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Outline

Temporal reasoning

Qualitative networks

The interval algebra

The point algebra

Quantitative temporal networks

Reference: Chapter 12 of the book titled
"Constraint Processing," by Rina Dechter,
Morgan Kaufmann Publishers (Elsevier Science), 2003.
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Temporal Reasoning

Temporal objects: points or intervals

Temporal constraints: qualitative or quantitative

Temporal knowledge base

Consistency check routines

Inference routines

Query answering mechanisms
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Example 1

Given temporal information

Please come before or after lunch

I go to lunch before my 1:00 o’clock class

Lunch starts at 12:00

Lunch takes half an hour to an hour

I have class at 11:00

Derive answers to queries

Is it possible that a proposition P holds at time t1?

What are the possible times at which a proposition P
holds?

What are the possible temporal relationships between
two propositions P and Q?
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Example 2

John was not in the room when I touched the switch to turn on
the light, but John was in the room later when the light went out.

Events:
Switch: time of touching the switch
Light: time the light was on
Room: time that John was in the room

Is this information consistent?
If it is consistent what are the possible scenarios?
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Interval algebra (IA)
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Representation

I{r1, . . .rk} J represents (I r1 J)∨ . . .(I rk J)

For example I{s,si,d,di, f , f i,o,oi,=} J expresses the fact
that intervals I and J intersect (it exludes b,bi,m,mi).

John was not in the room when I touched the switch to turn on
the light, but John was in the room later when the light went out.

1. Switch {o,m} Light

2. Switch {b,m,mi,a} Room

3. Light {o,s,d} Room
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IA Constraint graph (network)

Switch Room

Light

{o, m} {o, s, d}

{b,m,mi,a}

Switch

Light

Room

1 2 4 53

A solution is an assignment of a pair of numbers to each
variable such that no constraint is violated
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Constraint graph terms

In a constraint graph, the nodes represent the variables
and an edge represents a direct constraint (coming from
the IA relation set)

A universal constraint permits all relationships between
two variables and is represented by the lack of an edge
between the variables.

A constraint C′ can be tighter than constraint C′′, denoted
by C′ ⊆C′′, yielding a partial order between IA networks.
A network N ′′ is tighter than network N ′ if the partial order
⊆ is satisfied for all the corresponding constraints.

The minimal network of M is the unique equivalent
network of M which is minimal with respect to ⊆.
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Reasoning tasks for IA networks

decide consistency

find one or more solutions

compute the minimal network

All are generally intractable, so

improve exponential search algorithms such as
backtracking, or

resort to local inference procedures
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Minimal network

Switch Room

Light

{o, s}

{b,m}

{o, m}

Switch Room

Light

{o, s, d}

{b,m, mi, a}

{o, m}
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Example

Fred was reading the paper while eating his breakfast. He put
the paper down and drank the last of his coffee. After breakfast
he went for a walk.

BreakfastBreakfast

Paper Walk

Coffee

{bi}{d}{d, o, s}

{b}
Paper Walk

Coffee

{eq, d, di, o, oi, s, si, f, fi} {bi}{d}

{d, o, s} {d, o, s} {b}

Paper

Coffee

WalkBreakfast
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Path Consistency in CSPs

Given a constraint network R = (X ,D,C), a two-variable
set {xi,x j} is path-consistent relative to variable xk iff for
every consistent assignment (< xi,ai >,< x j,a j >) there
is a value ak ∈ Dk such that the assignment
(< xi,ai >,< xk,ak >) is consistent and
(< xk,ak >,< x j,a j >) is consistent.

Alternatively, a binary constraint Ri j is path-consistent
relative to xk iff for every pair (ai,a j) ∈ Ri j where ai and a j

are from their respective domains, there is a value ak ∈Dk

such that (ai,ak) ∈ Rik and (ak,a j) ∈ Rk j.
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Path-consistency in CSPs (cont’d)

A subnetwork over three variables {xi,x j,xk} is
path-consistent iff for any permutation of (i, j,k), Ri j is
path-consistent relative to xk.

A network is path-consistent iff for every Ri j (including
universal binary relations) and for every k 6= i, j, Ri j is
path-consistent relative to xk.
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Path-consistency in IA

An IA network is path-consistent if for every three
variables xi,x j,xk, Ci j ⊆Cik⊗Ck j.

