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Outline

Sequential decision problems

Value iteration algorithm

Policy iteration algorithm
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A simple environment
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A simple environment (cont’d)

The agent has to make a series of decisions (or
alternatively it has to know what to do in each of the
possible 11 states)

The move action can fail

Each state has a “reward”
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What is different?

uncertainty

rewards for states (not just good/bad states)

a series of decisions (not just one)
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Issues

How to represent the environment?

How to automate the decision making process?

How to make useful simplifying assumptions?
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Markov decision process (MDP)

It is a specification of a sequential decision problem for a
fully observable environment.

It has three components

S0: the initial state

T (s,a,s′): the transition model

R(s): the reward function

The rewards are additive.
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Transition model

It is a specification of outcome probabilities for each state
and action pair

T (s,a,s′) denotes the probability of ending up in state s′ if
action a is applied in state s

The transitions are Markovian: T (s,a,s′) depends only on
s, not on the history of earlier states
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Utility function

It is a specification of agent preferences

The utility function will depend on a sequence of states
(this is a sequential decision problem, but still the
transitions are Markovian)

There is a negative/positive finite reward for each state
given by R(s)
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Policy

It is a specification of a solution for an MDP

It denotes what to do at any state the agent might reach

π(s) denotes the action recommended by the policy π for
state s

The quality of a policy is measured by the expected utility
of the possible environment histories generated by that
policy

π∗ denotes the optimal policy

An agent with a complete policy is a reflex agent
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Optimal policy when R(s) = -0.04
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Optimal policy when R(s)< -1.6284
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Optimal policy when -0.4278< R(s)< -0.0850
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Optimal policy when -0.0221< R(s)< 0
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Optimal policy when R(s) > 0
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Finite vs. infinite horizon

A finite horizon means that there is fixed time N after
which nothing matters (the game is over)

∀k ≥ 0Uh([s0,s1, . . . ,sN+k]) = Uh([s0,s1, . . . ,sN])

The optimal policy for a finite horizon is nonstationary,
i.e., it could change over time

An infinite horizon means that there is no deadline

There is no reason to behave differently in the same
state at different times, i.e., the optimal policy is
stationary

It is easier than the nonstationary case
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Stationary preferences

It means that the agent’s preferences between state
sequences do not depend on time

If two state sequences [s0,s1,s2, . . .] and [s′0,s
′
1,s
′
2, . . .]

begin with the same state (i.e., s0 = s′0) then the two
sequences should be preference-ordered the same way
as the sequences [s1,s2, . . .] and [s′1,s

′
2, . . .]
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Algorithms to solve MDPs

Value iteration

Initialize the value of each state to its immediate
reward

Iterate to calculate values considering sequential
rewards

For each state, select the action with the maximum
expected utility

Policy iteration

Get an initial policy

Evaluate the policy to find the utility of each state

Modify the policy by selecting actions that increase
the utility of a state. If changes occurred, go to the
previous step
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Value Iteration Algorithm

function VALUE-ITERATION (mdp, ε)
returns a utility function

inputs:
mdp, an MDP with states S, transition model T , reward function R,

discount γ
ε, the maximum error allowed in the utility of a state

local variables:
U, U’, vectors of utilities for states in S, initially zero
δ, the maximum change in the utility of any state in an iteration

repeat
U ←U ′; δ← 0
for each state s in S do

U ′[s]← R[s]+ γmaxa ∑s′ T (s,a,s′)U [s′]
if |U ′[s]−U [s]|> δ then δ← |U ′[s]−U [s]|

until δ < ε(1− γ)/γ
return U
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State utilities with γ = 1 and R(s) = -0.04
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Optimal policy using value iteration

To find the optimal policy choose the action that maximizes the
expected utility of the subsequent state

π∗(s) = argmaxa ∑
s′

T (s,a,s′)U(s′)
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Properties of value iteration

The value iteration algorithm can be thought of as
propogating information through the state space by
means of local updates

It converges to the correct utilities

We can bound the error in the utility estimates if we stop
after a finite number of iterations, and we can bound the
policy loss that results from executing the corresponding
MEU policy
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More on value iteration

The value iteration algorithm we looked at is solving the
standard Bellman equations using Bellman updates.
Bellman equation

U(s) = R(s)+ γ maxa ∑
s′

T (s,a,s′)U(s′)

Bellman update

Ui+1(s) = R(s)+ γ maxa ∑
s′

T (s,a,s′)Ui(s
′)
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More on value iteration (cont’d)

If we apply the Bellman update infinitely often, we are guaran-

teed to reach an equilibrium, in which case the final utility values

must be solutions to the Bellman equations. In fact, they are also

the unique solutions, and the corresponding policy is optimal.
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Policy iteration

With Bellman equations, we either need to solve a
nonlinear set of equations or we need to use an iterative
method

Policy iteration starts with a initial policy and performs
iterations of evaluation and impovement on it
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Policy Iteration Algorithm

function POLICY-ITERATION (mdp)
returns a policy

inputs:
mdp, an MDP with states S, transition model T

local variables:
U, a vector of utilities for states in S, initially zero
π, a policy vector indexed by state, initially random

repeat
U ← POLICY-EVALUATION (π,U , mdp)
unchanged? ← true
for each state s in S do

if maxa ∑s′ T (s,a,s′)U [s′] > ∑s′ T (s,π(s),s′)U [s′] then
π(s)← argmaxa ∑s′ T (s,a,s′)U [s′]
unchanged? ← false

until unchanged?
return π
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Properties of Policy Iteration

Implementing the POLICY-EVALUATION routine is
simpler than solving the standard Bellman equations
because the action in each state is fixed by the policy

The simplified Bellman equation is

Ui(s) = R(s)+ γ∑
s′

T (s,πi(s),s
′)Ui(s

′)
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Properties of Policy Iteration (cont’d)

The simplified set of Bellman Equations is linear
(n equations with n unknowns can be solved in
O(n3) time)

If n3 is prohibitive, we can use modified policy iteration
which uses the simplified Bellman update k times

Ui+1(s) = R(s)+ γ∑
s′

T (s,πi(s),s
′)Ui(s

′)
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Issues revisited (and summary)

How to represent the environment?
(transition model)

How to automate the decision making process?
(Policy iteration and value iteration)
Can also use asynchronous policy iteration and work on a
subset of states

How to make useful simplifying assumptions?
(Full observability, stationary policy, infinite horizon etc.)
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