
Informed Search and Exploration

Sections 3.5 and 3.6

Ch. 03 – p.1/47

Outline

Best-first search

A∗ search

Heuristics, pattern databases

IDA∗ search

(Recursive Best-First Search (RBFS), MA∗ and
SMA∗ search)

Ch. 03 – p.2/47

Best-first search

Idea: use an evaluation function for each node

The evaluation function is an estimateof “desirability”

Expand the most desirable unexpanded node

The desirability function comes from domain knowledge

Implementation:
The frontier is a queue sorted in decreasing order of desirability

Special cases:
greedy best first search
A∗ search

Ch. 03 – p.3/47

Romania with step costs in km

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Sample straight line distances to Bucharest:
Arad : 366, Bucharest: 0, Sibiu: 253, Timisoara: 329.

Ch. 03 – p.4/47

Greedy best-first search

Evaluation function h(n) (heuristic) = estimate of cost from n to
the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy best-first search expands the node that appears to be
closest to goal

Ch. 03 – p.5/47

Greedy best-first search example

Arad

Ch. 03 – p.6/47

After expanding Arad

374

Sibiu Timisoara

Arad

Zerind

140 75

118

329253

Ch. 03 – p.7/47

After expanding Sibiu

366 380 193

329 374

Arad Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

140

140

75

118

80
15199

176

Ch. 03 – p.8/47

After expanding Fagaras

Bucharest

366 380 193

253 0

329 374

Arad

Sibiu

Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

140

140

75

118

21199

80
15199

The goal Bucharest is found with a cost of 450. However, there is a
better solution through Pitesti (h = 417).

Ch. 03 – p.9/47

Properties of greedy best-first search

Complete No — can get stuck in loops
For example, going from Iasi to Fagaras,
Iasi→ Neamt→ Iasi→ Neamt→ . . .
Complete in finite space with repeated-state checking

Time O(bm), but a good heuristic can give dramatic improvement
(more later)

Space O(bm)—keeps all nodes in memory

Optimal No
(For example, the cost of the path found in the previous slide was
450. The path Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest has
a cost of 140+80+97+101 = 418.)

Ch. 03 – p.10/47

A∗ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = exact cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

Straight line distance (hSLD(n)) is an admissible heuristic
because never overestimates the actual road distance.

Ch. 03 – p.11/47

A∗ search example

Arad

366=0+366

Ch. 03 – p.12/47

After expanding Arad

Sibiu Timisoara

Arad

Zerind

447=118+329 449=75+374393=140+253

Ch. 03 – p.13/47

After expanding Sibiu

Arad Fagaras Oradea

Sibiu Timisoara

Arad

Zerind

646=280+366 671=291+380

447=118+329 449=75+374

415=239+176

Rimnicu V.

413=220+193

Ch. 03 – p.14/47

After expanding Rimnicu Vilcea

Arad Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Craiova Pitesti Sibiu

646=280+366 671=291+380

526=366+160 553=300+253

447=118+329 449=75+374

417=317+100

415=239+176

Ch. 03 – p.15/47

After expanding Fagaras

Bucharest

Arad

Sibiu

Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Craiova Pitesti Sibiu

646=280+366

591=338+253 450=450+0

671=291+380

526=366+160 553=300+253

447=118+329 449=75+374

417=317+100

Remember that the goal test is performed when a node is selected for
expansion, not when it is generated.

Ch. 03 – p.16/47

After expanding Pitesti

Bucharest

Bucharest

Arad

Sibiu

Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Craiova Pitesti Sibiu

Rimnicu V.Craiova

646=280+366

591=338+253 450=450+0

671=291+380

526=366+160 553=300+253

418=418+0 615=455+160 607=414+193

447=118+329 449=75+374

Ch. 03 – p.17/47

Optimality of A ∗ for trees

Theorem: A∗ search is optimal.

Note that, A∗ search uses an admissible heuristic by definition.

Suppose some suboptimal goal G2 has been generated and is in the
queue. Let n be an unexpanded node on a shortest path to an optimal
goal G1.

Ch. 03 – p.18/47

Optimality of A ∗ for trees (cont’d)

G1

G2

n

start

f(n) = g(n) + h(n) by definition
f(G1) = g(G1) because h is 0 at a goal
f(G2) = g(G2) because h is 0 at a goal
f(n) ≤ f(G1) because h is admissible (never overestimates)
f(G1) < f(G2) because G2 is suboptimal
f(n) < f(G2) combine the above two

Since f(n) < f(G2), A∗ will never select G2 for expansion.

Ch. 03 – p.19/47

Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

Note that h is admissible, it never overestimates.

Ch. 03 – p.20/47

Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

The root node was expanded. Note that f decreased from 6 to 4.

Ch. 03 – p.21/47

Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

The suboptimal path is being pursued.