The intersection of two IA relations R′ and R′′, denoted by
R′⊕R′′, is the set-theoretic intersection R′∩R′′.

The composition of two IA relations, R′⊗R′′, R′ between
intervals I and K and R′′ between intervals K and J, is a
new relation between intervals I and J, induced by R′ and
R′′ as follows.
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Composition (⊗)

The composition of two basic relations r′ and r′′ is defined
by a transitivity table (see a portion of it on the next slide).

The composition of two composite relations R′ and R′′,
denoted by R′⊗R′′, is the composition of the constituent
basic relations:

R′⊗R′′ = {r′⊗ r′′|r′ ∈ R′,r′′ ∈ R′′}
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Composition of basic relations

b s d o m

b b b b o m d s b b

s b s d b o m b

d b d d b o m d s b

o b o o d s b o m b

m b m o d s b b
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Composition examples

X Y

Y Z

X Y

Y
Z

before

X Y

Y

X before Y, Y before Z                     X before Z

X before Y, Y during Z                     X {b, o, m, d, s} Z

Z

overlaps
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Qualitative Path Consistency (QPC) Algorithm

function QPC-1(T )
returns a path consistent IA network

input: T, an IA network with n variables

repeat
S← T
for k← 1 to n do

for i,j← 1 to n do
Ci j←Ci j⊕Cik⊗Ck j

until S = T
return T
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Example

Apply CSR←CSR⊕ (CSL⊗CLR)

CSR←{b,m, i,a}⊕ ({o,m}⊗{o,s,d})
CSR←{b,m, i,a}⊕{b,o,m,d,s}
CSR←{b,m}

o⊗o = b,o,m
o⊗ s = o
o⊗d = o,d,s
m⊗o = b
m⊗ s = m
m⊗d = o,d,s
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Minimizing networks using path-consistency

In some cases, path-consistency algorithms are
exact—they are guaranteed to generate the minimal
network and therefore decide consistency.

In general, IA networks are NP-complete, backtracking
search is needed to generate a solution.

Even when the minimal network is available, it is not
guaranteed to be globally consistent to allow
backtrack-free search.

Path-consistency can be used for forward checking.
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The point algebra (PA)

It is a model alternative to IA.

It is less expressive: there are three basic types of
constraints between points P and Q: P < Q, P = Q,
P > Q.

Reasoning tasks over PAs are polynomial
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Example

Fred put the paper down and drank the last of his coffee.

Paper −

Paper +

Coffee −

Coffee +

<

>
<

<

<

Paper

Coffee
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Examples

I{s,d, f ,=}J where I = [x,y] and J = [z, t] can be
represented with

x < y,z < t,x < t,x≥ z,y≤ t,y > z

However, I{b,a}J where I = [x,y] and J = [z, t] cannot be
represented with a PA network
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Composition in the PA

< = >

< < < ?

= < = >

> ? = >

“?” expresses the universal relation.
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Path consistency

It is defined using composition and the transitivity table

Path consistency decides the consistency of a PA network
in O(n3) steps.

Consistency and solution generation of PA networks can
also be accomplished in O(n2).

The minimal network of a PA consistent network can be
obtained using 4-consistency in O(n4) steps.

The minimal network of CPA networks can be obtained by
path-consistency in O(n3).
Convex PA (CPA) networks have only {<,≤,=,≥,>}
and not 6=.
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Quantitative Temporal Networks

Ability to express metric information on duration and
timing of events

John travels to work either by car (30–40 minutes) or by
bus (at least 60 minutes). Fred travels to work either by
car (20–30 minutes) or in a carpool (40–50 minutes).
Today John left home between 7:10 and 7:20A.M., and
Fred arrived at work between 8:00 and 8:10A.M. We also
know that John arrived at work 10-20 minutes after Fred
left home.

Is the information in the story consistent?

Is it possible that John took the bus and Fred used the
carpool?

What are the possible times at which Fred left home?
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Representation

Proposition P1: John was traveling to work ([x1,x2])

Proposition P2: Fred was traveling to work ([x3,x4])

John travels to work either by car (30–40 minutes) or by
bus (at least 60 minutes).
30≤ x2− x1≤ 40 or x2− x1≥ 60

Fred travels to work either by car (20–30 minutes) or in a
carpool (40–50 minutes).
20≤ x4− x3≤ 30 or 40≤ x4− x3≤ 50
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Representation (cont’d)

Proposition P1: John was traveling to work ([x1,x2])

Proposition P2: Fred was traveling to work ([x3,x4])

Today John left home between 7:10 and 7:20A.M. (Assign
x0 = 7:00A.M.)
10≤ x1− x0≤ 20

Fred arrived at work between 8:00 and 8:10A.M.

