

Planning and Partial-Order Planning

Sections 11.1-11.3

Ch. 11a – p.1/49-

Outline

- Search vs. planning
- STRIPS operators
- Partial-order planning

Additional reference used for the slides: Weld, D.S. (1999). Recent advances in Al planning. *Al Magazine*, 20(2), 93-122. Consider the task *get milk, bananas, and a cordless drill* Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate

	Search	Planning
States	Lisp data structures	Logical sentences
Actions	Lisp code	Preconditions/outcomes
Goal	Lisp code	Logical sentence
		(conjunction)
Plan	Sequence from S_0	Constraints on actions

Planning systems do the following:

- 1. open up action and goal representation to allow selection
- 2. divide-and-conquer by subgoaling
- 3. relax requirement for sequential construction of solutions

Tidily arranged actions descriptions, restricted language

At(p) Sells(p,x)

BUY (x)

Have(x)

ACTION: Buy(x)PRECONDITION: At(p), Sells(p, x)EFFECT: Have(x) ACTION: Buy(x)PRECONDITION: At(p), Sells(p, x)EFFECT: Have(x)

[Note: this abstracts away many important details!]

Restricted language \implies efficient algorithm Precondition: conjunction of positive literals Effect: conjunction of literals

(A complete set of STRIPS operators can be translated into a set of successor-state axioms)

Partially ordered collection of steps with

- START step has the initial state description as its effect
- FINISH step has the goal description as its precondition
- causal links from outcome of one step to precondition of another
- temporal ordering between pairs of steps

A partially ordered plan is a 5-tuple (A, O, C, OC, UL)

- A is the set of actions that make up the plan. They are partially ordered.
- O is a set of ordering constraints of the form $A \prec B$. It means A comes before B.
- C is the set of causal links in the form (A, p, B) where A is the supplier action, where B is the consumer action, and p is the condition supplied. It is read as "A achieves p for B."

A partially ordered plan is a 5-tuple (A, O, C, OC, UL)

- OC is a set of open conditions, i.e., conditions that are not yet supported by causal links. It is of the form p for A where p is a condition and A is an action.
- UL is a set of unsafe links, i.e., causal links whose conditions might be undone by other actions.

A plan is *complete* iff every precondition is achieved, and there are no unsafe links. A precondition is *achieved* iff it is the effect of an earlier step and no *possibly intervening* step undoes it

In other words, a plan is complete when $OC \cup UL = \emptyset$.

 $OC \cup UL$ is referred to as the *flaws* in a plan.

When a causal link is established, the corresponding condition is said to be *closed*.

Ch. 11a – p.12/49-

Ch. 11a – p.13/49-

Ch. 11a – p.14/49-

Ch. 11a – p.15/49-

Ch. 11a – p.16/49-

Ch. 11a – p.17/49-

Operators on partial plans: close open conditions: add a link from an existing action to an open condition add a step to fulfill an open condition resolve threats: order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or if a conflict is unresolvable

function TREE-SEARCH (*problem, fringe*) returns a solution, or failure

fringe ← INSERT(MAKE-NODE(INITIAL-STATE [*problem*]),*fringe*) **loop do**

if EMPTY?(fringe) then return failure

node ← REMOVE-FIRST(*fringe*)

if GOAL-TEST[problem] applied to STATE[node] succeeds
 then return SOLUTION(node)

fringe ← INSERT-ALL(EXPAND(*node, problem*), *fringe*)

The initial state, goal state and the operators are given. The planner converts them to required structures.

Initial state: MAKE-MINIMAL-PLAN (*initial,goal*)

Goal-Test : SOLUTION?(plan)

SOLUTION? returns true iff OC and UL are both empty.

