System Modeling and Online Optimal Management of MicroGrid Using Mesh Adaptive Direct Search

By: Faisal A. Mohamed and Heikki N. Koivo International Journal of Electrical Power and Energy Systems, 2010

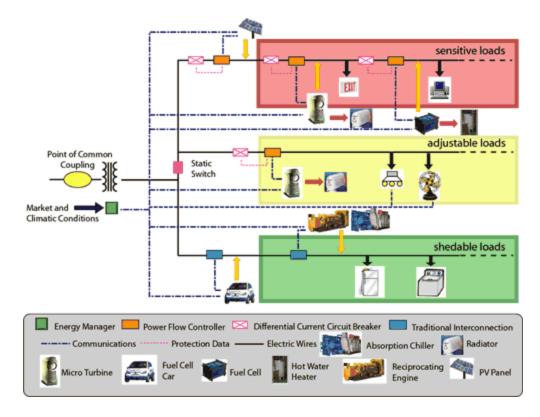
Presented by: Jennifer Winikus for CS 5811 Fall 2012

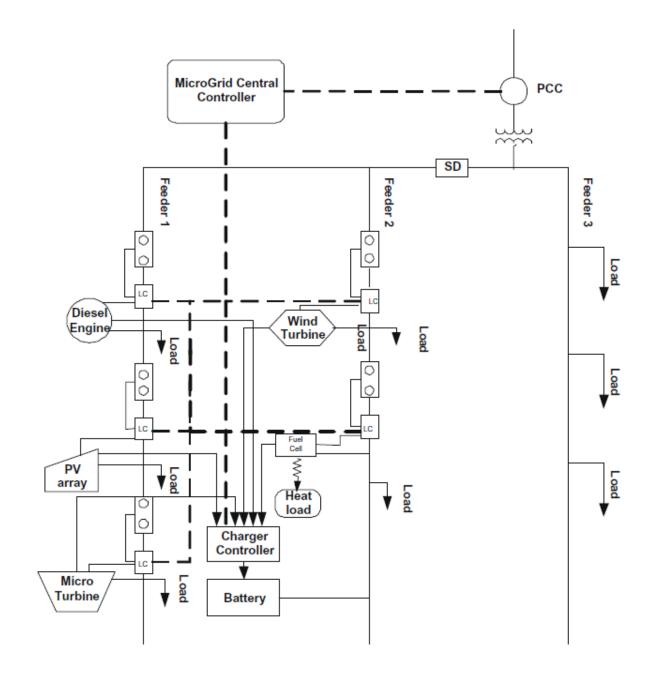
Overview

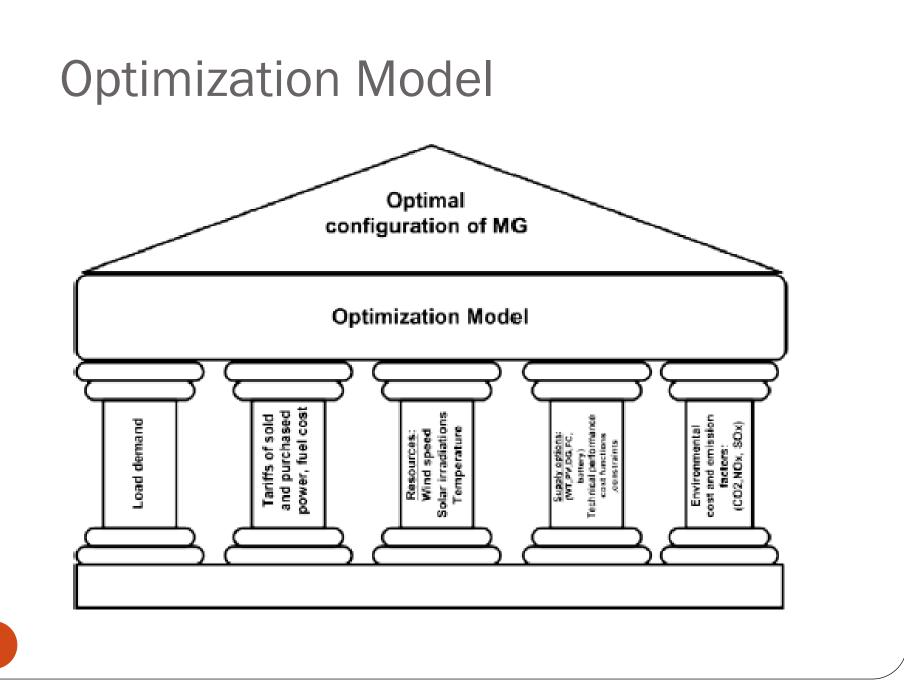
- MicroGrids
- Optimization Model
- Mesh Adaptive Direct Search
- Sequential Quadratic Programming
- Simulation/Experiment
- Conclusions

