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What is AI planning?

Planning is the task of finding a set of actions that will
achieve a goal. A planner is a program that searches for
a plan. It inputs a description of the world and the goals.
The output is a plan. The simplest plan is a sequence of
actions:
‘‘do action1, do action2 ...’’
More complex plans may include branching actions: “if
(condition) do action1 else do action2”
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Planning Domain Definition Language (PDDL)

Tidily arranged actions descriptions, restricted language

BUY (s,x)

At(s)  ~Bought(x)  Sells(s,x)

Bought(x)

ACTION: Buy(s, x)
PRECONDITION: At(s),¬Bought(x), Sells(s, x)
EFFECT: Bought(x)
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PDDL operators (cont’d)

ACTION: Buy(s, x)
PRECONDITION: At(s),¬Bought(x), Sells(s, x)
EFFECT: Bought(x)

Restricted language =⇒ efficient algorithm
(but many important details will have to be
abstracted away)

Action schema: name, parameters, preconditions,
effects

Precondition: conjunction of positive literals
Effect: conjunction of literals

STRIPS is the earliest planning representation
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Search vs. planning (cont’d)

Search Planning
States Data structure Logical sentences
Actions Program Preconditions/outcomes
Goal Program Logical sentence

(conjunction)
Plan Path from S0 (Sequence of) actions
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Search vs. planning (cont’d)

Planning systems do the following:

1. open up action and goal representation to allow
selection

2. divide-and-conquer by subgoaling

3. relax requirement for sequential construction of
solutions
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States

The state of the world is represented by a collection
of variables
(factored representation )

Each state is represented as a conjunction of fluents
that are ground, functionless atoms.

A state is a set (set semantics)

Use database semantics, closed world assumption:
If a fluent is not mentioned, assume it is false.

Fluents that are non-ground, negated, or using
functions are not allowed.
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Partially ordered plans

Partially ordered collection of steps with

START step has the initial state description as its
effect

FINISH step has the goal description as its
precondition

causal links from outcome of one step to
precondition of another

temporal ordering between pairs of steps
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Partially ordered plans (cont’d)

A partially ordered plan is a 5-tuple (A, O, C, OC, UL)

A is the set of actions that make up the plan. They
are partially ordered.

O is a set of ordering constraints of the form A ≺ B.
It means A comes before B.

C is the set of causal links in the form (A, p,B)
where A is the supplier action, where B is the
consumer action, and p is the condition supplied. It
is read as “A achieves p for B.”
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Partially ordered plans (cont’d)

A partially ordered plan is a 5-tuple (A, O, C, OC, UL)

OC is a set of open conditions, i.e., conditions that
are not yet supported by causal links. It is of the
form p for A where p is a condition and A is an
action.

UL is a set of unsafe links, i.e., causal links whose
conditions might be undone by other actions.
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Partially ordered plans (cont’d)

A plan is complete iff every precondition is achieved, and
there are no unsafe links. A precondition is achieved iff it
is the effect of an earlier step and no possibly intervening
step undoes it

In other words, a plan is complete when OC ∪ UL = ∅.

OC ∪ UL is referred to as the flaws in a plan.

When a causal link is established, the corresponding
condition is said to be closed.
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Example

START

FINISH

LeftShoeOn RightShoeOn

CleanLeftSock CleanRightSock

OC=
LeftShoeOn for FINISH
RightShoeOn for FINISH
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Example (cont’d)

START

LEFT SHOE

FINISH

LeftShoeOn

CleanLeftSock CleanRightSock

LeftSockOn

OC=
RightShoeOn for FINISH
LeftSockOn for LEFTSHOE

RightShoeOn

Ch. 10a – p.14/47–



Example (cont’d)

START

LEFT SOCK

LEFT SHOE

FINISH

LeftShoeOn

CleanLeftSock CleanRightSock

LeftSockOn

RightShoeOn

OC =
CleanLeftSock for LEFTSOCK
RightShoeOn for FINISH
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Example (cont’d)

START

LEFT SOCK

LEFT SHOE

FINISH

LeftShoeOn RightShoeOn

CleanLeftSock CleanRightSock

LeftSockOn

OC =
RightShoeOn for FINISH
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Example (cont’d)

