

Can Cloud Computing be Used for Planning? An Initial Study

Authors: Qiang Lu*, You Xu†, Ruoyun Huang†, Yixin Chen† and Guoliang Chen* from *University of Science and Technology of China †Washington University in St. Louis

In Proceedings of the 3rd IEEE International Conference on Cloud Computing Technology and Science (CloudCom-11), 2011.

Speaker: Lin Liu from Dept. of ECE, MTU

Outline

• Cloud Computing **O**MRW **O**PMRW Enhanced PMRW • Implementation in Windows Azure • Experimental Results • Conclusions

Cloud Computing

4

Cloud Computing

Advantages

• Low cost

• High availability, scalability, elasticity

• Free of maintenance

- Disadvantages
 - High latency
 - Security

Parallel Search Algorithms

- Search is a key technique for planning
- The reported parallel algorithms are not suitable for the cloud environment

Portfolio Search

• A portfolio of algorithms is a collection of different algorithms and/or different copies of the same algorithm running in parallel on different processors or interleaved on one processor

Monte-Carlo Random Walk (MRW)

Algorithm 1: $MRW(\Pi)$ **Input**: a classical planning problem Π **Output**: a solution plan $1 s \leftarrow s_I$; 2 $h_{min} \leftarrow h(s_I)$; s counter $\leftarrow 0$; 4 while s does not satisfy s_G do if $counter > c^m$ or dead-end(s) then 5 $s \leftarrow s_I$; 6 $h_{min} \leftarrow h(s_I)$; 7 $counter \leftarrow 0$; 8 $s \leftarrow RandomWalk(s, \Pi);$ 9 if $h(s) < h_{min}$ then 10 $h_{min} \leftarrow h(s);$ 11 $counter \leftarrow 0;$ 12 else 13 $counter \leftarrow counter + 1;$ 14 15 return plan;

8

MRW Runtime

Two runs with different random seeds have significantly different running time

Portfolio Search With MRW

- It is common to observe that a MRW run with a different random seed solves the same instance much faster than another one
- Such a large variability can benefit a portfolio scheme that makes multiple independent runs and terminates as soon as one run finds a solution

PMRW

Algorithm 2: PMRW(Π)

Input: a classical planning problem Π **Output**: a solution plan

- 1 for each processor $P_i, 1 \leq i \leq N$ do
- 2 $plan \leftarrow MRW(\Pi);$
- 3 **if** plan is a solution **then**
- 4 abort all other processors;

5 return *plan*;

As soon as a processor finds a solution, all other processors will be halted.

The solution time of PMRW is the minimum running time of the N independent runs.

Enhanced PMRW (PMRW^{ms})

- PMRW^{ms} is a strategy that takes in a candidate configuration set $C = \{c_0, c_1, ..., c_n\}^{s}$
- Each processor p_i performs search independently and simultaneously using the setting c_i
- Details are neglected due to time limitation.

Implementation In Windows Azure

Experimental Results

Evaluation in a local cloudEvaluation in Windows Azure

Evaluation In A Local Cloud

Evaluation In Windows Azure

Conclusions

- A portfolio search algorithm which is suitable for cloud computing is proposed
- The portfolio of MRW algorithm is implemented in a local cloud and the Windows Azure platform
- The proposed algorithm is economically sensible in clouds and robust under processor failures

18

*

 \rightarrow