MicroGrids

- Subsystem that be connected or disconnected to the main power grid
- Many Potential Benefits







Components for Optimization

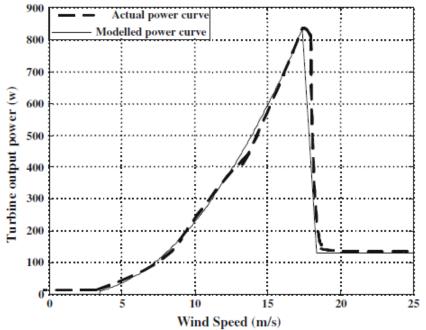
- Minimize:
 - Cost
 - Emissions
- Optimize:
 - Satisfaction of load demand
 - Use of resources

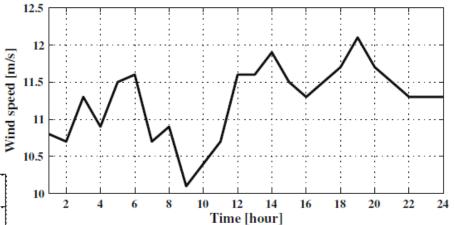
Available Data for Optimization

- Power Demand
- Solar Irradiation
- Temperature
- Wind Speed
- Fuel Costs
- Purchase and Selling Tariffs
- Startup Costs
- Maintenance Costs
- Operating Costs
- Economic Performance
- Technical Performance
- Emission Performance

Wind Turbine

• Power is a function of wind velocity

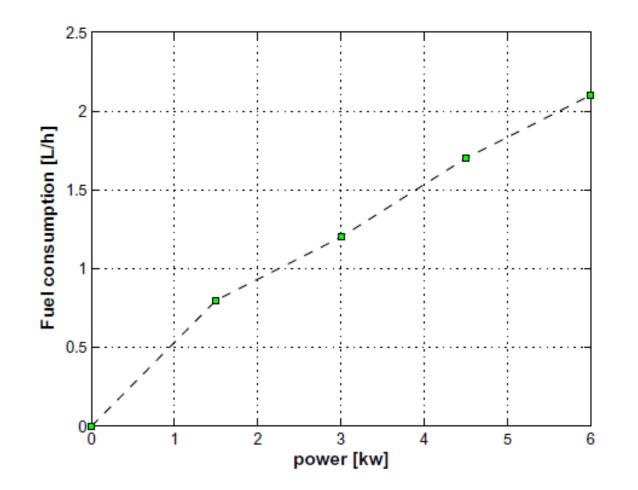




Photovoltaic Cells

- Power produced is a function of:
 - Model's Maximum Power
 - Incident Irradiance
 - Temperature
- Assumptions for Simulated Model:
 - Peak power= 83W
 - Voltage at Peak Power= 17.1V
 - Current at Peak Power 4.84A

Diesel Generator



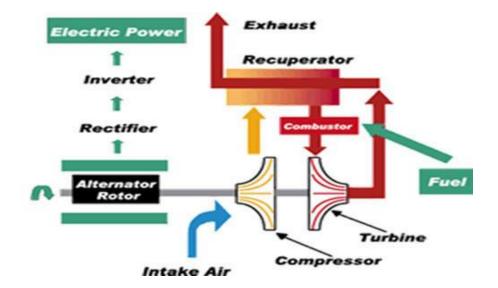
10

Fuel Cells

- Hydrogen and Oxygen are combined to produce electricity, heat, and water
- Natural gas is used to supply the fuel cell

Microturbine

- Efficiency is increased as more power is supplied
- Natural gas is the fuel supply



