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Zero-sum Games

Zero–sum game

A participant's gains of utility -- Losses of the other 

participant

Cumulative intermediate reward

The difference between our score and opponent’s 

score

True reward

Win, loss or tie

Determined at the end based on intermediate reward



Markov Decision Problem

• Consider a non-perfect system

• Actions are performed with a 

probability less than 1

• What is the best action for an agent 

under this constraint?

• Example: A mobile robot does not 

exactly perform the desired action



Markov Decision Problem

• Sound means of achieving optimal 

rewards in uncertain domains

• Find a policy maps state S to action A

• Maximize the cumulative long-term 

rewards



Value Iteration Algorithm

What is the best way to move 

to +1 without moving into -1?

Consider non-deterministic 

transition model:



Value Iteration Algorithm

Calculate the utility of the center cell:



Value Iteration Algorithm



Thresholded Rewards MDP

TRMDP (M, f, h):

M: MDP(S, A, T, R, s0)

f  : threshold function

f(rintermediate) = rtrue

h : time horizon



Thresholded Rewards MDP

Example:

• States:

1. FOR: our team scored (reward +1)

2. AGAINST: opponent scored (reward -1)

3. NONE: no score occurs (reward 0)

• Actions:

1. Balanced

2. Offensive

3. Defensive



Thresholded Rewards MDP

Expected one step reward:

1. Balanced: 0 = 0.05*1+0.05*(-1)+0.9*0

2. Offensive: -0.25 = 0.25*1+0. 5*(-1)+0.25*0

3. Defensive: -0.01 = 0.01*1+0.02*(-1)+0.97*0

Suboptimal solution, true reward = 0



TRMDP Conversion



TRMDP Conversion



TRMDP Conversion

The MDP M’ given MDP M and h=3



Solution Extraction

Two important facts:

• M’ has a layered, feed-forward 

structure: every layer contains 

transitions only into the next layer

• At iteration k of value iteration, the only 

values that change are those for the 

states s’=(s, t, ir) such that t=k



Solution Extraction

Expected reward = 0.1457

Win  : 50%

Lose: 35%

Tie   : 15%

Optimal policy for M and h=120



Solution Extraction

Effect of changing opponent’s 

capabilities

Performance of MER vs TR on 5000 

random MDPs



Heuristic Techniques

• Uniform-k heuristic

• Lazy-k heuristic

• Logarithmic-k-m heuristic

• Experiments



Uniform-k heuristic

• Adopt non-stationary policy

• Change policy every k time steps

• Compress the time horizon uniformly 

by factor k

• Solution is suboptimal



Lazy-k heuristic

• More than k steps remaining:

No reward threshold

• K steps remaining: 

Create threshold rewards MDP 

Time horizon k

Current state as initial state



Logarithmic-k-m heuristic

• Time resolution becomes finer when 

approaching the time horizon

• k – Number of decisions made before the 

time resolution increased

• m – The multiple by which the resolution is 

increased

• For instance, k=10,m=2 means that 10 

actions before each increase, time resolution 

doubles on each increase



Experiment

60 different 

MDPs randomly 

chosen from the 

5000 MDPs in 

previous 

experiment

Uniform-k suffers from large state size

Logarithmic highly depend on parameters

Lazy-k provides high true reward with low number of states 



Conclusion

• Introduced thresholded-rewards problem in finite-

horizon environment

– Intermediate rewards

– True reward at the end of horizon

– Maximize the probability of winning

• Present an algorithm converts base MDP to  

expanded MDP

• Investigate three heuristic techniques generating 

approximate solutions
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