Multi-Robot Perimeter Patrol in Adversarial Settings

Noa Agmon, Sarit Kraus and Gal A. Kaminka
Department of Computer Science
Bar Ilan University, Israel
{segaln, sarit, galk}@cs.biu.ac.il

Presenter: Solomon Ayalew

Introduction

 Multi robot patrol in a closed area with the existence of an adversary

• Traditional approach is Visit the *area* frequently

• If robots move in a deterministic way: Penetration is easy

Introduction cont.

- This paper:- Non deterministic Algorithm for a team of Homogenous patrol robots
 - Divide the perimeter in to segments *i*
 - robot monitors 1 segment *i* per unit time cycle
 - robot @ segment *i* have 3 choices
 - Go to segment i-1 or i+1 or stay there (i)

Movement models

3 movement models

- 1. DZCP: Directional Zero Cost Patrol
- 2. BMP: Bidirectional Movement Patrol
- 3. DCP: Directional Costly-Turn Patrol

a. no directionality

b. directionality, no cost of turn

c. directionality, turning with cost

Fig. 2. Illustration of p's characterization of the three models of movement.

Adversarial model

- Adversarial model
 - The adversary is strong (has full knowledge of the system)
 - Know the patrol scheme
 - 1. # of robots, distance between them, their current position
 - 2. Movement model of robots & characterization of their movement
 - Can be learned by
 - observing for sufficiently long time
 - Assume worst case scenario

Goal

- Robots are responsible for detection not handling
 - Multiple penetration is the some as single penetration
- Adversary tries to penetrate @ the weakest spot in the cycle
- Main goal:
- Find a patrol algorithm that maximizes penetration detection in the weakest spot

Algorithm

- Algorithm is characterized by a probability p
 - p could be 1 => deterministic
 - So 0 <= **p** <= **1**

Border Penetration Detection (BPD) problem

- Given
 - \blacksquare Circular fence of length l divided in to N segments
 - K robots uniformly distributed with d distance
 - $\blacksquare d = N/k$
- Assume: it takes t time units for the adversary to penetrate

cont.

- let $f_i(p) = ppd_i$, $1 \le i \le d-1$
- ppd_i : probability of penetration detection
 - Probability that a segment will be visited at least ones during t time units

• find optimal P_{opt} such that the minimal ppd throughout the perimeter is maximized

$$p_{opt} = \operatorname*{argmax}_{0$$

- Lemma 1: given p, func $ppd_i(R_a)$ for const $t \& R_a$ @ segment s_0 is montoic decreasing func.
 - As distance b/n a robot & a segment ↑ probability of arriving in it during t time units decrease

Lemma 2: if distance between two consecutive robots is smaller, the ppd in each segment is higher & vice versa

■ Lemma 3: team of k mobile robots in mission maximizes minimal ppd if:

- a. The time distance b/n every two consecutive robot is equal
- b. The robots are coordinated:
 - *Move in the some dxn*
 - All change dxn @ the some time

Algorithm to find p_{opt}

- 1st find the detection probability in each segment
- 2^{nd} manipulate these equations to find p_{opt} (maxmin point)
- Complexity of algorithm is in polynomial time

Finding the equation

• p of reaching a certain state in time r is the sum of probabilities of reaching in state s_j multiplied by p of being in state s_j @ time r-1

Procedure FindFunc(d, t)

For each $s_{init} = s_i \in \{s_1, ..., s_{d-1}\}$ do:

Create matrix M of size $(2d+2) \times (t+1)$, initialized with 0s. Set $M_0(s_{init}) \leftarrow 1$.

Complete M gradually using the following rules.

- 1) For each entry $M_r(s_i^{cw})$ set value to $p \cdot M_{r-1}(s_{i+1}^{cw}) + q \cdot M_{r-1}(s_i^{cc})$.
- 2) For each entry $M_r(s_i^{cc})$ set value to $p \cdot M_{r-1}(s_{i-1}^{cc}) + q \cdot M_{r-1}(s_i^{cw})$.
- 3) For absorbing states, set entry $M_r(s_{abs}) = M_{r-1}(s_{abs}) + p \cdot [M_{r-1}(s_1^{cw}) + M_{r-1}(s_d^{cc})].$

Report row t of M.

- Time complexity:
 - FindFunc is d.(2d+2).(t+1). Since t is bounded by d-1 & d=N/k
 - \rightarrow complexity is $O((N/k)^3)$
- Next find maxmin point
 - Is the value that lies inside the intersection of the all integrals of f_i

Algorithm 2

Algorithm FindP(d, t)

- 1) $F \leftarrow \text{Procedure FindFunc}(d, t)$.
- Set p_{opt} ← 0.
- 3) For $F_{pivot} \leftarrow F_{1,...,d-1}$ do:
 - a) Compute local maxima $(p_{max}, F_{pivot}(p_{max}))$ of F_{pivot} in the range (0, 1).
 - b) For each F_i , $1 \le i \le d 1$, compute intersection point p_i of F_i and F_{pivot} in the range (0, 1).
 - c) If $F_{pivot}(p_i) > F_{pivot}(p_{max})$ and $F_{pivot}(p_i) \leq F_k(p_i) \forall k$, then $p_{opt} \leftarrow p_i$.
 - d) If $F_{pivot}(p_{max}) > F_{pivot}(p_i)$ and $F_{pivot}(p_i) \leq F_k(p_i) \forall k$, then set $p_{opt} \leftarrow p_{max}$.
- 4) Return $(p_{max}, F_{pivot}(p_{max}))$.

Result

Conclusion and future work

- Non- deterministic algorithm under strong adversary
- Polynomial time complexity

- Continuous case rather than discrete model
- More realistic movement models
 - With arbitrary tuning time

- Other adversarial models
- Case of unknown adversary similar to Bayesian games
- Adopt this algorithm in other domains
 - e.g. Area patrol