START

LEFT SOCK

LEFT SHOE RIGHT SHOE

FINISH

LeftShoeOn RightShoeOn

CleanLeftSock CleanRightSock

LeftSockOn RightSockOn

OC =
RightSockOn for RIGHTSHOE
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Example (cont’d)

START

LEFT SOCK RIGHT SOCK

LEFT SHOE RIGHT SHOE

FINISH

LeftShoeOn RightShoeOn

CleanLeftSock CleanRightSock

LeftSockOn RightSockOn

OC =
CleanRightSock for RIGHTSOCK
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Example (cont’d)

START

LEFT SOCK RIGHT SOCK

LEFT SHOE RIGHT SHOE

FINISH

LeftShoeOn RightShoeOn

CleanLeftSock CleanRightSock

LeftSockOn RightSockOn

OC=
{ }
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Planning process

Operators on partial plans:
**** close open conditions:
**** **** add a link from an existing action to an
**** **** **** open condition
**** **** add a step to fulfill an open condition
**** resolve threats:
**** **** order one step wrt another to remove
**** **** **** possible conflicts

Gradually move from incomplete/vague plans to
complete, correct plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable
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POP is a search in the plan space

function TREE-SEARCH (problem)
returns a solution, or failure

initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state

then return the corresponding solution
elseexpand the chosen node and add the resulting

nodes to the frontier
end
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POP algorithm specifics

The initial state, goal state and the operators are given.
The planner converts them to required structures.

Initial state:
MAKE-M INIMAL -PLAN (initial,goal)

Goal-Test:
SOLUTION?(plan)

SOLUTION? returns true iff OC and UL are both empty.

Successor function:
The successors function could either close an open
condition or resolve a threat.
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POP algorithm specifics (cont’d)

function SUCCESSORS(plan)
returns a set of partially ordered plans

flaw-type← SELECT-FLAW-TYPE (plan)
if flaw-type is an open condition then

Sneed, c← SELECT-SUBGOAL (plan)
return CLOSE-CONDITION (plan, operators, Sneed,c)

if flaw-type is a threat then
Sthreat, Si, c, Sj ← SELECT-THREAT(plan)
return RESOLVE-THREAT (plan, Sthreat, Si, c, Sj)
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POP algorithm specifics (cont’d)

function CLOSE-CONDITION (plan, operators, Sneed,c)
returns a set of partially ordered plans

plans← ∅
for each Sadd from operators or STEPS(plan)
that has c has an effect do
new-plan← plan
if Sadd is a newly added step from operators then

add Sadd to STEPS(new-plan)
add START ≺ Sadd ≺ FINISH to ORDERINGS (new-plan)

add the causal link (Sadd, c, Sneed) to L INKS (new-plan)
add the ordering constraint (Sadd ≺ Sneed) to

ORDERINGS (new-plan)
add new-plan to plans

end

return new-plans
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POP algorithm specifics (cont’d)

function RESOLVE-THREAT (plan, Sthreat, Si, c, Sj)
returns a set of partially ordered plans

plans← ∅
//Demotion:
new-plan← plan
add the ordering constraint (Sthreat ≺ Si) to ORDERINGS (new-plan)
if new-plan is consistent then

add new-plan to plans
//Promotion:
new-plan← plan
add the ordering constraint (Sj ≺ Sthreat) to ORDERINGS (new-plan)
if new-plan is consistent then

add new-plan to plans

return new-plans
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Shopping example

BUY (?s, ?i)

  effects: bought(?i)
                  ~bought(~i)

The operators are:
GO (?x, ?y)
  preconditions: at(?x)

  preconditions: at(?s),

  effects: ~at(?x), at(?y)

The subgoals that are
currently open are 
italicized.

for at(H) for f

at(H)

at(H)

INIT

bought(B)
bought(A)

~bought(A)
~bought(B)

~bought(A)

~bought(B)

bought(A)

bought(B)

0

f

0

f

at(H)

add a go(J,H) action

START for at(H) for f
add a causal link from

START

FINISH

Agenda:
  open subgoals:
    bought(A) for f
    bought(B) for f
    at(H) for f

INIT

GO(J,H)

at(J)

~at(J)

at(H)

~bought(A)
~bought(B)

0

at(H)
bought(B)
bought(A)

1

FINISH FINISHf

new Agenda:
   open subgoals:
    bought(A) for f
    bought(B) for f
    at(J) for 1 Ch. 10a – p.26/47–



