# **Temporal Constraint Networks**

Addition to Chapter 6

#### **Outline**

- Temporal reasoning
- Qualitative networks
  - The interval algebra
  - The point algebra
- Quantitative temporal networks

Reference: Chapter 12 of the book titled "Constraint Processing," by Rina Dechter, Morgan Kaufmann Publishers (Elsevier Science), 2003.

### **Temporal Reasoning**

- Temporal objects: points or intervals
- Temporal constraints: qualitative or quantitative
- Temporal knowledge base
- Consistency check routines
- Inference routines
- Query answering mechanisms

### Example 1

- Given temporal information
  - Please come before or after lunch
  - I go to lunch before my 1:00 o'clock class
  - Lunch starts at 12:00
  - Lunch takes half an hour to an hour
  - I have class at 11:00
- Derive answers to queries
  - Is it possible that a proposition P holds at time  $t_1$ ?
  - What are the possible times at which a proposition P holds?
  - What are the possible temporal relationships between two propositions P and Q?

### Example 2

John was not in the room when I touched the switch to turn on the light, but John was in the room later when the light went out.

**Events:** 

Switch: time of touching the switch

Light: time the light was on

Room: time that John was in the room

Is this information consistent?

If it is consistent what are the possible scenarios?

# Interval algebra (IA)

| Relation     | Symbol | Inverse | Example |
|--------------|--------|---------|---------|
| X before Y   | b      | bi      | X       |
| X equal Y    | =      | =       | Y       |
| X meets Y    | m      | mi      | XY      |
| X overlaps Y | 0      | oi      | Y       |
| X during Y   | d      | di      | X<br>Y  |
| X starts Y   | S      | si      | Y       |
| X finishes Y | f      | fi      | Y       |

### Representation

$$I\{r_1, \ldots r_k\}$$
  $J$  represents  $(I r_1 J) \vee \ldots (I r_k J)$ 

For example  $I\{s, si, d, di, f, fi, o, oi, =\}$  J expresses the fact that intervals I and J intersect (it exludes b, bi, m, mi).

John was not in the room when I touched the switch to turn on the light, but John was in the room later when the light went out.

- 1. Switch  $\{o, m\}$  Light
- 2. Switch  $\{b, m, mi, a\}$  Room
- 3. Light  $\{o, s, d\}$  Room

### IA Constraint graph (network)



A *solution* is an assignment of a pair of numbers to each variable such that no constraint is violated

### Constraint graph terms

- In a constraint graph, the nodes represent the variables and an edge represents a direct constraint (coming from the IA relation set)
- A universal constraint permits all relationships between two variables and is represented by the lack of an edge between the variables.
- A constraint C' can be *tighter* than constraint C'', denoted by  $C' \subseteq C''$ , yielding a partial order between IA networks. A network N'' is tighter than network N' if the partial order  $\subseteq$  is satisfied for all the corresponding constraints.
- The *minimal network* of M is the unique equivalent network of M which is minimal with respect to  $\subseteq$ .

### Reasoning tasks for IA networks

- decide consistency
- find one or more solutions
- compute the minimal network

#### All are generally intractable, so

- improve exponential search algorithms such as backtracking, or
- resort to local inference procedures

### **Minimal network**



### **Example**

Fred was reading the paper while eating his breakfast. He put the paper down and drank the last of his coffee. After breakfast he went for a walk.



### **Path Consistency in CSPs**

- Given a constraint network R = (X, D, C), a *two-variable* set  $\{x_i, x_j\}$  is path-consistent relative to variable  $x_k$  iff for every consistent assignment  $(< x_i, a_i >, < x_j, a_j >)$  there is a value  $a_k \in D_k$  such that the assignment  $(< x_i, a_i >, < x_k, a_k >)$  is consistent and  $(< x_k, a_k >, < x_j, a_j >)$  is consistent.
- Alternatively, a binary constraint  $R_{ij}$  is path-consistent relative to  $x_k$  iff for every pair  $(a_i, a_j) \in R_{ij}$  where  $a_i$  and  $a_j$  are from their respective domains, there is a value  $a_k \in D_k$  such that  $(a_i, a_k) \in R_{ik}$  and  $(a_k, a_j) \in R_{kj}$ .