The successors function could either close an open condition or resolve a threat.

function SUCCESSORS (*plan*) **returns** *a* set of partially ordered plans

flaw-type \leftarrow SELECT-FLAW-TYPE (plan) if flaw-type is an open condition then $S_{need}, c \leftarrow$ SELECT-SUBGOAL (plan) return CLOSE-CONDITION (plan, operators, S_{need}, c) if flaw-type is a threat then $S_{threat}, S_i, c, S_j \leftarrow$ SELECT-THREAT(plan) return RESOLVE-THREAT (plan, S_{threat}, S_i, c, S_j)

```
function CLOSE-CONDITION (plan, operators, S_{need}, c)
returns a set of partially ordered plans
  plans \leftarrow \emptyset
 for each S_{add} from operators or STEPS(plan)
  that has c has an effect do
   new-plan \leftarrow plan
   if S_{add} is a newly added step from operators then
     add S_{add} to STEPS (new-plan)
     add START \prec S_{add} \prec FINISH to ORDERINGS (new-plan)
   add the causal link (S_{add}, c, S_{need}) to LINKS (new-plan)
   add the ordering constraint (S_{add} \prec S_{need}) to
      ORDERINGS (new-plan)
   add new-plan to plans
 end
```

return new-plans

function RESOLVE-THREAT (plan, S_{threat}, S_i, c, S_j) returns a set of partially ordered plans

 $plans \leftarrow \emptyset$ //Demotion: $new-plan \leftarrow plan$ add the ordering constraint ($S_{threat} \prec S_i$) to ORDERINGS (new-plan) if new-plan is consistent then add new-plan to plans//Promotion: $new-plan \leftarrow plan$ add the ordering constraint ($S_j \prec S_{threat}$) to ORDERINGS (new-plan) if new-plan is consistent then add new-plan to plans

return new-plans

Shopping example

Ch. 11a – p.25/49-

Ch. 11a – p.26/49-

Ch. 11a - p.27/49-

Now, the solution is a possible ordering of this plan. Those are:

2	3	4	1
2	3	1	4
2	4	3	1
2	4	1	3
2	1	3	4
2	1	4	3

It should not be possible to order GO(J,H) before any of the BUY actions.

This is a correct partially ordered plan. It is complete. The possible total orders are: 2 3 4 1 2 4 3 1

The agent has to go to Jim's first. It order of getting the items does not matter. Then it has to go back home.

Another shopping example

START

At(H) Sells(Hws,Drill) Sells(Sm,Milk) Sells(Sm,Ban)

Have(Milk)	at(H)	Have(ban)	Have(Drill)	
	FINISH			

Ch. 11a – p.31/49-

Ch. 11a – p.33/49-

A threatening step is a potentially intervening step that destroys the condition achieved by a causal link. E.g., GO(Sm,H) threatens At(Sm)

- Nondeterministic algorithm: backtracks at choice points on failure:
 - choice of S_{add} to achieve S_{need}
 - choice of demotion or promotion for threat resolution
 - selection of S_{need} is irrevocable
- POP is sound, complete, and systematic (no repetition)
- Extensions for disjunction, universals, negation, conditionals
- Particularly good for problems with many loosely related subgoals

- POP be made efficient with good heuristics derived from problem description
 - Which plan to select?
 - Which flaw to choose?
 - More after planning graphs
- Two additional POP examples follow. The flat tire example shows the effect of inserting an "impossible" action. The Sussman anomaly shows that "divide-and-conquer" is not always optimal.

```
Init(At(Flat,Axle) \land At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(REMOVE(spare,trunk),
   Precond: At(spare,trunk)
   Effect: \negAt(spare,trunk) \land At(spare,ground)
Action(REMOVE(flat,axle),
   Precond: At(flat,axle)
   Effect: \negAt(flat,axle) \land At(flat,ground)
Action(PUTON(spare,axle),
   Precond: At(spare,ground) \land \neg at(flat,axle)
   Effect: \negAt(spare,ground) \land At(spare,axle)
Action(LEAVEOVERNIGHT
   Precond:
   Effect: \negAt(spare,ground) \land \neg At(spare,axle)
          \negAt(spare,trunk) \land \neg At(flat,ground)
          \negAt(flat,axle)
```


The flat tire plan (cont'd)

The flat tire plan (cont'd)

Sussman anomaly

 $\sim On(x,z) \sim Clear(y)$

Clear(z) On(x,y)

Clear(x) On(x,z)

 PUTONTABLE(x)

 $\sim On(x,z)$

Clear(z) On(x,Table)

+ several inequality constraints

On(C,A) On(A,Table) Clear(B) On(B,Table) Clear(C)

Ch. 11a – p.44/49-

Ch. 11a - p.46/49-

Sussman anomaly (cont'd)

Sussman anomaly (cont'd)

Sussman anomaly (cont'd)

Ch. 11a – p.49/49-