
Planning and Partial-Order Planning

Sections 11.1-11.3
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Outline

Search vs. planning

STRIPS operators

Partial-order planning

Additional reference used for the slides:
Weld, D.S. (1999). Recent advances in AI planning.
AI Magazine, 20(2), 93-122.

Ch. 11a – p.2/49–



Search vs. planning

Consider the task get milk, bananas, and a cordless drill
Standard search algorithms seem to fail miserably:

START

Go to Pet Store

Go to School

Go to Supermarket

Go to Sleep

Read A Book

Sit in Chair

etc. etc.

Talk to Parrot

Buy a Dog

Go to Class

Buy Tuna Fish

Buy Arugula

Buy Milk

Sit Some More

Read A Book

... FINISH
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Search vs. planning (cont’d)

Search Planning

States Lisp data structures Logical sentences
Actions Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence

(conjunction)
Plan Sequence from S0 Constraints on actions
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Search vs. planning (cont’d)

Planning systems do the following:

1. open up action and goal representation to allow
selection

2. divide-and-conquer by subgoaling

3. relax requirement for sequential construction of
solutions
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STRIPS operators

Tidily arranged actions descriptions, restricted language

BUY (x)

At(p)      Sells(p,x)

Have(x)

ACTION: Buy(x)
PRECONDITION: At(p), Sells(p, x)
EFFECT: Have(x)
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STRIPS operators

ACTION: Buy(x)
PRECONDITION: At(p), Sells(p, x)
EFFECT: Have(x)

[Note: this abstracts away many important details!]

Restricted language =⇒ efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

(A complete set of STRIPS operators can be translated
into a set of successor-state axioms)
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Partially ordered plans

Partially ordered collection of steps with

START step has the initial state description as its
effect

FINISH step has the goal description as its
precondition

causal links from outcome of one step to
precondition of another

temporal ordering between pairs of steps
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Partially ordered plans (cont’d)

A partially ordered plan is a 5-tuple (A, O, C, OC, UL)

A is the set of actions that make up the plan. They
are partially ordered.

O is a set of ordering constraints of the form A ≺ B.
It means A comes before B.

C is the set of causal links in the form (A, p,B)
where A is the supplier action, where B is the
consumer action, and p is the condition supplied. It
is read as “A achieves p for B.”
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Partially ordered plans (cont’d)

A partially ordered plan is a 5-tuple (A, O, C, OC, UL)

OC is a set of open conditions, i.e., conditions that
are not yet supported by causal links. It is of the
form p for A where p is a condition and A is an
action.

UL is a set of unsafe links, i.e., causal links whose
conditions might be undone by other actions.
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Partially ordered plans (cont’d)

A plan is complete iff every precondition is achieved, and
there are no unsafe links. A precondition is achieved iff it
is the effect of an earlier step and no possibly intervening
step undoes it

In other words, a plan is complete when OC ∪ UL = ∅.

OC ∪ UL is referred to as the flaws in a plan.

When a causal link is established, the corresponding
condition is said to be closed.
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Example

START

FINISH

LeftShoeOn RightShoeOn

CleanLeftSock CleanRightSock

OC=
LeftShoeOn for FINISH
RightShoeOn for FINISH
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Example (cont’d)

START

LEFT SHOE

FINISH

LeftShoeOn

CleanLeftSock CleanRightSock

LeftSockOn

OC=
RightShoeOn for FINISH
LeftSockOn for LEFTSHOE

RightShoeOn
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Example (cont’d)

START

LEFT SOCK

LEFT SHOE

FINISH

LeftShoeOn

CleanLeftSock CleanRightSock

LeftSockOn

RightShoeOn

OC =
CleanLeftSock for LEFTSOCK
RightShoeOn for FINISH
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Example (cont’d)

START

LEFT SOCK

LEFT SHOE

FINISH

LeftShoeOn RightShoeOn

CleanLeftSock CleanRightSock

LeftSockOn

OC =
RightShoeOn for FINISH
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Example (cont’d)

START

LEFT SOCK

LEFT SHOE RIGHT SHOE

FINISH

LeftShoeOn RightShoeOn

CleanLeftSock CleanRightSock

LeftSockOn RightSockOn

OC =
RightSockOn for RIGHTSHOE
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Example (cont’d)

START

LEFT SOCK RIGHT SOCK

LEFT SHOE RIGHT SHOE

FINISH

LeftShoeOn RightShoeOn

CleanLeftSock CleanRightSock

LeftSockOn RightSockOn

OC =
CleanRightSock for RIGHTSOCK
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Example (cont’d)

START

LEFT SOCK RIGHT SOCK

LEFT SHOE RIGHT SHOE

FINISH

LeftShoeOn RightShoeOn

CleanLeftSock CleanRightSock

LeftSockOn RightSockOn

OC=
{ }
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Planning process

Operators on partial plans:
**** close open conditions:
**** **** add a link from an existing action to an
**** **** **** open condition
**** **** add a step to fulfill an open condition
**** resolve threats:
**** **** order one step wrt another to remove
**** **** **** possible conflicts

Gradually move from incomplete/vague plans to
complete, correct plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable
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POP is a search in the plan space

function TREE-SEARCH (problem, fringe)
returns a solution, or failure

fringe← INSERT(MAKE-NODE(INITIAL -STATE [problem]),fringe)
loop do

if EMPTY?(fringe) then return failure
node← REMOVE-FIRST(fringe)
if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)
fringe← INSERT-ALL (EXPAND(node, problem), fringe)
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POP algorithm specifics

The initial state, goal state and the operators are given.
The planner converts them to required structures.