### Path-consistency in CSPs (cont'd)

- A subnetwork over three variables  $\{x_i, x_j, x_k\}$  is path-consistent iff for any permutation of (i, j, k),  $R_{ij}$  is path-consistent relative to  $x_k$ .
- A *network is path-consistent* iff for every  $R_{ij}$  (including universal binary relations) and for every  $k \neq i, j, R_{ij}$  is path-consistent relative to  $x_k$ .

### **Path-consistency in IA**

- An IA network is *path-consistent* if for every three variables  $x_i, x_j, x_k, C_{ij} \subseteq C_{ik} \otimes C_{kj}$ .
- The *intersection of two IA relations* R' and R'', denoted by  $R' \oplus R''$ , is the set-theoretic intersection  $R' \cap R''$ .
- The composition of two IA relations,  $R' \otimes R''$ , R' between intervals I and K and R'' between intervals K and K are follows.

### Composition $(\otimes)$

- The composition of two basic relations r' and r'' is defined by a *transitivity table* (see a portion of it on the next slide).
- The composition of two *composite* relations R' and R'', denoted by  $R' \otimes R''$ , is the composition of the constituent basic relations:

$$R' \otimes R'' = \{r' \otimes r'' | r' \in R', r'' \in R''\}$$

# **Composition of basic relations**

|   | b | S | d     | 0     | m |
|---|---|---|-------|-------|---|
| b | b | b | bomds | b     | b |
| S | b | S | d bom |       | b |
| d | b | d | d     | bomds | b |
| 0 | b | 0 | o d s | bom   | b |
| m | b | m | o d s | b     | b |

### **Composition examples**



# **Qualitative Path Consistency (QPC) Algorithm**

```
function QPC-1 (T)
returns a path consistent IA network
input: T, an IA network with n variables

repeat
S \leftarrow T
for k \leftarrow 1 to n do
for i,j \leftarrow 1 to n do
C_{ij} \leftarrow C_{ij} \oplus C_{ik} \otimes C_{kj}
until S = T
return T
```

### **Example**

 $m \otimes s = m$ 

 $m \otimes d = o, d, s$ 

Apply 
$$C_{SR} \leftarrow C_{SR} \oplus (C_{SL} \otimes C_{LR})$$

$$C_{SR} \leftarrow \{b, m, i, a\} \oplus (\{o, m\} \otimes \{o, s, d\})\}$$

$$C_{SR} \leftarrow \{b, m, i, a\} \oplus \{b, o, m, d, s\}$$

$$C_{SR} \leftarrow \{b, m\}$$

$$o \otimes o = b, o, m$$

$$o \otimes s = o$$

$$o \otimes d = o, d, s$$

$$m \otimes o = b$$

### Minimizing networks using path-consistency

- In some cases, path-consistency algorithms are exact—they are guaranteed to generate the minimal network and therefore decide consistency.
- In general, IA networks are NP-complete, backtracking search is needed to generate a solution.
- Even when the minimal network is available, it is not guaranteed to be globally consistent to allow backtrack-free search.
- Path-consistency can be used for forward checking.

### The point algebra (PA)

- It is a model alternative to IA.
- It is less expressive: there are three basic types of constraints between points P and Q: P < Q, P = Q, P > Q.
- Reasoning tasks over PAs are polynomial

### **Example**

Fred put the paper down and drank the last of his coffee.





### **Examples**

•  $I\{s,d,f,=\}J$  where I=[x,y] and J=[z,t] can be represented with

$$x < y, z < t, x < t, x \ge z, y \le t, y > z$$

▶ However,  $I\{b,a\}J$  where I=[x,y] and J=[z,t] cannot be represented with a PA network

# **Composition** in the PA

|   | <b>V</b> | Ш | >        |
|---|----------|---|----------|
| ٧ | ٧        | ٧ | ?        |
| = | <        |   | >        |
| > | ?        | Ш | <b>^</b> |

"?" expresses the universal relation.

