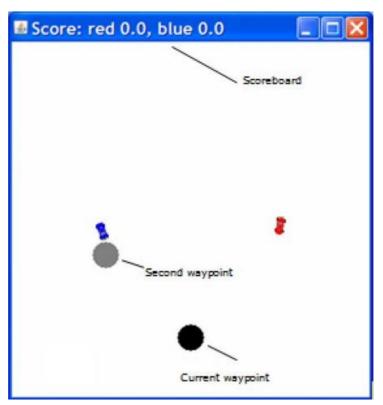
Dynamic Game Difficulty Scaling Using Adaptive Behavior-Based Al

Chin Hiong Tan, Kay Chen Tan, and Arthur Tay

Presented by Nick Brusso

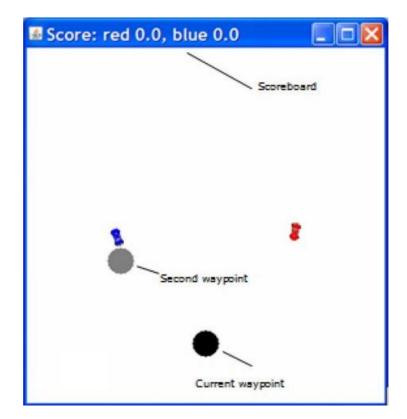
In IEEE Transactions on Computational Intelligence and AI in Games, Volume 3 Issue 4 (2011), pp. 289-301


Objective

- Create an entertaining game AI
 - Satisfying to play against for a wide audience
 - High replay value
- Adapt game AI as the player plays
 - Dynamically scale difficulty in real-time
 - Two implementations are presented; I focus on the simpler one.

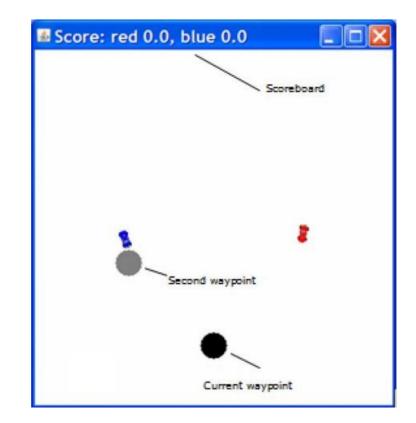
Game Environment

• Simulated car racing


- Current is worth 1 point
- Second is worth 0 points
- $\circ \quad \text{After Current is passed,} \\ \text{Second} \rightarrow \text{Current,} \\ \text{NewWaypoint} \rightarrow \text{Second} \\ \end{array}$
- Objective: gain the most points in a set time.
- Cars can move outside window boundaries
 - Advantageous for the AI

Game Environment

• Control actions (on/off):


- Accelerate, Decelerate, Left Turn, Right Turn, Neutral
- A player would use the arrow keys
- Car physics:
 - Collisions between cars
 - Side skidding

Al Behavior Components

Driving Behavior

- Speed Regulator
- Reversing
- Direction Switching Compensation
- Tight Angle Turning
- Tactical Behavior
 - Waypoint Prediction
 - Time Wasting
 - Blocking

Adaptive Controllers

- Satisfying gameplay experience
 - Over *n* games, |*Wins Losses*| and *Draws* minimized
 - |p1Score p2Score| minimized and max(p1Score, p2Score) maximized
- Artificial Stupidity
 - Force the AI to make deliberate mistakes
 - Selectively activate/deactivate behavior components.
 - Requires that the AI is overdesigned (small window for the player in this case)

Adaptive Uni-Chromosome Controller (AUC)

- Stores one chromosome which encodes seven real numbers (probabilities of activating each behavior)
 - Expected behavior set encoded by the chromosome represents a "winning" strategy
- Chromosome is initialized to random values when the game begins.
- Chromosome is updated whenever a waypoint is passed, and a new behavior set is selected using probabilities.
 - If we lost the previous waypoint, probabilities are used as-is
 - If we won, probabilities are complemented before selection

1	2	3	4	5	6	7
0.8	0.6	0.1	0.3	0.9	0.5	0.2

Adaptive Uni-Chromosome Controller (AUC)

