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Synopsis

● An algorithm for improving A* performance on 
uniform-cost grid search spaces

● Works by only expanding nodes called “jump 
points”

● In benchmarks, improves A* performance 
dramatically and outperforms other A* 
optimizations including hierarchical pathfinding



  

Characteristics

● Search performance dramatically improved
● Guaranteed optimality
● No preprocessing required
● Fairly simple to implement
● Orthogonal to existing techniques (so it can be 

combined with other optimizations)
● Essentially no drawbacks!!



  

Example

When moving in a straight line toward y, x dominates all shaded 
nodes so there's no need to expand them.



  

Example Cont.

● Repeat until another jump node is 
encountered

● If blocked by obstacles, conclude that 
searching in this direction is fruitless and 
generate nothing



  

Pruning Rules

● Goal: For the current node, identify which of its 
neighbors don't need to be expanded to reach 
the goal optimally.

● 2 cases: straight move & diagonal move



  

Straight move pruning

● Prune any node n ε neighors(x) which satisfies 
the following dominance constraint:

len( <p(x), …, n> \ x ) <= len( <p(x), x, n> )

● Example: Prune all

neighbors except 5



  

Diagonal move pruning

● Almost identical to previous case, except strict 
dominance is required:

len( <p(x), …, n> \ x ) < len( <p(x), x, n> )

● Example: Prune all

neighbors except 2,3,5



  

Forced evaluation

● Sometimes an obstacle can force us to 
evaluate a node we would otherwise prune:

len( <p(x), x, n> ) < len( <p(x), …, n> \ x )

● Example: Evaluation of 3

is forced.



  

Jump Point Formal Definition

● Node y is a jump point from x, heading in direction d, if y 
minimizes the value k such that y = x + kd and one of the 
following conditions holds:

1. y is the goal

2. y has at least one neighbor with forced evaluation

3. d is a diagonal move and there exists a node z = y + k_i 
d_i which lies k_i ε N steps in direction d ε {d_1, d_2} s.t. z is 
a jump point from y by condition 1 or 2.



  

Condition 3 Example

● Intuitively, it's simple: If you're on a diagonal and you 
turn to a non-diagonal to the next jump point, you 
yourself are a jump point.



  

Proof of Optimality

● For each optimal length path in a grid map there exists an 
equivalent length path which can be found by only expanding jump 
point nodes.

● Turning points:

● Note that straight-to-straight turning points are trivially suboptimal.



  

Proof of Optimality Cont.

● Diagonal-first path: A path π is diagonal-first if it 
contains no straight-to-diagonal turning point <n_k-1, 
n_k, n_k+1> which could be replaced by a diagonal-
to-straight turning point <n_k-1, n'_k, n_k+1> s.t. that 
the length of π remains unchanged.

● Lemma 1: Each turning point along an optimal 
diagonal-first path π' is also a jump point (see paper 
for proof of lemma).



  

Proof of Optimality Cont.

● Let π be an arbitrary optimal path and π' a 
diagonal-first symmetric equivalent. Every 
turning point in π' is expanded optimally when 
searching with jump point pruning.

● Divide π' into segments π'_i, where all moves 
in each π'_i are in the same direction. Every 
node at beginning and end of π'_i is a turning 
point.



  

Proof of Optimality Cont.

● Because each π'_i consists of single-direction 
moves (straight or diagonal), jump points will 
travel from the start to end nodes of π'_i w/o 
necessarily expanding all intermediate nodes; 
this part is guaranteed to be optimal by the 
pruning rules.

● Invoke Lemma 1. Each start and end node of 
π'_i is a turning point, thus also a jump point, 
and is expanded.



  

Proof of Optimality Concluded

● Because all endpoint nodes of each segment 
π'_i are expanded optimally, and all straight-
line paths between endpoints are optimal, the 
entire path is optimal.



  

Experimental Results



  

Summary

● An algorithm for improving A* performance on 
uniform-cost grid search spaces

● Works by only expanding nodes called “jump points”
● Search performance dramatically improved
● Guaranteed optimality
● No preprocessing required
● Orthogonal to existing techniques (so it can be 

combined with other optimizations)
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Thank you.
Any questions?
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