (cont’d)

I The composition of T and S , denoted by T ⊗ S , admits only
values r for which there exist t ∈ T and s ∈ S , such that
t + s = r , that is T ⊗ S = {K1, . . .Kn}, where
Kk = [a + c , b + d ] for some Ii = [a, b], and Jj = [c , d ]. Note
that n ≤ l ×m.



Simple temporal problems (STPs)

I It is a subclass of TCSPs where all constraints specify a single
interval (no disjunctions).

I Each edge i → j is labeled by a single interval [aij , bij ] that
represents the constraint

aij ≤ xj − xi ≤ bij

or
xj − xi ≤ bij and xi − xj ≤ −aij

I Can be represented and solved as a system of linear
inequalities but a better graph algorithm exists:
first convert the graph into a distance graph



Distance graph example
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Distance graph

I An STP can be associated with a directed-edge weighted
graph Gd = (v ,Ed), called the distance graph. It has the
same node set as G, and each edge i → j ∈ Ed is labeled by a
weight aij representing the linear inequality xj − xi ≤ aij .

I Each path from i to j in Gd , i0 = i , i1, . . . ik = j , induces the
following constraint on the distance xj − xi :

xj − xi ≤
k∑

j=1

aij−1,ij



Distance graph (cont’d)

I If there is more than one path from i to j , then it can easily
be verified that the intersection of all the induced path
constraints yields

xj − xi ≤ dij

where dij is the length of the shortest path from i to j .

I Theorem: An STP T is consistent iff its distance graph Gd

has no negative cycles

I For any pair of connected nodes i and j , the shortest paths
satisfy doj ≤ doi + aij ; thus,

doj − doi ≤ aij



Distance graph (cont’d)

I Let Gd be the distance graph of a consistent STP. Two
consistent scenarios are given by

S1 = (d01, . . . , d0n) and S2 = (−d10, . . . ,−dn0)

which assign to each variable its latest and earliest possible
times, respectively.

I A given STP can be effectively specified by a complete
directed graph, called d-graph, where each edge is labeled by
the shortest-path length dij in Gd .

I Decomposability theorem: Any consistent STP is
backtrack-free (decomposable) relative to the constraints in
its d-graph.



Lengths of shortest paths (dij)

0 1 2 3 4

0 0 20 50 30 70
1 -10 0 40 20 60
2 -40 -30 0 -10 30
3 -20 -10 20 0 50
4 -60 -50 -20 -40 0



The minimal network

0 1 2 3 4

0 [0] [10,20] [40,50] [20,30] [60,70]
1 [-20,-10] [0] [30,40] [10,20] [50,60]
2 [-50,-40] [-40,-30] [0] [-20,-10] [20,30]
3 [-30,-20] [-20,-10] [10,20] [0] [40,50]
4 [-70,-60] [-60,-50] [-20,-30] [-50,-40] [0]



Floyd-Warshall’s Algorithm (apsp)

function All-Pairs-Shortest-Paths (G )
returns a d-graph
input: Distance graph Gi = (V,E) with weights aij for (i , j) ∈ E .

for i ← 1 to n do
dii ← 0

for i,j ← 1 to n do
dij ← aij

for k ← 1 to n do
for i,j ← 1 to n do

dij ← min {dij , dik + dkj}



Summary

I Floyd-Warshall’s algorithm runs in O(n3) and detects negative
cycles simply by examining the sign of the diagonal elements
dii .

I Once the d-graph is available, assembling a solution takes only
O(n2) time, because each successive assignment only needs to
be checked against previous assignments and is guaranteed to
remain unaltered.

I Thus, finding a solution takes O(n3) time.

I Note that in TCSP, path consistency can be checked in
polynomial time but does not guarantee minimality.



Summary (cont’d)

I Any constraint network in PA is a special case of a TCSP
lacking metric information.

I A PA can be translated into a TCSP in a straightforward
manner.

I xj < xi translates to Tij = {(−∞, 0)}
I xj ≤ xi translates to Tij = {(−∞, 0]}
I xj = xi translates to Tij = {[0]}
I xj 6= xi translates to Tij = {(−∞, 0), (0,∞)}

I IA networks cannot always be translated into binary TCSPs
because such a translation may require nonbinary constraints:
X {b, bi} Y ≡ Xe < Ys ∨ Ye < Xs



Example: Autominder

I To assist people with memory impairment.

I Model their daily activities, including temporal constraints on
their performance

I Monitor the execution of those activities

I Decide whether and when to issue reminders



Example: Autominder (cont’d)

ACTION TARGET TIME

Start laundry Before 10 a.m.

Put clothes in dryer Within 20 minutes of washer ending

Fold clothes Within 20 minutes of dryer ending

Prepare lunch Between 11:45 and 12:15

Eat lunch At end of prepare lunch

Check pulse Between 11:00 and 1:00, and
between 3:00 and 5:00

depending on pulse
take medication at end of check pulse



Other examples

I US NINDS (National Institute of Neurological Disorders and
Stroke) guidelines for treatment of potential stroke
(thrombolytic) patient

I hospital door to doctor: 10 minutes
I door to neurological expert: 15 minutes
I door to CT scan completion: 25 minutes
I . . .

I Space facility crew activity planning

I Control of spacecraft on another planet



Sources for the slides

I AIMA textbook (3rd edition)

I Bartak, Roman; Morris, Robert A.; Venable, K. Brent.
ICAPS-14 Constraint-Based Temporal Reasoning. 2014.

I Dechter, Rina. Constraint Processing. Chapter 12 (Temporal
Constraint Processing). Morgan Kaufmann Publishers
(Elsevier Science), 2003.

I Dechter, Rina; Meiri, Itay; and Pearl, Judea. Temporal
Constraint Networks. Artificial Intelligence, 49 (1991), pp.
61-95.
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