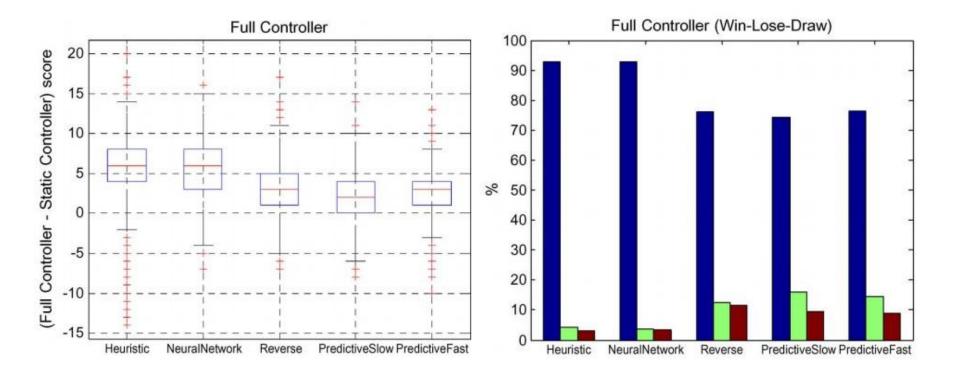
- AUC Update Algorithm
 - *win_i* : probability that behavior *i* is activated in the next phase.
 - *myDist*, *otherDist* : distances from each car to the waypoint.
 - sgn(behavior_i) : 1 if activated, -1 if not activated
 - I and m: learning and mutation rates (I = 0.1, m is unused)

 If AUC win for each behavior component (i = 1 to 7) if (rand() < myDist/(myDist + otherDist)) win_i = (win_i+ sgn(behavior_i) ×l) ×m;
If AUC lose for each behavior component (i = 1 to 7) if (rand() < otherDist/(myDist + otherDist)) win_i = (win_i - sgn(behavior_i) × l) ×m;

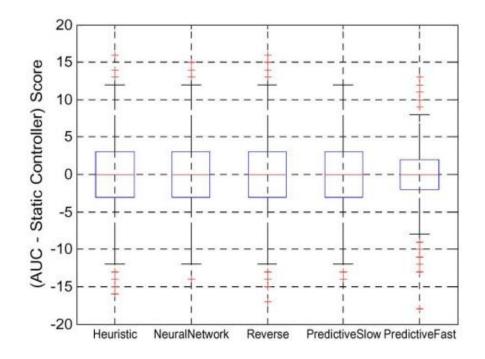
1	2	3	4	5	6	7
0.8	0.6	0.1	0.3	0.9	0.5	0.2

Testing

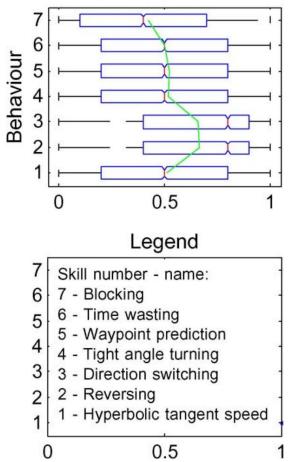
The full controller (all behaviors enabled) and AUC were both tested against five static controllers:


- Heuristic Controller (HC)
 - Uses simple rules to collect as many waypoints as possible; ignores opponent
- Neural Network Controller (NNC)
 - 9 Inputs: own orientation, opponent orientation, own speed, angle to *current*, angle to *second*, distance to *current*, distance to *second*, angle to opponent, distance to opponent
 - 2 Outputs: steering control, driving control
- Reverse Enabled Controller (RC)
 - Behavior controller with only reversing and direction switching behaviors active (subset of full controller)
 - Constant speed used instead of speed regulator behavior

Testing


The full controller (all behaviors enabled) and AUC were both tested against five static controllers:

- Predictive Slow Controller (PSC)
 - Same as the Heuristic Controller with the Waypoint Prediction behavior activated
 - Slow constant speed used (5px per time step); This prevents skidding and overshooting the waypoint
- Predictive Fast Controller (PFC)
 - Same as PSC, with a speed of 8px per time step.
 - Reaches the waypoint faster, but might overshoot


Results (Full Controller)

Results (AUC)

vs Predictive Fast

Conclusions

- AUC performed well in creating an entertaining experience.
 - Achieved a score difference of <= 4 for at least 70.22% of games played.
 - Wins/losses were well-distributed
- Deals well with a variety of opponents