

Online Graph Pruning for
Pathfinding on Grid Maps

Daniel Harabor and Alban Grastien, AAAI 2011
Presented by James Walker

Synopsis

● An algorithm for improving A* performance on
uniform-cost grid search spaces

● Works by only expanding nodes called “jump
points”

● In benchmarks, improves A* performance
dramatically and outperforms other A*
optimizations including hierarchical pathfinding

Characteristics

● Search performance dramatically improved
● Guaranteed optimality
● No preprocessing required
● Fairly simple to implement
● Orthogonal to existing techniques (so it can be

combined with other optimizations)
● Essentially no drawbacks!!

Example

When moving in a straight line toward y, x dominates all shaded
nodes so there's no need to expand them.

Example Cont.

● Repeat until another jump node is
encountered

● If blocked by obstacles, conclude that
searching in this direction is fruitless and
generate nothing

Pruning Rules

● Goal: For the current node, identify which of its
neighbors don't need to be expanded to reach
the goal optimally.

● 2 cases: straight move & diagonal move

Straight move pruning

● Prune any node n ε neighors(x) which satisfies
the following dominance constraint:

len(<p(x), …, n> \ x) <= len(<p(x), x, n>)

● Example: Prune all

neighbors except 5

Diagonal move pruning

● Almost identical to previous case, except strict
dominance is required:

len(<p(x), …, n> \ x) < len(<p(x), x, n>)

● Example: Prune all

neighbors except 2,3,5

Forced evaluation

● Sometimes an obstacle can force us to
evaluate a node we would otherwise prune:

len(<p(x), x, n>) < len(<p(x), …, n> \ x)

● Example: Evaluation of 3

is forced.

Jump Point Formal Definition

● Node y is a jump point from x, heading in direction d, if y
minimizes the value k such that y = x + kd and one of the
following conditions holds:

1. y is the goal

2. y has at least one neighbor with forced evaluation

3. d is a diagonal move and there exists a node z = y + k_i
d_i which lies k_i ε N steps in direction d ε {d_1, d_2} s.t. z is
a jump point from y by condition 1 or 2.

Condition 3 Example

● Intuitively, it's simple: If you're on a diagonal and you
turn to a non-diagonal to the next jump point, you
yourself are a jump point.

Proof of Optimality

● For each optimal length path in a grid map there exists an
equivalent length path which can be found by only expanding jump
point nodes.

● Turning points:

● Note that straight-to-straight turning points are trivially suboptimal.

Proof of Optimality Cont.

● Diagonal-first path: A path π is diagonal-first if it
contains no straight-to-diagonal turning point <n_k-1,
n_k, n_k+1> which could be replaced by a diagonal-
to-straight turning point <n_k-1, n'_k, n_k+1> s.t. that
the length of π remains unchanged.

● Lemma 1: Each turning point along an optimal
diagonal-first path π' is also a jump point (see paper
for proof of lemma).

Proof of Optimality Cont.

● Let π be an arbitrary optimal path and π' a
diagonal-first symmetric equivalent. Every
turning point in π' is expanded optimally when
searching with jump point pruning.

● Divide π' into segments π'_i, where all moves
in each π'_i are in the same direction. Every
node at beginning and end of π'_i is a turning
point.

Proof of Optimality Cont.

● Because each π'_i consists of single-direction
moves (straight or diagonal), jump points will
travel from the start to end nodes of π'_i w/o
necessarily expanding all intermediate nodes;
this part is guaranteed to be optimal by the
pruning rules.

● Invoke Lemma 1. Each start and end node of
π'_i is a turning point, thus also a jump point,
and is expanded.

Proof of Optimality Concluded

● Because all endpoint nodes of each segment
π'_i are expanded optimally, and all straight-
line paths between endpoints are optimal, the
entire path is optimal.

Experimental Results

Summary

● An algorithm for improving A* performance on
uniform-cost grid search spaces

● Works by only expanding nodes called “jump points”
● Search performance dramatically improved
● Guaranteed optimality
● No preprocessing required
● Orthogonal to existing techniques (so it can be

combined with other optimizations)

Online Graph Pruning for
Pathfinding on Grid Maps

Daniel Harabor and Alban Grastien, AAAI 2011
Presented by James Walker

Thank you.
Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

