
Optimal Metric Planning with State Sets in
Automata Representation [3]

Björn Ulrich Borowsky Stefan Edelkamp

Fakultät für Informatik,
Technische Universität Dortmund, Germany

2008

(Slides by Alex Klinkhamer)

Alex Klinkhamer Planning with State Sets in Automata Representation

Goal and Method

Goal: Algorithm which finds optimal plan for infinite state
planning problem.

Allow variables to span Z (integers).

Represent (possibly infinite) state sets with DFAs.

Search using state sets instead of individual states.

Breadth-first search (BFS).
Dijkstra’s shortest path algorithm (DijkstraSearch).
Similar algorithms exist using BDDs to represent state sets [4].

Alex Klinkhamer Planning with State Sets in Automata Representation

Ex: PDDL with Integer Domains

(d e f i n e (domain Boxes)
(: t y p e s Block Box − Object)
(: p r e d i c a t e s (i n ?b − Block ? x − Box))
(: f u n c t i o n s (w e i g h t ?o − Object)

(num ? x − Box))
(: a c t i o n move

: p a r a m e t e r s (? b l − Block ? from ? to − Box)
: p r e c o n d i t i o n (i n ? b l ? from)
: e f f e c t
(and (i n ? b l ? to)

(not (i n ? b l ? from))
(d e c r e a s e (num ? from) 1)
(i n c r e a s e (num ? to) 1)
(d e c r e a s e (w e i g h t ? from) (w e i g h t ? b l))
(i n c r e a s e (w e i g h t ? to) (w e i g h t ? b l)))))

Alex Klinkhamer Planning with State Sets in Automata Representation

Planning Problem and Cost Models

Uniform Cost
R = (S,A, I,G)

S: State space.

A: Actions.

I: Initial states. I ⊆ S and usually |I| = 1.

G: Goal states. G ⊆ S.

Additive Cost
R = (S,A, C, I,G)

C: Action costs. C = {cA |A ∈ A} and cA : S → Z+.

Metric Cost
R = (S,A, I,G,m)

m: Metric cost function. m : S ∪ {⊥} → Z.

m(⊥) is total-cost.

Alex Klinkhamer Planning with State Sets in Automata Representation

Representing State Sets

A state is a valuation of variables.

In PDDL, these are predicates and functions on objects.

Can represent a set of states with a predicate formula.

Ex: x = 1 ∨ y = 0 represents 3 states of 2 bits x and y .
Equivalently:
(x = 0 ∧ y = 0) ∨ (x = 1 ∧ y = 0) ∨ (x = 1 ∧ y = 1).

A predicate formula can be represented by...

Binary decision diagram (BDD) if all variables are Boolean.
Multi-valued decision diagram (MDD) if all variables are finite.
But what about infinite domains like Z?

Alex Klinkhamer Planning with State Sets in Automata Representation

Presburger Arithmetic

A decidable first-order theory of integers with addition.

73x − 52y + 30z ≤ 778− u
∀x : ((∃k : 2k = x) ∨ (∃k : 2k + 1 = x))
(∃y : x = 3y) ∧ (∃y : x = 7y)

Can express these formulas as DFAs.

Give an order to the n variables involved.
Alphabet is Σ = {0, 1}n (bit vectors of length n).
Transitions read one bit of each variable at a time.
Example:

Let Φ be some formula involving x , y , and z .
Consider the valuation x = 5, y = 2, and z = −2.
In binary: x = 01012, y = 00102, and z = 11102.
The DFA for Φ, with variable order (x , y , z) and alphabet
Σ = {0, 1}3, would read the string of length 4:

(001, 101, 011, 100)

.

Alex Klinkhamer Planning with State Sets in Automata Representation

Ex: DFA for x = 1

0

1

0

1

0

1

0, 1

0, 1

Alex Klinkhamer Planning with State Sets in Automata Representation

Ex: DFA for w = x − y with variable order (y , x ,w)

i

−1

0

010, 101

[000; 111]

001, 100, 111

001, 100, 111
00
0,
01
0,
01
1,
10
0

000, 011, 110
00
1,
10
0,
10
1,
11
1

0
1
0

1
0
1

000, 011, 110

Alex Klinkhamer Planning with State Sets in Automata Representation

Representing Transition Sets (Actions)

Introduce primed variables for destination variables.

Example:
Consider an action A.

Precondition: y < 20.
Effect: x := x − y .

As a formula: A = (y < 20) ∧ (x ′ = x − y) ∧ (y ′ = y)

Alex Klinkhamer Planning with State Sets in Automata Representation

State Set Operations

Formula conjunction by DFA intersection.

Formula disjunction by DFA union.

Formula negation by DFA complement.

Variable substitution by reordering bits of transition symbols.

Change unprimed variables to primed.
Change primed variables to unprimed.

Existential quantification by DFA projection.

An efficient implementation is described in [2].

Unique representation by minimized DFA.

Alex Klinkhamer Planning with State Sets in Automata Representation

Image

The image function finds all states which transitions T map
from S .

image(T ,S) = {s1 ∈ S | ∃s0 ∈ S : (s0, s1) ∈ T}
Compute using standard operations.

Conjunct the formulas of S and T .
Project out unprimed variables with existential quantification.
Change primed variables to unprimed.

Example:

Let action A = (y < 20) ∧ (x ′ = x − y) ∧ (y ′ = y).
image(A, (y > 3) ∧ (x = 2))
= unprime(∃x , y : (y > 3) ∧ (x = 2) ∧ A)
= unprime((y ′ > 3) ∧ (y ′ < 20) ∧ (x ′ = 2− y ′))
= (y > 3) ∧ (y < 20) ∧ (x = 2− y)

Alex Klinkhamer Planning with State Sets in Automata Representation

Preimage

The preimage function finds all states which are mapped to
states in S by transitions T .

preimage(T ,S) = {s0 ∈ S | ∃s1 ∈ S : (s0, s1) ∈ T}
Compute using standard operations.