Ch. 03 – p.22/47

Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

Goal found, but we cannot stop until it is selected for
expansion.

Ch. 03 – p.23/47

Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

The node with f = 7 is selected for expansion.

Ch. 03 – p.24/47

Progress of A∗ with an inconsistent heuristic

2 2

1 2

4

g=0, h=6, f=6

g=3, h=1, f=4

g=2, h=5, f=7 g=2, h=2, f=4

g=4, h=1, f=5

g=8, h=0, f=8

I

G

g=7, h=0, f=7

The optimal path to the goal is found.

Ch. 03 – p.25/47

Consistency

A heuristic is consistent if

n’

n

G

h(n)

h(n’)

c(n, a, n’)

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

I.e., f(n) is nondecreasing along any path.

Ch. 03 – p.26/47

Optimality of A ∗ for graphs

Lemma: A∗ expands nodes in order of increasing f value

Gradually adds “f -contours” of nodes
(cf. breadth-first adds layers)
Contour i has all nodes with f = fi, where fi < fi+1

With uniform-cost search (A* search with h(n)=0) the bands are
“circular”.
With a more accurate heuristic, the bands will stretch toward the
goal and become more narrowly focused around the optimal
path.

Ch. 03 – p.27/47

F-contours

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Ch. 03 – p.28/47

Performance of A∗

The absolute error of a heuristic is defined as
∆ ≡ h∗ − h

The relative error of a heuristic is defined as
ǫ ≡ h

∗

−h

h∗

Complexity with constant step costs: O(bǫd)

Problem: there can be exponentially many states with f(n) < C∗

even if the absolute error is bounded by a constant

Ch. 03 – p.29/47

Properties of A∗

Complete Yes, unless there are infinitely many nodes with
f ≤ f(G)

Time Exponential in
(relative error in h × length of solution)

Space Keeps all nodes in memory

Optimal Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

Ch. 03 – p.30/47

Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

h1(S) = ??
h2(S) = ??

Ch. 03 – p.31/47

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Ch. 03 – p.32/47

Effect of Heuristic on Performance

The effect is characterized by the effective branching factor (b∗)

If the total number of nodes generated by A∗ is N and

the solution depth is d,

then b is branching factor of a uniform tree, such that
N + 1 = 1 + b + (b)2 + + (b)d

A well designed heuristic has a b close to 1.

Ch. 03 – p.33/47

Using relaxed problems to find heuristics

Admissible heuristics can be derived from the exact solution cost
of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent
square, then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no
greater than the optimal solution cost of the real problem

Ch. 03 – p.34/47

Relaxed problems (cont’d)

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest (open) tour

Ch. 03 – p.35/47

Pattern databases

Admissible heuristics can also be generated from the solution
cost of sub- problems.

For example, in the 8-puzzle problem a sub-problem of getting
the tiles 2, 4, 6, and 8 into position is a lower bound on solving
the complete problem.

Pattern databases store the solution costs for all the sub-problem
instances.

The choice of sub-problem is flexible:
for the 8-puzzle a subproblem for 2,4,6,8 or 1,2,3,4 or 5,6,7,8, . .
. could be created.

Ch. 03 – p.36/47

Iterative Deepening A* (IDA*)

Idea: perform iterations of DFS. The cutoff is defined based on
the f -cost rather than the depth of a node.

Each iteration expands all nodes inside the contour for the
current f -cost, peeping over the contour to find out where the
contour lies.

Ch. 03 – p.37/47

Iterative Deepening A* (IDA*)

function IDA* (problem)
returns a solution sequence

inputs: problem, a problem
local variables:

f-limit, the current f -COST limit
root, a node

root← MAKE-NODE(INITIAL -STATE[problem])
f-limit← f -COST(root)
loop do

solution, f-limit← DFS-CONTOUR(root, f-limit)
if solution is non-null then return solution
if f-limit =∞ then return failure

Ch. 03 – p.38/47

Iterative Deepening A* (IDA*)

function DFS-CONTOUR (node, f-limit)
returns a solution sequence and a new f -COST limit

inputs: node, a node
f-limit, the current f -COST limit

local variables:
next-f, the f -COST limit for the next contour, initally∞

if f -COST[node] > f-limit then return null, f -COST[node]
if GOAL-TEST[problem](STATE[node]) then return node, f-limit
for each node s in SUCCESSORS(node) do

solution, new-f← DFS-CONTOUR(s, f-limit)
if solution is non-null then return solution, f-limit
next-f← M IN(next-f, new-f)

return null, next-f

Ch. 03 – p.39/47

Properties of IDA*

Complete Yes, similar to A*.

Time Depends strongly on the number of different
values that the heuristic value can take on.
8-puzzle: few values, good performance
TSP: the heuristic value is different for every state.
Each contour only includes one more state than the
previous contour. If A* expands N nodes, IDA*
expands 1 + 2 + . . . + N = O(N2) nodes.

