ANA*: Anytime Nonparametric A*

AAAI Conference, 2011

Written By: Jur van den Berg, Rajat Shah, Arthur Huang, Ken Goldberg berg@cs.unc.edu {rajatm.shah, arthurhuang, goldberg}@berkeley.edu

> Presented By: Brandon Crowley blcrowle@mtu.edu

Outline

- Motivation
- Previous Work
- The Algorithm
- Improvements of ANA* Over ARA*
- Experimental Results
- Conclusion and Future Work

Previous Work: Foundations

- Dijkstra's Algorithm
 - Shortest path from Sstart to Sgoal with non-negative edges
 - Maintains g(s), minimum cost so far
- A*
- Adds heuristic to Dijkstra's
- Admissible h(s) guarantees optimality, consistent h(s) guarantees cycle-free search
- Weighted A*
 - $f(s) = g(s) + \epsilon * h(s)$
 - $\epsilon \ge 1$, bounds optimality
 - Raising ϵ trades optimality for speed

Previous Work: Anytime A*

- Anytime Heuristic Search (AHS)
 - Continues search after solution found
 - Intermediate upper bound: G
 - Intermediate lower bound: $\min_{s \in OPEN} \{g(s)+h(s)\}$
- Anytime Repairing A* (ARA*)
 - Decreases ε between results, updating f(s) values
 - Introduces another parameter
- Restarting Weighted A* (RWA*)
 - Restarts search when ε is decreased
 - Reuses best known g(s) values for states

The ANA* Algorithm

• ANA*() $G \leftarrow \infty$; $E \leftarrow \infty$; OPEN \leftarrow Ø; $\forall s:g(s) \leftarrow \infty; g(s_{start}) \leftarrow 0$ Insert sstart into OPEN with key e(Sstart) while OPEN≠Ø do **IMPROVESOLUTION() Report current E-suboptimal** solution Update keys e(s) in OPEN and prune if $g(s)+h(s)\geq G$ IMPROVESOLUTION() while OPEN≠ø do $s \leftarrow argmax_s \in OPEN \{ e(s) \}$ OPEN←OPEN\{s} if e(s)<E then E←e(s) if ISGOAL(s) then G←g(s) return for each successor s' of s do if g(s)+c(s,s') < g(s') then $g(s') \leftarrow g(s) + c(s,s')$ pred(s')←s if g(s')+h(s')<G then Insert or update s' in OPEN with key e(s')

The ANA* Algorithm cont.

- e(s) is the maximal ε for which $f(s) \leq G$
- e(s) bounds suboptimality
- G improves after each iteration

 $e(s) = \frac{G-g(s)}{h(s)}$

ARA* vs ANA*

- Requires parameters ε and Δε
- Starting ε must be finite
- Progress towards optimal solution is invariable
- If adapted to function like ANA*, f(s) keys would have to be updated for each change in ε

- Requires no parameters
- Starting G is infinite
- Progress towards optimal solution is the least possible improvement at each step
- e(s) keys only need to be updated when G is reduced

Experiments: Problems

• Robot Arm: position arm to reach goal, avoiding obstacles

- 6 or 20 degrees of freedom
- action is a change in a joint's angle
- $>3*10^6$ states for 6 DOF, $>10^{26}$ states for 20

• Gridworld: navigate from start to goal in an n x m grid

- Grid 1: 100x1200 8-connected, obstacles, uniform move cost between cells sharing a side
- Grid 2: 5000x5000 4-connected, no obstacles, move cost randomly chosen from [1,1000]
 - Grid 3: 5000x5000 4-connected, obstacles, move cost randomly chose from [1,1000]

Experiments: Problems cont.

- Multiple Sequence Alignment: find lowest cost alignments of n proteins
 - n=5
 - gaps in a sequence cost 2
 - mismatched pairs cost 1

Experiments: Results-Robotic Arm

6 DOF vs 20 DOF

Experiments: Results-Robotic Arm

6 DOF, non-uniform cost

Experiments: Results-Gridworld

100x1200 with obstacles, uniform cost

Experiments: Results-Gridworld

5000x5000 without obstacles, random cost

Experiments: Results-MSA

Conclusion and Future Work

- ANA* expands upon ARA*
- ANA* outperforms existing anytime A* algorithms both analytically and experimentally
- Future research in dynamic weight graph search

Citations

- Jur van den Berg, Rajat Shah, Arthur Huang, and Ken Goldberg, "ANA*: Anytime Nonparametric A*," Association for the Advancement of Artificial Intelligence: Annual Conference (AAAI). San Francisco, CA. August 2011.
- Jur van den Berg, Rajat Shah, Arthur Huang, and Ken Goldberg, "ANA* *Technical Report*," February 2011.
- Maxim Likhachev, Geoff Gordon and Sebastian Thrun, "ARA*: Anytime A* with Provable Bounds on Sub-Optimality," Advances in Neural Information Processing Systems 16 (NIPS), MIT Press, Cambridge, MA, 2004.

Questions