60≤ x4− x0≤ 70

John arrived at work 10-20 minutes after Fred left home.
10≤ x4− x0≤ 20
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The constraint graph

[30, 40]
[60, i)

3 4

0

1 2[10,20]

[20, 30]
[40, 50]

[60, 70]

[10.20]
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Temporal Constraint Satisfaction Problem (TCSP)

A temporal constraint satisfaction problem (TCSP) involves a
set of variables {x1, . . . ,xn} having continuous domains; each
variable represents a time point. Each constraint is represented
by a set of intervals {I1, . . . Ik}= {[a1,b1], . . . , [ak,bk]}.

A unary constraint Ti restricts the domain of a variable xi to the
given set of intervals; that is, it represents the disjunction

(a1≤ xi ≤ b1)∨ . . .∨ (ak ≤ xi ≤ bk)

A binary constraint Ti j constrains the permissible values for the
distance x j− xi; it represents the disjunction

(a1≤ x j− xi ≤ b1)∨ . . .∨ (ak ≤ x j− xi ≤ bk)
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TCSP (cont’d)

Assume that constraints are given in a canonical form in
which all intervals are pair-wise disjoint.

A special time point, x0, represents the “beginning of the
world.” Each unary constraint can be represented as a
binary constraint relative to x0.

A tuple x = {a1, . . . ,an} is called a solution if the
assignment {x1 = a1, . . . ,xn = an} does not violate any
constraint.
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Minimal and binary decomposable networks

Given a TCSP, a value v is a feasible value for variable xi if
there exists a solution in which xi = v.

The set of all feasible values of a variable is called the
minimal domain.

A minimal constraint Ti j between xi and x j is the set of all
feasible values for xi− x j.

A network is minimal iff its domains and constraints are
minimal.

A network is binary decomposable if every consistent
assignment of values to a set of variables S can be
extended to a solution.
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Binary operators on constraints

−2 −1 0 1 2 3 4 5 6 7 8 9

T

S

T + S

T x S

T = {[−1.25,0.25]}, [2.75,4.25]}
S = {[−0.25,1.25]}, [3.75,4.25]}

T ⊕S = {[−0.25,0.25]}, [3.75,4.25]}
T ⊗S = {[−1.50,1.50], [2.50,5.50], [6.50,8.50]}
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Binary operators on constraints (cont’d)

Let T = {I1, . . . , Il} and S = {J1, . . . ,Jm} be two constaints.
Each is a set of intervals of a temporal variable or a temporal
binary constraint.

The union of T and S, denoted by T ∪S, only admits
values that are allowed by either T or S, that is, T ∪S =
{I1, . . . , Il,J1, . . . ,Jm}.

The intersection of T and S, denoted by T ⊕S, admits
only values that are allowed by both T and S, that is,
T ⊕S = {K1, . . . ,Kn} where Kk = Ii∩ J j for some i and j.
Note that n≤ l +m.
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Binary operators on constraints (cont’d)

The composition of T and S, denoted by T ⊗S, admits
only values r for which there exist t ∈ T and s ∈ S, such
that t + s = r, that is T ⊗S = {K1, . . .Kn}, where
Kk = [a+ c,b+d] for some Ii = [a,b], and J j = [c,d].
Note that n≤ l×m.
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Simple temporal problems (STPs)

It is a subclass of TCSPs where all constraints specify a
single interval (no disjunctions).

Each edge i→ j is labeled by a single interval [ai j,bi j]
that represents the constraint

ai j ≤ x j− xi ≤ bi j

or
x j− xi ≤ bi j andxi− x j ≤−ai j

Can be represented and solved as a system of linear
inequalities but a better graph algorithm exists: first
convert the graph into a distance graph
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Distance graph example

[30, 40]
[60, i)

3 4

0

1 2[10,20]

[20, 30]
[40, 50]
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1 2
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−30
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−40
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−60
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Distance graph

An STP can be associated with a directed-edge weighted
graph Gd = (v,Ed), called the distance graph. It has the
same node set as G, and each edge i→ j ∈ Ed is labeled
by a weight ai j representing the linear inequality
x j− xi ≤ ai j.