#### **Path consistency**

- It is defined using composition and the transitivity table
- Path consistency decides the consistency of a PA network in  $O(n^3)$  steps.
- Consistency and solution generation of PA networks can also be accomplished in  $O(n^2)$ .
- The minimal network of a PA consistent network can be obtained using 4-consistency in  $O(n^4)$  steps.
- The minimal network of CPA networks can be obtained by path-consistency in  $O(n^3)$ .

  Convex PA (CPA) networks have only  $\{<, \leq, =, \geq, >\}$  and not  $\neq$ .

### **Quantitative Temporal Networks**

- Ability to express metric information on duration and timing of events
- John travels to work either by car (30–40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20–30 minutes) or in a carpool (40–50 minutes). Today John left home between 7:10 and 7:20A.M., and Fred arrived at work between 8:00 and 8:10A.M. We also know that John arrived at work 10-20 minutes after Fred left home.
- Is the information in the story consistent?
- Is it possible that John took the bus and Fred used the carpool?
- What are the possible times at which Fred left home?

#### Representation

- Proposition  $P_1$ : John was traveling to work ( $[x_1, x_2]$ )
- Proposition  $P_2$ : Fred was traveling to work ([ $x_3, x_4$ ])
- John travels to work either by car (30–40 minutes) or by bus (at least 60 minutes).

$$30 \le x_2 - x_1 \le 40 \text{ or } x_2 - x_1 \ge 60$$

Fred travels to work either by car (20–30 minutes) or in a carpool (40–50 minutes).

$$20 \le x_4 - x_3 \le 30 \text{ or } 40 \le x_4 - x_3 \le 50$$

### Representation (cont'd)

- Proposition  $P_1$ : John was traveling to work ( $[x_1, x_2]$ )
- Proposition  $P_2$ : Fred was traveling to work ([ $x_3, x_4$ ])
- Today John left home between 7:10 and 7:20A.M. (Assign  $x_0=7$ :00A.M.)  $10 \le x_1-x_0 \le 20$
- Fred arrived at work between 8:00 and 8:10A.M.  $60 \le x_4 x_0 \le 70$
- John arrived at work 10-20 minutes after Fred left home.  $10 \le x_4 x_0 \le 20$

# The constraint graph



#### **Temporal Constraint Satisfaction Problem (TCSP)**

A temporal constraint satisfaction problem (TCSP) involves a set of variables  $\{x_1, \ldots, x_n\}$  having continuous domains; each variable represents a time point. Each constraint is represented by a set of intervals  $\{I_1, \ldots, I_k\} = \{[a_1, b_1], \ldots, [a_k, b_k]\}$ .

A unary constraint  $T_i$  restricts the domain of a variable  $x_i$  to the given set of intervals; that is, it represents the disjunction

$$(a_1 \le x_i \le b_1) \lor \ldots \lor (a_k \le x_i \le b_k)$$

A binary constraint  $T_{ij}$  constrains the permissible values for the distance  $x_j - x_i$ ; it represents the disjunction

$$(a_1 \le x_j - x_i \le b_1) \lor \ldots \lor (a_k \le x_j - x_i \le b_k)$$

#### TCSP (cont'd)

- Assume that constraints are given in a canonical form in which all intervals are pair-wise disjoint.
- A special time point,  $x_0$ , represents the "beginning of the world." Each unary constraint can be represented as a binary constraint relative to  $x_0$ .
- A tuple  $x = \{a_1, \ldots, a_n\}$  is called a *solution* if the assignment  $\{x_1 = a_1, \ldots, x_n = a_n\}$  does not violate any constraint.

### Minimal and binary decomposable networks

- Given a TCSP, a value v is a *feasible value* for variable  $x_i$  if there exists a solution in which  $x_i = v$ .
- The set of all feasible values of a variable is called the minimal domain.
- A minimal constraint  $T_{ij}$  between  $x_i$  and  $x_j$  is the set of all feasible values for  $x_i x_j$ .
- A network is minimal iff its domains and constraints are minimal.
- ♠ A network is binary decomposable if every consistent assignment of values to a set of variables S can be extended to a solution.