Shopping example (cont’d)

New agenda:
  open subgoals:

    at(H) for 2

add a go(J, H)
action

supply at(H) for 2 from START

~at(H)

GO(J,H)

~at(J)

1

GO(H,J)2

~bought(A)
~bought(B)

~at(H)

GO(J,H)

~at(J)

GO(H,J)2

~bought(A)
~bought(B)

at(H)

bought(A)

bought(B)

at(H)     bought(A) for f
    bought(B) for f

bought(A)

bought(B)

add a go(H,J) action    (2)

1

. . . 

at(J)

at(H)

at(H)

at(J)

at(H)

START

FINISH

0

f

START0

FINISHf
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Shopping example (cont’d)

at(J)

bought(B)

~at(H)

GO(J,H)

~at(J)

BUY(J,A) 1

GO(H,J)2

3

 
new agenda:
  open subgoals:
    bought(B) for f
  ~bought(A) for 3

~bought(A)

support ~bought(A) from START

  at(J) for 3at(H)

at(J)

at(H)
bought(A)

~bought(A)
~bought(B)

at(J)

bought(B)

~at(H)

GO(J,H)

~at(J)

BUY(J,A) 1

GO(H,J)2

3

 
new agenda:
  open subgoals:
    bought(B) for f
    at(J) for 3

bought(A)

~bought(A)

at(H)

at(J)

at(H)

Support at(J) from GO(H,J)−2

add BUY(J,A)     (3)

START0

FINISH

START0

FINISH

f

f
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Shopping example (cont’d)

support ~bought(B) for 4 from START

new agenda:
  open subgoals:
    at(J) for 4

new agenda:
  open subgoals:
    none     

bought(B)

~at(H)

GO(J,H)

~at(J)

BUY(J,A) 1

GO(H,J)2

3

 

~bought(A)

bought(A) at(H)

at(J) at(J)

at(H)

support at(J) from GO(H,J)−2

add BUY(J,B)    (4)

new agenda:

    bought(B) for f
  ~bought(A) for 3

  open subgoals:

new agenda:
  open subgoals:
    ~bought(B) for 4

~at(H)

GO(J,H)BUY(J,A) BUY(J,B) 1

GO(H,J)2

3 4
bought(B)bought(A)

at(H) ~at(J)

at(H)
~bought(A)

~bought(B)

at(J) at(J) at(J)

    at(J) for 4

support ~at(J) for 4
   from GO(H,J)−2

HAVEN’T CONSIDERED THE THREATS YET!

FINISH

START 0

f

START0

FINISHf
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Shopping example (cont’d)

2  3  4  1
2  3   1  4
2  4  3  1
2  4  1  3
2  1  3  4
2  1 4  3

Now, the solution is a possible ordering of this plan. Those are:

~at(H)

GO(J,H)BUY(J,A) BUY(J,B) 1

GO(H,J)2

3 4
bought(B)bought(A)

at(H) ~at(J)

at(H)
~bought(A)

~bought(B)

at(J) at(J) at(J)

FINISH

START0

f

It should not be possible to order GO(J,H) before any of the BUY
actions.
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Shopping example (cont’d)

~at(H)

GO(J,H)BUY(J,A) BUY(J,B) 1

GO(H,J)2

3 4
bought(B)bought(A)

at(H) ~at(J)

at(H)
~bought(A)

~bought(B)

at(J) at(J) at(J)

START0

FINISHf

This is a correct partially ordered plan.
It is complete.
The possible total orders are:
2 3 4 1
2 4 3 1

The agent has to go to Jim’s first.
It order of getting the items does not matter.
Then it has to go back home.
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Threats and promotion/demotion

A threatening step is a potentially intervening step
that destroys the condition achieved by a causal link.
E.g., GO(J,H) threatens At(J)

GO(H,J)

At(J)

BUY(Apples)

GO(J,H)

At(H)
~At(J)

Demotion: put before GO(H,J)

Promotion: put BUY(Apples)
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Properties of POP

Nondeterministic algorithm: backtracks at choice
points on failure:

choice of Sadd to achieve Sneed

choice of demotion or promotion for threat
resolution
selection of Sneed is irrevocable

POP is sound, complete, and systematic (no
repetition)

Extensions for disjunction, universals, negation,
conditionals

Particularly good for problems with many loosely
related subgoals
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Additional POP examples

The flat tire example shows the effect of inserting an
“impossible” action.