Each path from i to j in Gd , i0 = i, i1, . . . ik = j, induces
the following constraint on the distance x j− xi:

x j− xi ≤
k

∑
j=1

ai j−1,i j
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Distance graph (cont’d)

If there is more than one path from i to j, then it can easily
be verified that the intersection of all the induced path
constraints yields

x j− xi ≤ di j

where di j is the length of the shortest path from i to j.

Theorem: An STP T is consistent iff its distance graph Gd

has no negative cycles

For any pair of connected nodes i and j, the shortest
paths satisfy do j ≤ doi +ai j; thus,

do j−doi ≤ ai j
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Distance graph (cont’d)

Let Gd be the distance graph of a consistent STP. Two
consistent scenarios are given by

S1 = (d01, . . . ,d0n) andS2 = (−d10, . . . ,−dn0)

which assign to each variable its latest and earliest
possible times, respectively.

A given STP can be effectively specified by a complete
directed graph, called d-graph, where each edge is
labeled by the shortest-path length di j in Gd .

Decomposability theorem: Any consistent STP is
backtrack-free (decomposable) relative to the constraints
in its d-graph.
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Lengths of shortest paths (di j)

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0
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The minimal network

0 1 2 3 4

0 [0] [10,20] [40,50] [20,30] [60,70]

1 [-20,-10] [0] [30,40] [10,20] [50,60]

2 [-50,-40] [-40,-30] [0] [-20,-10] [20,30]

3 [-30,-20] [-20,-10] [10,20] [0] [40,50]

4 [-70,-60] [-60,-50] [-20,-30] [-50,-40] [0]

Ch. 6b – p.43/49



Floyd-Warshall’s Algorithm (apsp)

function ALL -PAIRS-SHORTEST-PATS (G )
returns a d-graph

input: Distance graph Gi = (V,E) with weights ai j for (i, j) ∈ E.

for i← 1 to n do
dii← 0

for i,j← 1 to n do
di j← ai j

for k← 1 to n do
for i,j← 1 to n do

di j← min {di j,dik +dk j}
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Summary

Floyd-Warshall’s algorithm runs in O(n3) and detects
negative cycles simply by examining the sign of the
diagonal elements dii.

Once the d-graph is available, assembling a solution takes
only O(n2) time, because each successive assignment
only needs to be checked against previous assignments
and is guaranteed to remain unaltered.

Thus, finding a solution takes O(n3) time.

Note that in TCSP, path consistency can be checked in
polynomial time but does not guarantee minimality.
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Summary (cont’d)

Any constraint network in PA is a special case of a TCSP
lacking metric information.

A PA can be translated into a TCSP in a straightforward
manner.

x j < xi translates to Ti j = {(−∞,0)}

x j ≤ xi translates to Ti j = {(−∞,0]}

x j = xi translates to Ti j = {[0]}

x j 6= xi translates to Ti j = {(−∞,0),(0,∞)}

IA networks cannot always be translated into binary
TCSPs because such a translation may require nonbinary
constraints:
X {b, bi} Y ≡ Xe < Ys∨Ye < Xs

Ch. 6b – p.46/49



Example: Autominder

To assist people with memory impairment.

Model their daily activities, including temporal constraints
on their performance

Monitor the execution of those activities

Decide whether and when to issue reminders
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Example: Autominder (cont’d)

ACTION TARGET TIME

Start laundry Before 10 a.m.

Put clothes in dryer Within 20 minutes of washer ending

Fold clothes Within 20 minutes of dryer ending

Prepare lunch Between 11:45 and 12:15

Eat lunch At end of prepare lunch

Check pulse Between 11:00 and 1:00, and

between 3:00 and 5:00

depending on pulse

take medication at end of check pulse

Ch. 6b – p.48/49



Other examples

US NINDS (National Institute of Neurological Disorders
and Stroke) guidelines for treatment of potential stroke
(thrombolytic) patient

hospital door to doctor: 10 minutes

door to neurological expert: 15 minutes

door to CT scan completion: 25 minutes

. . .

Space facility crew activity planning

Control of spacecraft on another planet
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