
Conditional Planning

Section 12.4

Sec. 12.4 – p.1/18

Outline

Fully observable environments

Partially observable environments

Conditional POP

Sec. 12.4 – p.2/18

Uncertainty

The agent might not know what the initial state is

The agent might not know the outcome of its actions

The plans will have branches rather than being
straight line plans, includes conditional steps�

� if � ���� �� then � �
	 �� else � �
	 �

Full observability: The agent knows what state it
currently is, does not have to execute an
observation action
Simply get plans ready for all possible contingencies

Sec. 12.4 – p.3/18

Modeling uncertainty

Actions sometimes fail � disjunctive effects

Example: moving left sometimes fails
Action(Left,PRECOND: AtR,EFFECT: AtL

�

AtR)

Conditional effects: effects are conditioned on
secondary preconditions
Action(Suck, PRECOND: ;,
EFFECT: (when AtL: CleanL)

�

(when AtR: CleanR))

Actions may have both disjunctive and conditional
effects:
Moving sometimes dumps dirt on the destination
square only when that square is clean
Action(Left, PRECOND: AtR;,
EFFECT: AtL

�

(AtL

�

when CleanL: � CleanL))
Sec. 12.4 – p.4/18

The vacuum world example

Double Murphy world
the vacuum cleaner sometimes deposits dirt
when it moves to a clean destination square
sometimes deposits dirt if SUCK is applied to a
clean square

The agent is playing a game against nature

Sec. 12.4 – p.5/18

Perform and-or search

LOOPGOAL

LOOP

Left Suck

GOAL
Right Suck

Left
Suck

Sec. 12.4 – p.6/18

The plan

In the “double-Murphy” vacuum world, the plan is:

[
Left,
if AtL

�

CleanL

�

CleanR
then []
else Suck

]

Sec. 12.4 – p.7/18

And-or Search Algorithm

function AND-OR-GRAPH-SEARCH (problem)
returns a conditional plan, or failure

OR-SEARCH(INITIAL-STATE[problem], problem, [])

function OR-SEARCH (state, problem, path)
returns a conditional plan, or failure

if GOAL-TEST[problem](state) then return the empty plan
if state is on path then return failure
for each action, state-set in SUCCESSORS [problem](state) do
plan � AND-SEARCH (state, problem, [state | path])
if plan

��� failure then return [action | plan]
return failure

Sec. 12.4 – p.8/18

And-or Search Algorithm

function AND-SEARCH (state-set, problem, path)
returns a conditional plan, or failure

for each ��� in state-set do

� ��� �� � OR-SEARCH(

�� , problem, path)
if plan � failure then return failure

return
**[if �
	

**[if then � ��� �	

**[if else if ���

**[if else if then � ��� ��

**[if else if else . . . if �� � 	

**[if else if else . . . if then � ��� � � 	

**[if else if else . . . if else � ��� �]

Sec. 12.4 – p.9/18

Triple Murhpy vacuum world

The vacuum cleaner sometimes deposits dirt when
it moves to a clean destination square

It sometimes deposits dirt if suck is applied to a
clean square

+ move sometimes fails

Sec. 12.4 – p.10/18

First level of the search

Left Suck

GOAL

Sec. 12.4 – p.11/18

Triple Murphy vacuum world

No acyclic solutions

A cyclic solution is to try going left until it works. Use
a label.

[

��
� : Left, if atR then

�
� else if CleanL then [] else Suck]

Sec. 12.4 – p.12/18

Partially observable environments

The agent knows only a certain amount of the actual
state (e.g., local sensing only, does not know about
the other squares)

Automatic sensing: at every time step the agent
gets all the available percepts
Active sensing: percepts are obtained only by
executing specific sensory actions

Belief state: The set of possible states that the agent
can be in

“Alternate double Murphy world”: dirt can
sometimes be left behind when the agent leaves a
clean square

Sec. 12.4 – p.13/18

Part of the search

Left
CleanL ~CleanL

Suck

Right

Suck

CleanR ~CleanR

Sec. 12.4 – p.14/18

Conditional POP (CNLP algorithm)

GOALA

atL cleanL
cleanR

INIT

LEFT

atL
cleanL
cleanR

atL ~cleanL

Dangling Edge

Sec. 12.4 – p.15/18

Conditional POP (CNLP algorithm)

GOALA

atL cleanL
cleanR

GOALB

atL cleanL
cleanR

INIT

LEFT

atL
cleanL
cleanR

atL ~cleanL

Duplicate the goal
and label it

Sec. 12.4 – p.16/18

Conditional POP (CNLP algorithm)

GOALA

atL cleanL
cleanR

GOALB

atL cleanL
cleanR

INIT

LEFT

atL
cleanL
cleanR

atL ~cleanL

SUCK

Sec. 12.4 – p.17/18

Comments

Classical planning is NP

Conditional planning is harder than NP

Had to go back to state space search

Many problems are intractable

Sec. 12.4 – p.18/18

	Outline
	Uncertainty
	Modeling uncertainty
	The vacuum world example
	Perform and-or search
	The plan
	And-or Search Algorithm
	And-or Search Algorithm
	Triple Murhpy vacuum world
	First level of the search
	Triple Murphy vacuum world
	Partially observable environments
	Part of the search
	Conditional POP (CNLP algorithm)
	Conditional POP (CNLP algorithm)
	Conditional POP (CNLP algorithm)
	Comments