The Sussman anomaly shows that
“divide-and-conquer” is not always optimal. POP
can find the optimal plan.
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The flat tire domain

Init(At(Flat,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(REMOVE(spare,trunk),
***Precond: At(spare,trunk)
***Effect: ¬At(spare,trunk) ∧ At(spare,ground)
Action(REMOVE(flat,axle),
***Precond: At(flat,axle)
***Effect: ¬At(flat,axle) ∧ At(flat,ground)
Action(PUTON(spare,axle),
***Precond: At(spare,ground) ∧ ¬ at(flat,axle)
***Effect: ¬At(spare,ground) ∧ At(spare,axle)
Action(LEAVEOVERNIGHT
***Precond:
***Effect: ¬At(spare,ground) ∧ ¬ At(spare,axle)
***Effect: ¬At(spare,trunk) ∧ ¬ At(flat,ground)
***Effect: ¬At(flat,axle)
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The flat tire plan

START

REMOVE(spare,trunk)

at(spare,ground)

~at(flat,axle)
at(spare,axle)

at(flat,axle)

at(spare,trunk)

at(spare,trunk)

FINISHPUTON(spare,axle)
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The flat tire plan (cont’d)

START

REMOVE(spare,trunk)

LEAVEOVERNIGHT
~at(flat,axle)
~at(flat,ground)
~at(spare,axle)
~at(spare,ground)
~at(spare,trunk)

at(spare,ground)

~at(flat,axle)
at(spare,axle)

at(flat,axle)

at(spare,trunk)

at(spare,trunk)

FINISHPUTON(spare,axle)
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The flat tire plan (cont’d)

START

REMOVE(spare,trunk)

at(spare,ground)

~at(flat,axle)
at(spare,axle)

at(flat,axle)

at(spare,trunk)

REMOVE(flat,axle)at(flat,axle)

at(spare,trunk)

FINISHPUTON(spare,axle)
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Sussman anomaly

B A
C

C
B
A

PUTONTABLE(x)

Clear(x)   On(x,z)

~On(x,z)

Clear(z)   On(x,Table)

PUTON(x,y)

Clear(x)   On(x,z)   Clear(y)

~On(x,z)   ~Clear(y)

Clear(z)   On(x,y)

+ several inequality constraints
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Sussman anomaly (cont’d)

FINISH

START

B A
C

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

C
B
A
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Sussman anomaly (cont’d)

FINISH

START

B A
C

C

C
A

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

C
B
A

If we try the first goal ( on(A,B) ) first, 
we can’t proceed without undoing work

B A

B
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Sussman anomaly (cont’d)

FINISH

START

B A
C

B

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

C
B
A

If we try the second goal ( on (B,C) ) first,
we can’t proceed without undoing work.

A
C
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Sussman anomaly (cont’d)

FINISH

START

B A
C

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

Clear(B)   On(B,z)   Clear(C)

PUTON(B,C)

C
B
A
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Sussman anomaly (cont’d)

FINISH

START

B A
C

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

Clear(A)   On(A,z)   Clear(B)

Clear(B)   On(B,z)   Clear(C)

PUTON(A,B)

PUTON(B,C)

C
B
A

PUTON(A,B)
threatens 
Clear(B)

Order after
PUTON(B,C)
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Sussman anomaly (cont’d)

FINISH

START

B A
C

PUTON(B,C)
threatens
Clear(C)

order after

PUTON(A,B)

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

Clear(A)   On(A,z)   Clear(B)

On(C,z)   Clear(C)

Clear(B)   On(B,z)   Clear(C)

PUTONTABLE(C)

PUTON(A,B)

PUTON(B,C)

C
B
A
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Heuristics for POP

POP be made efficient with good heuristics derived from
problem description

Which plan to select?

Which flaw to choose?

(We will see more after planning graphs)
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Sources for the slides

AIMA textbook (3rd edition)

AIMA slides (http://aima.cs.berkeley.edu/)

Writing Planning Domains and Problems in PDDL,
by Patrik Haslum
(http://users.cecs.anu.edu.au/ patrik/pddlman/writing.html)

Weld, D.S. (1999). Recent advances in AI planning.
AI Magazine, 20(2), 93-122.
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