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Introduction

e Construction project management

- As-planned schedules and estimates
- Fluctuations due to events

- Contingency funds set aside to help mitigate
problematic scenarios



NY Times Office Building

* Problems during
construction:

- Primary steel
subcontractor went
bankrupt

- Complicated
specifications warranted
tremendous amounts of
welding

» Problems resulted in the | &&=
loss of most of the
contingency funds
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Two Classes of Problems

Aleatory Epistemic
« Steel contractor * Planning problems
going bankrupt (e.g., welding)
 Unpredictable * Problems inherent
problems to the project

design



Thesis Objectives

 To develop a mechanism for making
inferences and predictions about
construction management projects

« Allow a construction manager to deal with
the inherent uncertainties of such a
domain
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Structural Steel Case Study

* 0-Sequence Steel Framed Building
- Hoisting
- Bolting and Connecting
- Decking



Hoisting

 Lifting the steel - =
members into /!'4
place

« Securing them with A 1
temporary ties :




Bolting and Connecting

 Permanently
fastening the steel
members together
at their junction
points




Decking

« Fastening the steel
decking into place g
over the beams




After Completion of Sequence 4
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Portion of As-Planned Schedule
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Activity Nodes




Temporal Constraints




Present Nodes




A Present Nodes




Present Nodes
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Present Nodes




Present Nodes




Event Nodes
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Event Nodes
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Event Nodes
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Now B-1 will take 1 unit
of time longer than
expected. This will

cause COl to
accumulate.




Cost Overrun Indicator

 COIl can accumulate as a result of:
- Delays from events (such as rain)
- The natural lag in the as-planned schedule

 An indicator of budget overruns, not
necessarily an exact figure

« Used to show:

- Cost of delay in different activities
- Cost of natural lag in the schedule
- Contrast between various scenarios



Traversal vs. Querying

 Traversal is the day-to-day simulation of
the project

« Querying predicts the most likely futures



Querying

 From a point in
time T, a project

has humerous
futures at time Ti+1,

each of which has
futures at time Ti+2,

and so on.

* Investigating all
futures iIs
iIntractable




Monte Carlo Solution to
Querying

* Probabilistically sample 1 future for each
state

 Repeat N number of times to get a

general picture of what the most probable
futures are




What does Querying Provide?

* Given the current state and history of the
project:

- What are the most probable project
completion times?

- What are the most probable COls?
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Experimental Run

* Single traversal of full, 6-sequence
structural steel example

« 1000 query iterations performed per day
 COIl (per day) of the three activity types:
- Hoisting: 41.65
- Bolting & Connecting: 17.54
- Decking: 23.58



Independent Events
Considered:

« Rain

« Labor Strike
- Duration: 3 days
- Probability: 5%
- Global

 No Delivery

Duration: 3 days
Probability: 5%

_ocal

- Duration: 1 day
- Probability: 10%
- Global

« Worker Fatigue

Duration: 1 day
Probability: 10%

_ocal



Project Traversal wi Querying, COIl Accrual

BEaseline COl mAccrued COl OProjected COI
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Contributions

 An extension of temporal constraint
networks

- Represents construction management
projects
- Represents uncertain external events, COI

« Means of traversing and querying these
networks to allow the exploration of
'what-if' scenarios by construction
managers.



Limitations & Future Work

 PimGenerate
« ComputeEventEffects
« CalculateRemainingDuration

* Integration of the mechanisms into a
stronger simulation system to serve as an
instructional tool to construction
managers
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Questions?




Discrete Event Simulations

e General Frameworks (Arena, ProModel,
GPSS/H)

« Construction-Based (Simphony,
STROBOSCOPE)

 Transaction-flow based model

« Application to construction operations
and projects with repetitive sequences of
activities



Simple Temporal Networks

 Nodes represent events

 Edges between nodes represent temporal
constraints

« Shortest path algorithms are used to
check the network for temporal
consistency



Temporal Constraints & COI

 Example temporal constraints in the form
Penalty : Constraint

0:1 sALE—ALBs 5
1:65A1’E—A1’Bs 10
o:]1l]l < ALE—ALB



Formal Definition of TONAE

« A TONAE is a quadruple (A, B, C, D),
where:

- A = Set of all Activity Nodes

- B = Set of all Present Nodes

- C = Set of all Event Nodes

- D = Set of all Temporal Constraints




Traversal Algorithm (1)

Require: An as-planned schedule APS, (activities and constraints);
event information E-SET (set of events)
Ensure: A complete simulation of the construction environment.
1: WORK-G «+ INITIALIZEGRAPH(APS).
2: while the project has not terminated do
3:  WORK-G «+ ADVANCETIME(WORK-G,E-SET).
4: end while
5: return project statistics



Traversal Algorithm (2)

Require: WORK-G, a TONAE;
event information E-SET (set of events)
Ensure: A simulation step of the construction environment.
1: for each running activity «; in WORK-G do
2: E-SET; + PIMGENERATE(a;, E-SET *traverse”)
3. for event ¢ in E-SET; do
4 Create beginning and ending nodes for ¢ and link them to the present node
of a;, 1e., to Y.
end for
end for
WORK-G + COMPUTEEVENTEFFECTS(WORK-G).
WORK-G + CALCREMAININGDURATION(WORK-G).
for each running activity o; in WORK-G do
10: REMOVEENDINGEVENTS(WORK-G, a;)
11: end for
12 WORK-G « INCREMENTY (WORK-G).
13: return WORK-G

ol e R



Query Algorithm

Require: WORK-G, a TONAE;
event information E-SET (set of events);
f probahility of the status shown in WORK-G occurring
Ensure: A set of possible project ontcomes.
1: for each running activity «; in WORK-G do
2: E-SET; + PIMGENERATE(a;, E-SET “query”)
3: end for
4: E-COMB +~ GENERATESUBSETS(L E-SET;)
5: for event-combination cc in E-COMB do
6: for event ¢ in ec do
7 Create beginning and ending nodes for ¢ and link them to the present node
of a;, ie., to Y.
end for
:  WORK-G + COMPUTEEVENTEFFECTS(WORK-G).
10:  WORK-G + CALCREMAININGD URATION(WORK-G).
11:  for each running activity a; in WORK-G do

o oa

12: REMOVEENDINGEVENTS(WORK-G, ;)

13:  end for

14:  if the project ended then

15: return project statistics

16: else

17: WORK-G + INCREMENTY (WORK-G).

18: QUERY (WORK-G, E-SET, # = probability{ec))
19:  end if

20: end for
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