### Binary operators on constraints



$$T = \{[-1.25, 0.25]\}, [2.75, 4.25]\}$$

$$S = \{[-0.25, 1.25]\}, [3.75, 4.25]\}$$

$$T \oplus S = \{[-0.25, 0.25]\}, [3.75, 4.25]\}$$

$$T \otimes S = \{[-1.50, 1.50], [2.50, 5.50], [6.50, 8.50]\}$$

### Binary operators on constraints (cont'd)

Let  $T = \{I_1, \ldots, I_l\}$  and  $S = \{J_1, \ldots, J_m\}$  be two constaints. Each is a set of intervals of a temporal variable or a temporal binary constraint.

- The union of T and S, denoted by  $T \cup S$ , only admits values that are allowed by either T or S, that is,  $T \cup S = \{I_1, \ldots, I_l, J_1, \ldots, J_m\}$ .
- The intersection of T and S, denoted by  $T \oplus S$ , admits only values that are allowed by both T and S, that is,  $T \oplus S = \{K_1, \ldots, K_n\}$  where  $K_k = I_i \cap J_j$  for some i and j. Note that n < l + m.

### Binary operators on constraints (cont'd)

The composition of T and S, denoted by  $T \otimes S$ , admits only values r for which there exist  $t \in T$  and  $s \in S$ , such that t + s = r, that is  $T \otimes S = \{K_1, \dots K_n\}$ , where  $K_k = [a + c, b + d]$  for some  $I_i = [a, b]$ , and  $J_j = [c, d]$ . Note that  $n < l \times m$ .

### Simple temporal problems (STPs)

- It is a subclass of TCSPs where all constraints specify a single interval (no disjunctions).
- Each edge  $i \rightarrow j$  is labeled by a single interval  $[a_{ij}, b_{ij}]$  that represents the constraint

$$a_{ij} \le x_j - x_i \le b_{ij}$$

or

$$x_j - x_i \le b_{ij}$$
 and  $x_i - x_j \le -a_{ij}$ 

Can be represented and solved as a system of linear inequalities but a better graph algorithm exists: first convert the graph into a distance graph

## Distance graph example



### Distance graph

- **●** An STP can be associated with a directed-edge weighted graph  $G_d = (v, E_d)$ , called the *distance graph*. It has the same node set as G, and each edge  $i \rightarrow j \in E_d$  is labeled by a weight  $a_{ij}$  representing the linear inequality  $x_j x_i \le a_{ij}$ .
- Each path from i to j in  $G_d$ ,  $i_0 = i, i_1, ..., i_k = j$ , induces the following constraint on the distance  $x_j x_i$ :

$$x_j - x_i \le \sum_{j=1}^k a_{i_{j-1}, i_j}$$

## Distance graph (cont'd)

If there is more than one path from i to j, then it can easily be verified that the intersection of all the induced path constraints yields

$$x_j - x_i \le d_{ij}$$

where  $d_{ij}$  is the length of the shortest path from i to j.

- Theorem: An STP T is consistent iff its distance graph  $G_d$  has no negative cycles
- For any pair of connected nodes i and j, the shortest paths satisfy  $d_{oj} \leq d_{oi} + a_{ij}$ ; thus,

$$d_{oj} - d_{oi} \le a_{ij}$$

## Distance graph (cont'd)

• Let  $G_d$  be the distance graph of a consistent STP. Two consistent scenarios are given by

$$S_1 = (d_{01}, \dots, d_{0n})$$
 and  $S_2 = (-d_{10}, \dots, -d_{n0})$ 

which assign to each variable its latest and earliest possible times, respectively.

- A given STP can be effectively specified by a complete directed graph, called d-graph, where each edge is labeled by the shortest-path length  $d_{ij}$  in  $G_d$ .
- Decomposability theorem: Any consistent STP is backtrack-free (decomposable) relative to the constraints in its d-graph.