Battery Storage

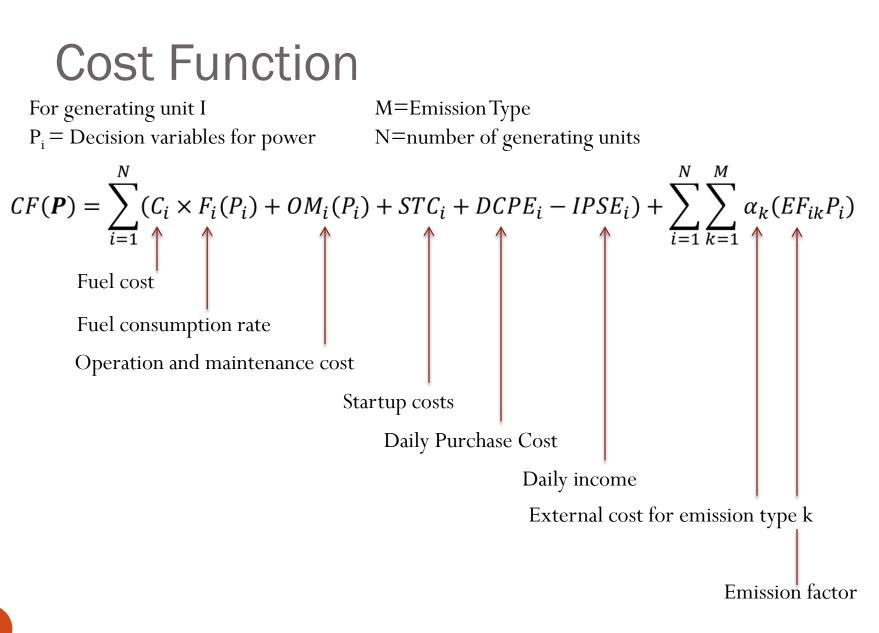
- Energy can be stored and released
- The battery should not be discharged below 20%
- Assume that the maximum charge is 90% of what is capable

Emissions

• Nitrogen Oxides, Sulfur Oxides, and Carbon Oxides are aimed to be minimized

Externality costs and emission factors for NO_x, SO₂, and CO₂.

Emission type	Externality costs (\$/lb)	Emission factors for DE (lb/MW h)	Emission factors for FC (lb/MW h)	Emission factors for MT (lb/MW h)
NO _x	4.2	21.8	0.03	0.44
SO ₂	0.99	0.454	0.006	0.008
CO ₂	0.014	1.432	1.078	1.596



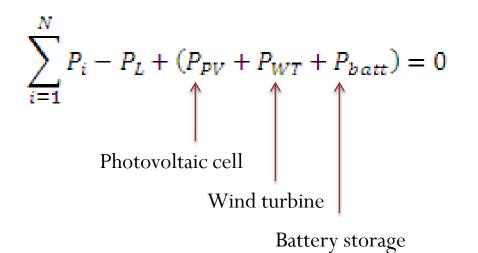
Decision Variables

$$P_{i} = P_{FC_{i}}, P_{j} = P_{MT_{j}}, P_{k} = P_{DG_{k}}: i = 1, ..., N_{1}; j = N_{1} + 1, ..., N_{2}; k = N_{2} + 1, ..., N$$

Fuel Cell
Microturbine

Diesel Generator

Power Balance Constraint



Direct Search

- Only function values
- No knowledge of the internal structure of problem is needed
- Can easily and quickly adapt
- Can find solutions even when noise is present or the function is undetermined at some points

Mesh Adaptive Search Algorithm

- Generalization of pattern search algorithm
- Derivative free
- Iterative process of two steps
 - Search Step
 - Poll Step

[0] Initializations $x_0 \in X, \Delta_0 \in \mathbb{R}^+$ $k \leftarrow 0$ [1] Poll and search steps Search step evaluate the functions on a finite number of points of $M(k, \Delta_k)$ Poll step compute p MADS directions $D_k \in \mathbb{R}^{n \times p}$ construct the frame $P_k \subseteq M(k, \Delta_k)$ with x_k , D_k , and Δ_k evaluate the functions on the p points of P_k [2] Updates determine the type of success of iteration ksolution update (x_{k+1}) mesh update (Δ_{k+1}) $k \leftarrow k+1$

check the stopping conditions, goto [1]

Search Step

• All trial points lie on the mesh

 $M(k, \Delta_k) = \bigcup_{x \in V_k} \left\{ x + \Delta_k Dz : z \in \mathbb{N}^{n_D} \right\} \subset \mathbb{R}^n$

- Any search strategy can be used
- Points can either be rejected when they do not satisfy constraints or the constraints can be removed using the barrier approach

Poll Step

- At 2n trial mesh points near the solution are evaluated
- Based on the result
 - If no better neighbor is found
 - Mesh is refined(aka gets finer)
 - If better neighbor is found
 - Mesh is kept the same or gets courser

Handling of Constraints

- This is the main difference to pattern search
- Utilize the barrier approach

 $CF_X = \begin{cases} CF(\mathbf{P}) & \text{if } \mathbf{P} \in X \\ +\infty & \text{otherwise} \end{cases}$

Allows the algorithm to be applied to an "unconstrained" problem

Sequential Quadratic Programming

- SQP is to model this problem at the current point x_k by a quadratic subproblem and to use the solution of this subproblem to find the new point x_{k+1}
- Lagrangian operations, Jacobian operations, and Newton's Methods need to be applied to solve