Initial state:
MAKE-M INIMAL -PLAN (initial,goal)

Goal-Test :
SOLUTION?(plan)

SOLUTION? returns true iff OC and UL are both empty.
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POP algorithm specifics (cont’d)

The successors function could either close an open condition or
resolve a threat.

function SUCCESSORS(plan)
returns a set of partially ordered plans

flaw-type← SELECT-FLAW-TYPE (plan)
if flaw-type is an open condition then

Sneed, c← SELECT-SUBGOAL (plan)
return CLOSE-CONDITION (plan, operators, Sneed,c)

if flaw-type is a threat then
Sthreat, Si, c, Sj ← SELECT-THREAT(plan)
return RESOLVE-THREAT (plan, Sthreat, Si, c, Sj)
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POP algorithm specifics (cont’d)

function CLOSE-CONDITION (plan, operators, Sneed,c)
returns a set of partially ordered plans

plans← ∅
for each Sadd from operators or STEPS(plan)
that has c has an effect do
new-plan← plan
if Sadd is a newly added step from operators then

add Sadd to STEPS(new-plan)
add START ≺ Sadd ≺ FINISH to ORDERINGS (new-plan)

add the causal link (Sadd, c, Sneed) to L INKS (new-plan)
add the ordering constraint (Sadd ≺ Sneed) to

ORDERINGS (new-plan)
add new-plan to plans

end

return new-plans
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POP algorithm specifics (cont’d)

function RESOLVE-THREAT (plan, Sthreat, Si, c, Sj)
returns a set of partially ordered plans

plans← ∅
//Demotion:
new-plan← plan
add the ordering constraint (Sthreat ≺ Si) to ORDERINGS (new-plan)
if new-plan is consistent then

add new-plan to plans
//Promotion:
new-plan← plan
add the ordering constraint (Sj ≺ Sthreat) to ORDERINGS (new-plan)
if new-plan is consistent then

add new-plan to plans

return new-plans
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Shopping example

Agenda:
  open subgoals:
    bought(A) for g
    bought(B) for g
    at(H) for g

BUY (?s, ?i)

  effects: bought(?i)
                  ~bought(~i)

The operators are:
GO (?x, ?y)
  preconditions: at(?x)

  preconditions: at(?s),

  effects: ~at(?x), at(?y)

new Agenda:
   open subgoals:
    bought(A) for g
    bought(B) for g
    at(J) for 1

GOAL

INIT

GO(J,H)

at(J)

~at(J)

at(H)

~bought(A)
~bought(B)

0

g

at(H)
bought(B)
bought(A)

1

The subgoals that are
currently open are 
italicized.

for at(H) for g

at(H)

GOAL

INIT

at(H)

GOAL

INIT

bought(B)
bought(A)

~bought(A)
~bought(B)

~bought(A)

~bought(B)

bought(A)

bought(B)

0

g

0

g

at(H)

add a go(J,H) action

INIT for at(H) for g
add a causal link from
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Shopping example (cont’d)

New agenda:
  open subgoals:

    at(H) for 2

add a go(J, H)
action

supply at(H) for 2 from INIT−0

GOAL

INIT

~at(H)

GO(J,H)

~at(J)

0

g

1

GO(H,J)2

~bought(A)
~bought(B)

GOAL

INIT

~at(H)

GO(J,H)

~at(J)

0

g

GO(H,J)2

~bought(A)
~bought(B)

at(H)

bought(A)

bought(B)

at(H)     bought(A) for g
    bought(B) for g

bought(A)

bought(B)

add a go(H,J) action    (2)

1

. . . 

at(J)

at(H)

at(H)

at(J)

at(H)
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Shopping example (cont’d)

GOAL

INIT

at(J)

bought(B)

~at(H)

GO(J,H)

~at(J)

BUY(J,A)

0

g

1

GO(H,J)2

3

 
new agenda:
  open subgoals:
    bought(B) for g
  ~bought(A) for 3

~bought(A)

support ~bought(A) from INIT−0

  at(J) for 3at(H)

at(J)

at(H)
bought(A)

~bought(A)
~bought(B)

GOAL

INIT

at(J)

bought(B)

~at(H)

GO(J,H)

~at(J)

BUY(J,A)

0

g

1

GO(H,J)2

3

 
new agenda:
  open subgoals:
    bought(B) for g
    at(J) for 3

bought(A)

~bought(A)

at(H)

at(J)

at(H)

Support at(J) from GO(H,J)−2

add BUY(J,A)     (3)
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Shopping example (cont’d)

new agenda:

    bought(B) for g
  ~bought(A) for 3

  open subgoals:

support ~bought(B) for 4 from INIT−0

new agenda:
  open subgoals:
    at(J) for 4

new agenda:
  open subgoals:
    none     

new agenda:
  open subgoals:
    ~bought(B) for 4

GOAL

INIT

~at(H)

GO(J,H)BUY(J,A) BUY(J,B)

0

g

1

GO(H,J)2

3 4
bought(B)bought(A)

at(H) ~at(J)

at(H)
~bought(A)

~bought(B)

at(J) at(J) at(J)

    at(J) for 4

support ~at(J) for 4
   from GO(H,J)−2

HAVEN’T CONSIDERED THE THREATS YET!

