Online Replanning

Section 11.3.3

I Outline

Contingency planning vs. replanning
Replanning agent algorithm
Execution monitoring

Continuous planning

© o o o 0

(Multiagent planning)

I Contingency planning vs. replanning

Contingency planning: prepare in advance.
Useful when some conditions needed for the
contingency plan can be gathered before execution.

Execution monitoring: ignore contingencies during
planning, then handle them as they arise.
Useful when planning time is a concern: not
everything can be planned for.

® Basic idea: handle execution time failures at

execution time.

I Repairing.a plan

whole plan

__ =

I Chair and.table example

Init(Color(Chair,Blue) A Color Table(Green)
A ContainsColor(BC,Blue) A PaintCan(BC)
A ContainsColor(RC,Red) A PaintCan(RC))

Goal(Color(Chair,x) A Color(Table,x))
Action(Paint(object,color),
PRECOND. HavePaint(color)

EFFeECT. Color(object,color))

Action(Open(can),
PRECOND:. PaintCan(can) A ContainsColor(can,color)

EFFECT. HavePaint(color)) |

I Chair and.table example (cont’d)

Whole plan: [Start; Open(BC); Paint(Table,Blue); Finish]

What to do when

It notices a missed green spot on the table just
before finishing

the agent plans to paint both red and it opens the
can of red paint and finds there is only enough paint
for the chair.

—

I Algorithm

function REPLANNING AGENT(percept) returns an action
static: KB, a knowledge base (includes action descriptions)
plan, a plan, initially []
whole-plan, a plan, initially []
goal, a goal

TELL (KB, MAKE-PERCEPFSENTENCE (percept,t))

current «+ STATE-DESCRIPTION(KB, t)

If plan =[] then
whole-plan «— plan <+ PLANNER(current, goal, KB)

If PRECONDITIONYFIRST (plan)) not currently true in KB then
candidates «+ SoRT(whole-plan, ordered by distance to current)
find state s in candidates such that

failure # repair — PLANNER (current,s,KB)
continuation « the tail of whole-plan starting at s

whole-plan < plan «— APPENDrepair, continuation)
return PopP(plan)

I What to monitor, what to ignore

Action monitoring: Check the preconditions of the
next action to execute

Plan monitoring: Check the preconditions of all the
actions to execute

monitor a selected set based on priority
#® Look for opportunities (serendipity)

I Other important questions

Which contingencies to plan for, which ones to leave
until execution

°

Should replanning be a plan step

°

learning/modifying actions
#® side note: “don’t touch” conditions

I Fixing plan flaws continually

Missing goal: adding new goals
Open precondition: close using causal links (POP)
Causal conflict: resolve threats (POP)

© o o ©

Unsupported link: remove causal links supporting
conditions that are no longer true

°

Redundant action: remove actions that supply no
causal links

® Unexecuted action: return an action that can be
executed

#® Unnecessary historical goal: if the current goal set

has been achieved, remove them and allow for new
goals

I Continuous planning algorithm

function CONTINUOUS-POP-AGENT(percept) returns an action

action «+ NoOp (the default)

EFFEcTYStart] = UPDATE(EFFECTS[Start], percept)
REMOVE-FLAW (plan) // possibly updating action
return action

I Example - start

C
D D D
Bl LC| LD Bl LC Cl|B B
IA][E][F][G IA][E]F|[]G A|[E|[F][]G Al [E][F] G
L= — L= - | L= —— | L= —
Start Someone moved D dropped C tried again
Ontable(A) On(C,F)
On(B,E)/ Clear(C) |
On(C,F) Clear(D) MOVG(C,D‘\
on(D,G On(CD)|
Start Clear(A) on(D,B)| Finish
Clear(C Oon(D,G) /
Cloar(®)—~ Cea®) | Move(D.§
Clear(B)

I Example - after D is moved onto B

C
D D D
Bl LC| LD Bl LC Cl|B B
IA][E][F][G IA][E]F|[]G A|[E|[F][]G Al [E][F] G
L= — L= - | L= —— | L= —
Start Someone moved D dropped C tried again
Ontable(A) On(C,F)
On(B,E)/ Clear(C) |
On(C,F) Clear(D) | Move(C,D]
On(D,B) .. On(CD)| _ .
Start Clear(A) - on(D,B)| Finish
Clear(C '
Clear(D Clear(D)
. Move(D,B)
Clear(G)-.. ~ Clear(B)

I Example - Move(D,B) was redundant

C
D D D
Bl LC| LD Bl LC Cl |B B
IA][E] [F][G IAT[E] [F] G A][E] [F][G Al [E|[F][]G
L= — L= R | L= — | L= —
Start Someone moved D dropped C tried again
Ontable(A) On(C,F)
On(B,E)/ Ceartd) | Move(c D]\,
On(C,F) / ear(D) [Move(C,D;
on(D,B) / On(C,D)

Start Clear(A/ = 0On(D,B)| Finish
Clear(C
Clear(D

Clear(G)

I Example - Move(C,D) was executed

Mo 2 O

Mo o
Mo O

il e

8 A Ea ,AC F|[G A F|[G

L= =1 L= =4 L= — L= |

~
Mo

Start Someone moved D dropped C tried again

Ontable(A)

On(B,E)

On(C,A) On(C.D)
On(D,B) n(c,
Start Clear(F) = On(D,B)| Finish
Clear(C)
Clear(D)
Clear(G)

B

I Example - put Move(C,D) back in

C
D D D
Bl LC| LD Bl LC Cl |B B
IA][E] [F][G IAT[E] [F] G A][E] [F][G Al [E|[F][]G
L= — L= R | L= — | L= —
Start Someone moved D dropped C tried again
Ontable(A) On(C,A)
O”(B’E/ Clear(D) | Move(c DI\
On(C,A / ear ove(C,D]
on(D,B) / On(C,D)

Start Clear(F/ = 0On(D,B)| Finish
Clear(C
Clear(D

Clear(G)

I Example - plan complete

Mo

il e

D
G

Mo o

C
F

A g

C
A

Mo O

F

Mo 2 O

A F|[G

=1 L= |

=

—

L= |

Start

Ontable(A)
On(B,E)
On(C,D)—

Someone moved D

dropped C

tried again

On(D,B)

— 0On(C,D)

Clear(F)
Clear(C)
Clear(D)
Clear(G)

= On(D,B)| Finish

B

I Multiagent planning

Cooperation: Joint goals and plans

Multibody planning: Synchronization, joint actions,
concurrent actions

Coordination mechanisms: convention, social laws,
emergent behavior, communication, plan
recognition, joint intention

Competition: agents with conflicting utility functions

—

	Outline
	Contingency planning vs. replanning
	Repairing a plan
	Chair and table example
	Chair and table example (cont'd)
	Algorithm
	What to monitor, what to ignore
	Other important questions
	Fixing plan flaws continually
	Continuous planning algorithm
	Example - start
	Example - after D is moved onto B
	Example - Move(D,B) was redundant
	Example - Move(C,D) was executed
	Example - put Move(C,D) back in
	Example - plan complete
	Multiagent planning