A line search SQP algorithm:

- 1. Choose parameters $0 < \eta < 0.5$, $0 < \tau < 1$ and the initial point (x_0, λ_0) .
- 2. Initialize the Hessian estimate, say $B_0 = I$.
- 3. Evaluate f_0 , g_0 , c_0 and A_0 .
- 4. Begin major iteration loop in k:
 - 4.1 If termination criteria are met, then stop.
 - 4.2 Compute p_k by solving (3).
 - 4.3 Choose μ_k such that p_k is a descent direction for ϕ at x_k .
 - 4.4 Set $\alpha_k = 1$.
 - i. While $\phi(x_k + \alpha_k p_k, \mu_k) > \phi(x_k, \mu_k) + \eta \alpha_k D \phi(x_k, p_k)$
 - ii. Set $\alpha_k = \tau_\alpha \alpha_k$ for some $0 < \tau_\alpha < \tau$.
 - 4.5 Set $x_{k+1} = x_k + \alpha_k p_k$.
 - 4.6 Evaluate f_{k+1} , g_{k+1} , c_{k+1} and A_{k+1} .
 - 4.7 Compute λ_{k+1} by solving

$$\lambda_{k+1} = -\left[A_{k+1}A_{k+1}^{T}\right]^{-1}A_{k+1}g_{k+1}$$

4.8 Set $s_k = \alpha_k p_k$, $y_k = \nabla_x \mathcal{L}(x_{k+1}, \lambda_{k+1}) - \nabla_x \mathcal{L}(x_k, \lambda_{k+1})$.

4.9 Obtain B_{k+1} by updating B_k using a quasi-Newton formula.

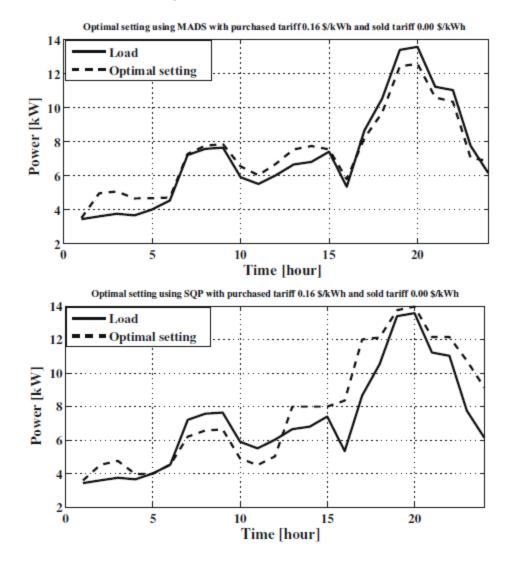
5. End major iteration loop.

http://acdl.mit.edu/mdo/mdo_06/SQPMethods.pdf

Simulation and Results

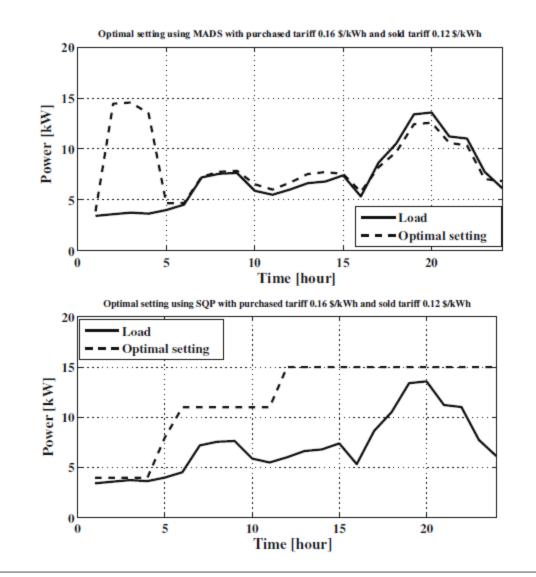
- The model was evaluated with the MADS and SQP methods
- Tariffs were the variable that was changed
- The allowance for selling excess power was a variable considered

Purchase Tariff= 0.16\$/kWh Sold Tariff= 0\$/kWh



26

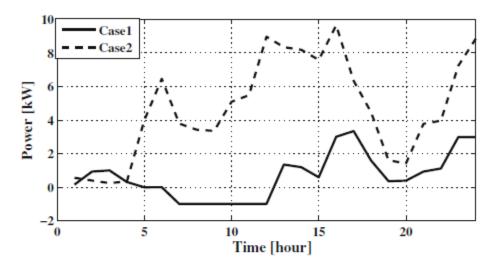
Purchase Tariff = 0.16\$/kWh Sold Tariff = 0.12\$/kWh



