
Algorithms for Planning as State-Space Search

Section 10.2

Sec. 10.2 – p.1/17

Outline

Forward (progression) state-space search

Backward (regression) relevant-states search

The Fast Forward (FF) system

Additional references used for the slides:
Hoffmann, Jörg (2001). FF: The Fast-Forward Planning
System. AI Magazine, 22(3), 57-62.
Yoon, Soon; Fern, Alan; Givan, Robert (2008). Learning
Control Knowledge for Forward Search Planning. Journal
of Machine Learning Research, 9, 683-718.

Sec. 10.2 – p.2/17

Forward vs. backward search

(a)

(b)

At(P1, A)
Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

At(P1, B)

At(P2, B)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

Sec. 10.2 – p.3/17

Forward search

Works similar to regular search: start with the initial
state, expand the graph by computing successors

The successors are computed by using the
applicable actions and finding the resulting states

Sec. 10.2 – p.4/17

Properties of forward search for planning

There will be a lot of irrelevant actions, i.e., actions
that will not contribute to the final plan

The state space is large: e.g., air cargo problem
with 10 airports, and 5 planes and 20 pieces of
cargo at each airport:
at each state there is a mimimum of 450 actions
(when all packages are at airports with no planes,
each of the 50 planes can fly to one of the 9 airports)
and a maximum of 10,450 actions (when all
packages and planes are at the same airport, each
one of the 200 package can be loaded to one of the
50 planes, or each of the 50 planes can fly to one of
the 9 airports.

Sec. 10.2 – p.5/17

Backward search

It is a search in the reverse direction: start with the
goal state, expand the graph by computing parents

The parents are computed by regressing actions:
given a ground goal description g and a ground
action a, the regression from g over a is g′:
g′ = (g− ADD (a))∪ PRECOND (a).

The regression represents the effects that
don’t have to be true in the previous step
because they were added
have to be true in the previous step because
they are the preconditions of the action

Sec. 10.2 – p.6/17

Properties of backward search for planning

Irrelevant actions will be less of an issue because
we are starting with the goal.

The branching factor is low but regression gives a
set of states rather than a single state. Thus, it is
hard to develop heuristics (the situation is similar to
partial order planners).

Sec. 10.2 – p.7/17

The Fast-Forward (FF) planning system

Heuristic method: use relaxed Graphplan

Search method: enforced hill climbing

Ordering successors: helpful actions

Sec. 10.2 – p.8/17

Relaxed planning graph

Ignore (remove) the delete lists of the actions.

The first fact layer is identical to the starting state.

The action layers contain the applicable actions.

Expand the graph until a layer contains all the goals.

Note that the graph will not contain any mutexes
because the delete lists were removed.

Sec. 10.2 – p.9/17

Extracting a relaxed plan

Start at the top graph layer m, work on all the goals.

At each layer i,
if a goal is present in layer i − 1, then insert it to the
goals to be achieved in layer i − 1,
else, select an action in layer i − 1 that adds the
goal, and insert the action’s preconditions into the
goals at i − 1.

Once all the goals at level i are worked on, continue
with the goals at level i − 1. Stop at the first level.

The relaxed plan is a sequence of action sets:
< O0, O1, . . . , Om−1 >.

Note that this is a backtrack-free procedure.

Sec. 10.2 – p.10/17

Computing the heuristic

The estimated solution length from a state S is:

hFF (S) :=
∑

i=0,...,m−1

|Oi|

This heuristic is computed in polynomial time.

Note that this is an admissible heuristic because the
preconditions and the goals are defined in terms of
positive state facts, and it is easier to achieve the
goal when the delete lists are removed.

Sec. 10.2 – p.11/17

Enforced hill climbing

In standard hill climbing used by the HSP planner, a
best successor to each state is chosen randomly,
and restarts take place when a path becomes too
long.

FF evaluates all the successors, then
If no successor has a better heuristic value,
performs a breadth-first search for a state with a
strictly better evaluation
The path to the new state is added to the current
plan, and the search continues from this state

FF’s method performs well because plateaus and
local minima tend to be small in many benchmark
planning problems

Sec. 10.2 – p.12/17

Helpful actions

Restrict any state’s successors to those generated
by the first action set in its relaxed solution.

For a state S, the set H(S) of helpful actions is
defined as

H(S) := {o|pre(o) ⊆ S, add(o) ∩ G1 6= ∅}

G1 denotes the set of goals at the next level.

Sec. 10.2 – p.13/17

Performance evaluation

Eight experiments were conducted by turning the
three features of FF on or off.

“Turning a feature off” yields HSP’s techniques
(HSP: Heuristic Search Planner)

The test suite included 20 domains where one
alternative leads to significantly better performance
than the other one

Sec. 10.2 – p.14/17

Experimental results

Distance Hill Climbing Enforced Hill Climbing
Estimate All Actions Helpful Actions All Actions Helpful Actions

Time Length Time Length Time Length Time Length
HSP distance 2 2 1 2 2 0 1 0
FF distance 12 2 12 5 11 9 9 11

Search All actions Helpful Actions
Strategy HSP distance FF distance HSP distance FF distance

Time Length Time Length Time Length Time Length
Hill Climbing 5 1 9 1 3 2 1 2
Enforced HC 9 8 8 10 16 6 16 9

Pruning Hill Climbing Enforced Hill Climbing
Strategy HSP distance FF distance HSP distance FF distance

Time Length Time Length Time Length Time Length
All Actions 2 0 3 0 2 1 2 0
Helpful Actions 13 7 14 8 15 5 15 3

Sec. 10.2 – p.15/17

Performance evaluation

FF’s estimates improve run-time performance in
about half of the domains across all switch
alignments

With enforced hill climbing in the background, FF’s
estimates have clear advantages in terms of
solution length

Enforced hill climbing often finds shorter plans
because when its enters a plateau, it performs a
complete search for an exit and adds the shortest
path to this exit ot its current plan prefix.

Helpful actions strategy performs better in domains
where a significant number of actions can be cut.
Solutions are shorter.

Sec. 10.2 – p.16/17

Hoffmann’s comments

The simple structure of the benchmarks is the
reason behind FF’s success

FF was outperformed in problems using random
SAT instances. The other planners (IPP and
Blackbox) did better because they can rule out many
partial truth assignments early.

Sec. 10.2 – p.17/17

	Outline
	Forward vs. backward search
	Forward search
	Properties of forward search for planning
	Backward search
	Properties of backward search for planning
	The Fast-Forward (FF) planning system
	Relaxed planning graph
	Extracting a relaxed plan
	Computing the heuristic
	Enforced hill climbing
	Helpful actions
	Performance evaluation
	Experimental results
	Performance evaluation
	Hoffmann's comments

