

Planning and Scheduling with Time and Resources

Section 11.1

- Scheduling problems vs. planning problems
- Scheduling with time constraints
- Scheduling with resource constraints

Additional references used for the slides:

Smith, D.E, Frank, J. and Jonsson, A. K. (2000). Bridging the Gap Between Planning and Scheduling. *Knowledge Engineering Review*, 15(1).

Kambhampati, S. (2000). Al Planning tutorial notes. AAAI-2000.

Planning vs. scheduling

Planning

- Involves choice of actions
- Cannot deal with time and resource constraints
- Scheduling
 - Can easily represent time and resource constraints
 - Cannot deal with action choices
- Most real world problems are optimization problems that involve continuous time, resources, metric quantities, and a complex mixture of action choices and ordering decisions.

Planning problem	Scheduling problem
Initial state, goals	set of jobs
	(possibly partially ordered)
action descriptions	temporal constraints on jobs
	(EST, LFT, duration)
	resource constraints
Synthesize a sequence	Assign optimal start
of actions	times and resources

Dealing with time

- EST: earliest start time
- LFT: latest finish time
- duration
- CPM: critical path method. A path is a sequence of actions that depend on each other. A critical path is the longest path. Delaying it would delay the entire plan.

Example

```
Init (Chassis(C_1) \land Chassis(C_2) \land
Engine(E_1, C_1, 30) \land Engine(E_2, C_2, 60) \land
Wheels(W_1, C_1, 30) \land Wheels(W_2, C_2, 15))
Goal(Done(C_1) \land Done(C_2))
```

Action(AddEngine(e,c), PRECOND: Engine(e,c,d) \land Chassis(c) $\land \neg$ EngineIn(c) EFFECT: EngineIn(c) \land Duration(d))

Action(AddWheels(w,c), PRECOND: Wheels(w,c,d) \land Chassis(c) \land EngineIn(c) EFFECT: WheelsOn(c) \land Duration(d))

Action(Inspect(c), PRECOND: EngineIn(c) \land WheelsOn(c) \land Chassis(c) EFFECT: Done(c) \land Duration(10))

Sec. 11.1 – p.7/1

- reusable resource: is occupied during an action, and is freed afterwards
- aggregation of resources: group indistinguishable resources into quantities
- Minimum slack algorithm: a greedy algorithm

Example

Init (Chassis(C_1) \land Chassis(C_2) \land Engine($E_1, C_1, 30$) \land Engine($E_2, C_2, 60$) \land Wheels($W_1, C_1, 30$) \land Wheels($W_2, C_2, 15$) \land EngineHoists(1) \land WheelStations(1) \land Inspectors(2)) Goal(Done(C_1) \land Done(C_2))

Action(AddEngine(e,c), PRECOND: Engine(e,c,d) \land Chassis(c) $\land \neg$ EngineIn(c) EFFECT: EngineIn(c) \land Duration(d) RESOURCE: EngineHoists(1))

Action(AddWheels(w,c),

PRECOND: Wheels(w,c,d) \land Chassis(c) \land EngineIn(c)

EFFECT: WheelsOn(c) \land Duration(d)

RESOURCE: WheelStations(1))

Action(Inspect(c),

PRECOND: EngineIn(c) \land WheelsOn(c) \land Chassis(c)

EFFECT: Done(c) \land Duration(10)

RESOURCE: Inspectors(1))

Planner-scheduler interface

Each can do its own job. The big question is how best to couple them to avoid inter-module trashing.

The second big question is which planners are most suitable for coupling.