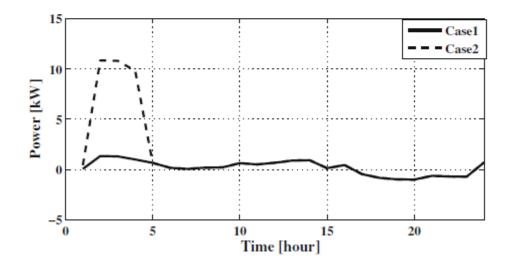
27

Case Study

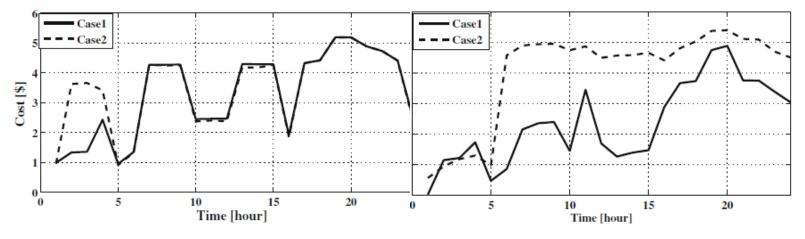
- Case 1:
 - No power sold back
 - Power purchased at 0.16\$/kWh
- Case 2:
 - Excess power sold back at 0.12\$/kWh
 - Power purchased at 0/16\$/kWh



Sold and purchased power using SQP method.

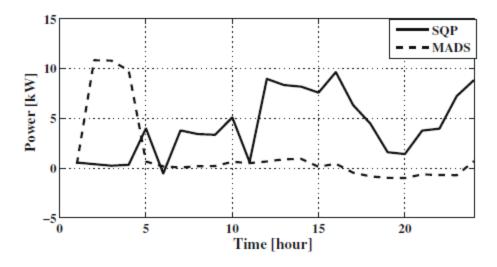


Sold and purchased power using MADS method.

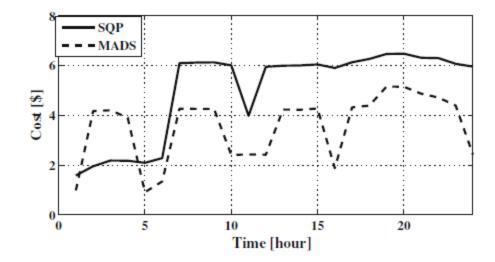


ig. 15. Cost per day MADS method.

Comparing Methods



. Sold and purchased power using SQP and MADS methods.



Total cost per day using SQP and MADS methods.

Numeric View

Total optimal generation and total cost of the MG.

	P_L (kW/Day)	C_p (\$/kW h)	C _s (\$/kW h)	Total cost (\$/Day)		Optimal generation (kW/Day)	
				SQP	MADS	SQP	MADS
Case 1	171.4009	0.16	0.00	80.8576	79.0752	187.6473	176.1020
Case 2	171.4009	0.16	0.12	120.8424	83.9106	285.0000	204.2817
Case 3	171.4009	0.12	0.07	120.5106	85.6072	273.1226	204.2817
Case 4	171.4009	0.16	0.07	120.5220	85.7750	273.1226	204.2817

Conclusions

- MADS is a better method for optimizing then SQP
 - Finds the compromise between sold and purchased power
- MADS is a mathematically simpler approach to complex optimization problems
- Some constraints ended up not being active when MADS was applied
- The lowest total cost per day achieved in all cases was found using MADS

References

- "System modeling and online optimal management of MicroGrid using Mesh Adaptive Direct Search"; Faisal A. Mohamed, Heikki N. Koivo; International Journal of Electrical Power and Energy Systems; Volume 32, Issue 5, June 2010, Pages 398–407, <u>http://dx.doi.org/10.1016/j.ijepes.2009.11.003</u>
- "Real Systems for the Real World", <u>http://www.transverter.com/micro.html</u>
- <u>http://wastegaspower.com/images/microturbine.jpg</u>
- "Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search", CharlesAudet, Vincent Bechard, Sebastien Le Digabel; Journal of Global Optimization; June 2008, Volume 41, Issue 2, pp 299-318; <u>http://link.springer.com/article/10.1007%2Fs10898-007-9234-1?LI=true#</u>
- Research Consortium for Multidisciplinary System Design Workshop, 2006; Standford and MIT; acdl.mit.edu/mdo/mdo_06/SQPMethods.pdf

Questions