Prime all variables in formula of S .
Conjunct with formula of T .
Project out primed variables with existential quantification.

Example:

Let action A = (y < 20) ∧ (x ′ = x − y) ∧ (y ′ = y).
preimage(A, (y > 3) ∧ (x = 2))
= ∃x ′, y ′ : prime((y > 3) ∧ (x = 2)) ∧ A
= ∃x ′, y ′ : (y ′ > 3) ∧ (x ′ = 2) ∧ A
= (y > 3) ∧ (y < 20) ∧ (x = y + 2)

Alex Klinkhamer Planning with State Sets in Automata Representation

Idea for BFS

Start with initial states I as the frontier.

Initialize stack of explored state sets with one element I .

While the frontier does not contain a goal state,

Find the next frontier by applying each action to the current
frontier.
If the next frontier does not contain any new states, return
failure.
Otherwise, assign the current frontier to be the next and push
it onto the stack.

Build plan by working back through layers (stack) of explored
state sets.

Note: This finds a plan for just one initial state.

Alex Klinkhamer Planning with State Sets in Automata Representation

BFS to Solve Uniform Cost Instance

Input: Planning task R = (S,A, I,G), set I with ∅ 6= I ⊆ I
Output: A shortest sequential plan and a set I ′ ⊆ I or “No plan.”
L := R := stack := I ;
while L ∩ G = ∅ do

L′ := ∅;
forall the A ∈ A do

L′ := L′ ∪ image(A, L);
if L′ ⊆ R then

return “No plan.”;
R := R ∪ L′;
stack.push(L′);
L := L′;

G := stack .pop() ∩ G;
return ExtractPlan(R, stack ,G);

Algorithm 1: BFS

Alex Klinkhamer Planning with State Sets in Automata Representation

Extract Plan from Explored Layers

Input: Planning task R = (S,A, I,G), stack stack , G ⊆ G
Output: Sequential plan of length |stack|, I ′ ⊆ I
π := []; // Initialize empty sequence.

post := G ;
while stack 6= ∅ do

pre := stack .pop();
post ′ := ∅;
forall the A ∈ A do

post ′ := preimage(A, post) ∩ pre;
if post ′ 6= ∅ then

a := A;
break;

post := post ′;
π := [a].π; // Push action onto front of sequence.

return (π, post);
Algorithm 2: ExtractPlan

Alex Klinkhamer Planning with State Sets in Automata Representation

BFS Analysis

Does find the optimal solution.

Terminates when a plan exists (eventually reaches goal states).

Terminates when state space is finite (no room to grow).

Does not terminate when all of the following hold...

No plan exists.
Infinite number of reachable states.
Finite number of initial states.

Otherwise, no general rule for termination.

Alex Klinkhamer Planning with State Sets in Automata Representation

Optimal Solutions for Other Cost Models

Additive cost model.

Reduces to weighted shortest path problem.
Adapt Dijkstra’s shortest path algorithm to work with state
sets.
Same terminating conditions as BFS.

Metric cost model.

Adapt BFS to work with metric costs (MetricBFS).
Finds a plan but may continue searching.

Guaranteed to terminate when optimal plan exists.
Plans may exist without there being an optimal one since cost
can be negative.

Can “manually” terminate to get the current best solution.

Alex Klinkhamer Planning with State Sets in Automata Representation

Conclusions

Algorithm which finds optimal solution to the planning
problem with integer variables.

Not guaranteed to terminate when no optimal plan exists.

No performance results given.

No follow-up work found.
Size of the minimal DFA representation of a Presburger

arithmetic formula can be up to triple exponential (Θ(222
n

)) in
the length of the formula [5]!

Authors were working on a more efficient implementation.

Adapt A∗ to use state sets represented by DFAs.
Use fast automata libraries such as LIRA [1].
Support real-valued variables.

Alex Klinkhamer Planning with State Sets in Automata Representation

References I

[1] B. Becker, C. Dax, J. Eisinger, and F. Klaedtke.
Lira: handling constraints of linear arithmetics over the integers
and the reals.
In Proceedings of the 19th international conference on
Computer aided verification, CAV’07, pages 307–310, Berlin,
Heidelberg, 2007. Springer-Verlag.

[2] B. Boigelot and P. Wolper.
Representing arithmetic constraints with finite automata: An
overview.
In Proceedings of the 18th International Conference on Logic
Programming, ICLP ’02, pages 1–19, London, UK, UK, 2002.
Springer-Verlag.

Alex Klinkhamer Planning with State Sets in Automata Representation

References II

[3] B. U. Borowsky and S. Edelkamp.
Optimal metric planning with state sets in automata
representation.
In Proceedings of the 23rd national conference on Artificial
intelligence - Volume 2, AAAI’08, pages 874–879. AAAI Press,
2008.

[4] A. Cimatti, F. Giunchiglia, E. Giunchiglia, and P. Traverso.
Planning via model checking: A decision procedure for ar.
In Proceedings of the 4th European Conference on Planning:
Recent Advances in AI Planning, ECP ’97, pages 130–142,
London, UK, UK, 1997. Springer-Verlag.

[5] F. Klaedtke.
Bounds on the automata size for presburger arithmetic.
ACM Trans. Comput. Logic, 9(2):11:1–11:34, Apr. 2008.

Alex Klinkhamer Planning with State Sets in Automata Representation