# Lengths of shortest paths $(d_{ij})$

|   | 0   | 1   | 2   | 3   | 4  |
|---|-----|-----|-----|-----|----|
| 0 | 0   | 20  | 50  | 30  | 70 |
| 1 | -10 | 0   | 40  | 20  | 60 |
| 2 | -40 | -30 | 0   | -10 | 30 |
| 3 | -20 | -10 | 20  | 0   | 50 |
| 4 | -60 | -50 | -20 | -40 | 0  |

## The minimal network

|   | 0         | 1         | 2         | 3         | 4       |
|---|-----------|-----------|-----------|-----------|---------|
| 0 | [0]       | [10,20]   | [40,50]   | [20,30]   | [60,70] |
| 1 | [-20,-10] | [0]       | [30,40]   | [10,20]   | [50,60] |
| 2 | [-50,-40] | [-40,-30] | [0]       | [-20,-10] | [20,30] |
| 3 | [-30,-20] | [-20,-10] | [10,20]   | [0]       | [40,50] |
| 4 | [-70,-60] | [-60,-50] | [-20,-30] | [-50,-40] | [0]     |

## Floyd-Warshall's Algorithm (apsp)

```
function ALL-PAIRS-SHORTEST-PATS (G)
returns a d-graph
input: Distance graph Gi = (V,E) with weights a_{ij} for (i,j) \in E.

for i \leftarrow 1 to n do
d_{ii} \leftarrow 0
for i,j \leftarrow 1 to n do
d_{ij} \leftarrow a_{ij}
for k \leftarrow 1 to n do
for i,j \leftarrow 1 to n do
d_{ij} \leftarrow \min \{d_{ij}, d_{ik} + d_{kj}\}
```

## Summary

- Floyd-Warshall's algorithm runs in  $O(n^3)$  and detects negative cycles simply by examining the sign of the diagonal elements  $d_{ii}$ .
- Once the d-graph is available, assembling a solution takes only  $O(n^2)$  time, because each successive assignment only needs to be checked against previous assignments and is guaranteed to remain unaltered.
- Thus, finding a solution takes  $O(n^3)$  time.
- Note that in TCSP, path consistency can be checked in polynomial time but does not guarantee minimality.

### Summary (cont'd)

- Any constraint network in PA is a special case of a TCSP lacking metric information.
- A PA can be translated into a TCSP in a straightforward manner.
  - $x_j < x_i$  translates to  $T_{ij} = \{(-\infty, 0)\}$
  - $x_j \le x_i$  translates to  $T_{ij} = \{(-\infty, 0]\}$
  - $x_j = x_i$  translates to  $T_{ij} = \{[0]\}$
  - $x_j \neq x_i$  translates to  $T_{ij} = \{(-\infty, 0), (0, \infty)\}$
- IA networks cannot always be translated into binary TCSPs because such a translation may require nonbinary constraints:

$$X$$
 {b, bi}  $Y \equiv X_e < Y_s \lor Y_e < X_s$ 

## **Example: Autominder**

- To assist people with memory impairment.
- Model their daily activities, including temporal constraints on their performance
- Monitor the execution of those activities
- Decide whether and when to issue reminders

# **Example:** Autominder (cont'd)

| ACTION               | TARGET TIME                        |  |  |
|----------------------|------------------------------------|--|--|
| Start laundry        | Before 10 a.m.                     |  |  |
| Put clothes in dryer | Within 20 minutes of washer ending |  |  |
| Fold clothes         | Within 20 minutes of dryer ending  |  |  |
| Prepare lunch        | Between 11:45 and 12:15            |  |  |
| Eat lunch            | At end of prepare lunch            |  |  |
| Check pulse          | Between 11:00 and 1:00, and        |  |  |
|                      | between 3:00 and 5:00              |  |  |
| depending on pulse   |                                    |  |  |
| take medication      | at end of check pulse              |  |  |

### Other examples

- US NINDS (National Institute of Neurological Disorders and Stroke) guidelines for treatment of potential stroke (thrombolytic) patient
  - hospital door to doctor: 10 minutes
  - door to neurological expert: 15 minutes
  - door to CT scan completion: 25 minutes
  - **\_**
- Space facility crew activity planning
- Control of spacecraft on another planet