Space It is DFS, it only requires space proportional
to the longest path it explores. If δ is the smallest
operator cost, and f∗ is the optimal solution cost,
then IDA* will require bf∗/δ nodes.

Optimal Yes, similar to A*
Ch. 03 – p.40/47

Recursive best-first search (RBFS)

Idea: mimic the operation of standard best-first
search, but use only linear space

Runs similar to recursive depth-first search, but
rather than continuing indefinitely down the current
path, it uses the f_limit variable to keep track of the
best alternative path available from any ancestor of
the current node.

If the current node exceeds this limit, the recursion
unwinds back to the alternative path.

Ch. 03 – p.41/47

RBFS Algorithm

function RECURSIVE-BEST-FIRST-SEARCH (problem)
returns a solution or failure

return RBFS(problem, MAKE-NODE(problem.INITIAL -STATE), ∞)

Ch. 03 – p.42/47

RBFS Algorithm (cont’d)

function RBFS(problem, node, f_limit)
returns a solution or failure and a new f -cost limit

if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
successors← []

for each action in problem.ACTIONS(node.STATE) do
add CHILD -NODE(problem, node, action) into successors
if successors is empty then return failure,∞
for each s in successors do

/* update f with value from previous search, in any */
s.f ← max (s.g + s.h, node.f))

loop do
best← the lowest f -value in successors
if best.f > f -limit then return failure, best.f
alternative← the second lowest f-value among successors
result, best.f← RBFS (problem, best, min(f-limit,alternative))
if result 6= failure then return result

Ch. 03 – p.43/47

Progress of RBFS

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaOradea

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea Rimnicu Vilcea

Craiova Pitesti Sibiu

646 415 526

526 417 553

646 526

450591

646 526

526 553

418 615 607

447 449

447

447 449

449

366

393

366

393

413

413 417415

366

393

415 450
417

417

Rimnicu Vilcea

Fagaras

447

415

447

447

417

(a) After expanding Arad, Sibiu, Rimnicu Vilcea

(c) After switching back to Rimnicu Vilcea
 and expanding Pitesti

(b) After unwinding back to Sibiu
 and expanding Fagaras

447

447

Ch. 03 – p.44/47

MA* and SMA*

Idea: use all the available memory
IDA* remembers only the current f -cost limit
RBFS uses linear space

Proceeds just like A*, expanding the best leaf until
the memory is full. When the memory if full, drop the
worst leaf node.

Ch. 03 – p.45/47

Summary

The evaluation function for a node n is:
f(n) = g(n) + h(n)

If only g(n) is used, we get uniform-cost search

If only h(n) is used, we get greedy best-first search

If both g(n) and h(n) are used we get best-first
search

If both g(n) and h(n) are used with an admissible
heuristic we get A∗ search

A consistent heuristic is admissible but not
necessarily vice versa

Ch. 03 – p.46/47

Summary (cont’d)

Admissibility is sufficient to guarantee solution
optimality for tree search

Consistency is required to guarantee solution
optimality for graph search

If an admissible but not consistent heuristic is used
for graph search, we need to adjust path costs when
a node is rediscovered

Heuristic search usually brings dramatic
improvement over uninformed search

Keep in mind that the f-contours might still contain
an exponential number of nodes

Ch. 03 – p.47/47

	Outline
	Best-first search
	Romania with step costs in km
	Greedy best-first search
	Greedy best-first search example
	After expanding Arad
	After expanding Sibiu
	After expanding Fagaras
	Properties of greedy best-first search
	A* search
	A* search example
	After expanding Arad
	After expanding Sibiu
	After expanding Rimnicu Vilcea
	After expanding Fagaras
	After expanding Pitesti
	Optimality of A* for trees
	Optimality of A* for trees (cont'd)
	Progress of A* with an inconsistent heuristic
	Progress of A* with an inconsistent heuristic
	Progress of A* with an inconsistent heuristic
	Progress of A* with an inconsistent heuristic
	Progress of A* with an inconsistent heuristic
	Progress of A* with an inconsistent heuristic
	Consistency
	Optimality of A* for graphs
	F-contours
	Performance of A*
	Properties of A*
	Admissible heuristics
	Dominance
	Effect of Heuristic on Performance
	Using relaxed problems to find heuristics
	Relaxed problems (cont'd)
	Pattern databases
	Iterative Deepening A* (IDA*)
	Iterative Deepening A* (IDA*)
	Iterative Deepening A* (IDA*)
	Properties of IDA*
	Recursive best-first search (RBFS)
	RBFS Algorithm
	RBFS Algorithm (cont'd)
	Progress of RBFS
	MA* and SMA*
	Summary
	Summary (cont'd)

