

Course of Action Generation for Cyber Security Using Classical Planning

Mark Boddy, Johnathan Gohde, Thomas Haigh, Steven Harp

Adventium Labs

© Adventium Labs, 2005

1

The Problem

Finding and closing (or monitoring) attack vulnerabilities

For example:

- Attacker sends an email message, spoofed to be from a colleague, with a new screensaver as an attachment.
- Attachment is an executable that enables remote login, and captures and relays the users password.
- 3. Attacker logs into the machine and executes a buffer overflow attack, gaining root (admin) privileges.

 © Adventium Labs, 2005

Representing processes (e.g., composing and sending email).

Adventium

Why is this hard?

- Network and system scale, complexity, and dynamism
- · Attackers are stealthy
- Many steps in any given attack may be legitimate.
- Some exploits involve actions taken outside the network.
- Some exploits are impossible or expensive to detect.
- Limited supply of experts

Behavioral Adversary Modeling System

- Probability of success
- Probability of detection
- ·Likely side-effects
- ·Choke-points for prevention and detection
- Possible coalitions

Proposed solution: use classical planning

PROBLEM: `NESACL'

Defined classes: 28

Defined predicates: 123

Number of objects: 100

Number of facts: 189

Number of goals: 1

Number of actions: 56

Classical Planning

Mail Server

Sys Admin

 Password protected account

End-users

Manages user accesses

COI Web Server

- SSL with fixed passwords
- ACLs

Domain Features

- Cyber defenses: authentication (2 forms), access permissions, controlled change of access permissions, firewalls, detectability, hubs and switches
- Cyber exploits: manipulation of access permissions, direct attacks against a workstation, password hacks, mis-directed trust (multiple aspects), host and network sniffing, spoofing, e-mail viruses, misdirected information,
- Physical system and exploits: location, shoulder surfing, hardware keystroke logger
- Social behavior: various forms of trust, social engineering, tolerance for risk@@@@litionso@f attackers

Examples: Facts

- · (insider bob)
- (in_room bob bobs_office)
- (can_unlock key1 lock1)
- (knows bob root_password)
- (accessible s_iexplore sherpa)
- (can_read_email ms_outlook)
- (trusts_instructions greg adam)

Examples: Goals

```
(:goal (knows bob secret_info))
(:metric minimize (detection_risk))
```

```
(and (knows bob secret_info)
(<= (detection_risk) 5))
```


Social Engineering Skills

Medium

High

Low

mysterioso

What skills and tools does this malicious insider possess?

Hacking Skills

- √ Low
- Medium
- High
- Has a network packet sniffer
- ☐ Has a hardware keystroke logger
- Has a browser-infecting custom virus
- Has a windows-trojaning buffer overflow exploit

< Prev

Cancel

Next >

Examples: Actions


```
(action DMS_ADD_GROUP_ALLOW
   :parameters (?admin - c_human
                ?chost - c host
                  ?shost - c_host
                  ?doc - c_file
                  ?gid - c_gid)
   :precondition
      (and (nes_admin_connected ?chost ?shost)
           (at_host ?admin ?chost)
           (insider ?admin)
    :effect (and (dmsacl_read ?doc ?gid)))
```


Planning Graphs

Traditional state-action planning

Planning Graph

Forward Heuristic Search

- Hoffmann's metric FF planner
 - Enhanced hill climbing (EHS)
 - Breadth first search (BFS)
- Ignores mutexes
- Very effective for many domains

A Plan

- 0 : ADAM sits down at BIGFOOT
- 1 : ADAM enters ADAM_UID as user name for login on host BIGFOOT
- 2 : ADAM enters password ADAM_PWD for login at host BIGFOOT
- 3 : Shell B WEXPLORE is launched on host BIGFOOT for user ADAM UID
- 4 : Program WEXPLORER on host BIGFOOT forks a child process
- 5 : Contents of file B_IEXPLORE begin executing as uid ADAM_UID on host BIGFOOT
- 6: BOB sits down at YETI
- 7: BOB enters BOB_UID as user name for login on host YETI
- 8: BOB enters password BOB PWD for login at host YETI
- 9: Shell Y_WEXPLORE is launched on host YETI for user BOB_UID
- 10 : Program WEXPLORER on host YETI forks a child process
- 11 : Contents of file Y_ETHEREAL begin executing as uid BOB_UID on host YETI
- 12: ETHEREAL starts sniffing the networks on YETI
- 13 : ADAM logs onto dms admin server EVEREST from BIGFOOT
- 14 : BOB reads the sniffer thus learning NES_ADMIN_PASS

Plan, Continued

- 15: Program WEXPLORER on host YETI forks a child process
- 16 : Contents of file Y_IEXPLORE begin executing as uid BOB_UID on host YETI
- 17 : BOB logs onto dms admin server EVEREST from YETI
- 18: DMS session DMSS1 has begun
- 19: BOB begins a DMS session on YETI
- 20 : Connect DMS session DMSS1 to server NES on EVEREST
- 21: A route from YETI to DMS server EVEREST exists
- 22 : BOB enters password BOB_DMS_PWD for the DMS session.
- 23 : Authenticate BOB_UID in dms session DMSS1 with EVEREST using BOB_DMS_PWD
- 24 : BOB adds an acl to allow read access of E_SECRET_DOC to the EAST_GID group
- 25 : BOB begins a DMS request at YETI in session DMSS1
- 26 : Document E_SECRET_DOC is requested in session DMSS1
- 27 : Document E_SECRET_DOC is sent and displayed on YETI in session DMSS1
- 28 : BOB reads E_SECRET_DOC and learns SECRET_INFO

Generating Plans

	Steps	Time
Direct Client Hack	25	0.67
Misdirected Email	32	0.67
Shoulder Surfing	18	0.69
Email Trojan	37	0.71
Spoofed Email Trojan	37	0.73
Spoofed Instructions	36	0.79
Administrator ACL Change	23	1.20
Sniff Administrator	28	1.62
Sasgward from Email	44	4.77

BAMS vs. Other Approaches

Pragmatic Issues

- Performance (esp. memory consumption)
 - Optimizing grad-ware
 - Rewriting the model to avoid "hard actions"
 - Rewriting to minimize the size of the propositional expansion
- Representing processes (e.g., composing and sending email).
- Entities that are created or destroyed
- Derived predicates
- Maintaining large domain models

Process

Sys Admin

- · Password protected account
- · Manages user accounts

Information Flows

Future Work

- · Planner Technology
 - Efficient generation of multiple plans
 - Improvements in performance and scalability, including more extensive use of metrics
- Modeling Tools and Techniques
 - Make it easier for domain experts to extend and maintain the model
 - Compile user model into performance-tuned PDDL
- · Analytic Capabilities
 - Bottleneck analysis
 - Probabilistic or uncertain reasoning
- IC Specific Models
 - Drives the work in the first three areas
- Comparative analysis
 - Head-to-head
 - Planning Competition Labs, 2005