
Chapter 3 Solving Problems by Searching
3.5 –3.6 Informed (heuristic) search strategies

More on heuristics

CS5811 - Advanced Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University



A∗ search

We have seen that A∗ search

I May have exponential time and space complexity but will
perform well with a good heuristic

I Is complete

I Finds the optimal solution

We will look at another property that affects how the search
proceeds.



Consistency

A heuristic is consistent if
h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f (n′) = g(n’) + h(n’)
= g(n) + c(n,a,n’) + h(n’)
≥ g(n) + h(n)
= f(n)

We get f (n′) ≥ f (n), i.e.,
f (n) is nondecreasing along any path.

Consistency is the triangle inequality for

heuristics.

n’

n

G

h(n)
c(n, a, n’)

h(n’)



Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

Note that h is admissible.
It never overestimates.



Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

The root node was expanded.
Note that f decreased from 6 to 4.



Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

The suboptimal path is being pursued.
The right hand side path is suboptimal.



Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

Goal found, but it appears as a child now. Remember that we
cannot goal-test a node until it is selected for expansion.



Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

The node with f = 7 is selected for expansion. After expansion,
the lower node of the diamond gets a new, lower cost.



Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

The optimal path to the goal is found.
But nodes had to be reopened.



Iterative deepening A* (IDA*) search

I Idea: perform iterations of DFS. The cutoff is defined based
on the f -cost rather than the depth of a node.

I Each iteration expands all nodes inside the contour for the
current f -cost, peeping over the contour to find out where the
contour lies.



The progress of IDA*

Bucharest

Bucharest

f−limits:

366 (Arad), 393 (Sibiu),
413 (RV), 417 (Pitesti)
418 (Bucharest, goal)

Arad

Sibiu

Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Craiova Pitesti Sibiu

Rimnicu V.Craiova

f=450+0=450 f=366+160=526

f=414+193=607

f=75+374=449

h=366

140
118

75

140

99 151
80

f=118+329=447

h=253 f=393

f=280+366=646 f=291+380=671
f=415 f=413

f=338+253=591 f=300+253=553
f=417

f=418+0=418 f=455+160=615

The blue nodes are the ones A* expanded. For IDA∗, they define
the new f-limit.



IDA* algorithm

function IDA* (problem)
returns a solution sequence (or failure)

initialize the frontier using the initial state of problem
f-limit ← f-cost(root) // f-limit: current f-cost limit
loop do

solution, f-limit ← DFS-Contour(root, f-limit)
if solution is non-null then return solution
if f-limit = ∞ then return failure



IDA* algorithm (cont’d)

function DFS-Contour (node, f-limit)
returns a solution sequence (or failure) and a new f-cost limit

// next-f is initialized to ∞

if node.f-cost > f-limit then return null, node.f-cost
if the node contains a goal state then return node, f-limit
for each child n in node.Child-Nodes do

solution, new-f ← DFS-Contour(n, f-limit)
if solution is not null then return solution, f-limit
next-f ← Min(next-f,new-f)

return null, next-f



F-contours for A* searchF-contours

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Ch. 03b – p.28/51



Properties of IDA*

I Complete: Yes, similar to A*.

I Time: Depends strongly on the number of different values
that the heuristic value can take on.
8-puzzle: few values, good performance
TSP: the heuristic value is different for every state. Each
contour only includes one more state than the previous
contour. If A* expands N nodes, IDA* expands
1 + 2 + . . . + N = O(N2) nodes.

I Space: It is DFS, it only requires space proportional to the
longest path it explores. If δ is the smallest operator cost, and
f ∗ is the optimal solution cost, then IDA* will require
b × f ∗/δ nodes to be stored.

I Optimal: Yes, similar to A*



Summary

I Consistency enforces the triangle inequality

I If an admissible but not consistent heuristic is used for graph
search, we need to adjust path costs when a node is
rediscovered

I Heuristic search usually brings dramatic improvement over
uninformed search

I Keep in mind that the f-contours might still contain an
exponential number of nodes


	Consistency
	(Iterative deepening A* search)