GOAL

INIT

bought(B)

~at(H)

GO(J,H)

~at(J)

BUY(J,A)

0

g

1

GO(H,J)2

3

 

~bought(A)

bought(A) at(H)

at(J) at(J)

at(H)

support at(J) from GO(H,J)−2

add BUY(J,B)    (4)
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Shopping example (cont’d)

GOAL

INIT

~at(H)

GO(J,H)BUY(J,A) BUY(J,B)

0

g

1

GO(H,J)2

3 4
bought(B)bought(A)

at(H) ~at(J)

at(H)
~bought(A)

~bought(B)

at(J) at(J) at(J)

2  3  4  1
2  3   1  4
2  4  3  1
2  4  1  3
2  1  3  4
2  1 4  3

Now, the solution is a possible ordering of this plan. Those are:

It should not be possible to order GO(J,H) before any of the BUY
actions.
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Shopping example (cont’d)

GOAL

INIT

~at(H)

GO(J,H)BUY(J,A) BUY(J,B)

0

g

1

GO(H,J)2

3 4
bought(B)bought(A)

at(H) ~at(J)

at(H)
~bought(A)

~bought(B)

at(J) at(J) at(J)

This is a correct partially ordered plan.
It is complete.
The possible total orders are:
2 3 4 1
2 4 3 1

The agent has to go to Jim’s first.
It order of getting the items does not matter.
Then it has to go back home.
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Another shopping example

FINISH

at(H)Have(Milk) Have(ban) Have(Drill)

START

At(H) Sells(Hws,Drill) Sells(Sm,Milk) Sells(Sm,Ban)
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Another shopping example (cont’d)

FINISH

at(H)Have(Milk) Have(ban) Have(Drill)

BUY(drill)

GO(H,Hws)

START

At(H) Sells(Hws,Drill) Sells(Sm,Milk) Sells(Sm,Ban)

At(Hws)
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Another shopping example (cont’d)

FINISH

at(H)

BUY(Milk) BUY (ban)

Have(Milk) Have(ban) Have(Drill)

GO(Hws,Sm)

BUY(drill)

GO(H,Hws)

START

At(H) Sells(Hws,Drill) Sells(Sm,Milk) Sells(Sm,Ban)

At(Hws)

At(Hws)

to BUY(Milk) to BUY(Ban)

At(Sm) At(Sm)
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Another shopping example (cont’d)

FINISH

GO (Sm,H)

at(H)

BUY(Milk) BUY (ban)

Have(Milk) Have(ban) Have(Drill)

GO(Hws,Sm)

BUY(drill)

GO(H,Hws)

START

At(H) Sells(Hws,Drill) Sells(Sm,Milk) Sells(Sm,Ban)

At(Hws)

At(Sm)

At(Hws)

to BUY(Milk) to BUY(Ban)

At(Sm) At(Sm)
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Another shopping example (cont’d)

FINISH

GO (Sm,H)

at(H)

BUY(Milk) BUY (ban)

Have(Milk) Have(ban) Have(Drill)

GO(Hws,Sm)

BUY(drill)

GO(H,Hws)

START

At(H) Sells(Hws,Drill) Sells(Sm,Milk) Sells(Sm,Ban)

At(Hws)

At(Sm)

At(Hws)

to BUY(Milk) to BUY(Ban)

At(Sm) At(Sm)

Ch. 11a – p.35/49–



Threats and promotion/demotion

A threatening step is a potentially intervening step
that destroys the condition achieved by a causal link.
E.g., GO(Sm,H) threatens At(Sm)

GO(Hws,Sm)

At(Sm)

BUY(Milk)

GO(Sm,H)

At(H)
~At(Sm)

Demotion: put before GO(Hws,Sm)

Promotion: put after GO(Hws,Sm)
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Properties of POP

Nondeterministic algorithm: backtracks at choice
points on failure:

choice of Sadd to achieve Sneed

choice of demotion or promotion for threat
resolution
selection of Sneed is irrevocable

POP is sound, complete, and systematic (no
repetition)

Extensions for disjunction, universals, negation,
conditionals

Particularly good for problems with many loosely
related subgoals
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Heuristics for POP

POP be made efficient with good heuristics derived
from problem description

Which plan to select?
Which flaw to choose?
More after planning graphs

Two additional POP examples follow. The flat tire
example shows the effect of inserting an
“impossible” action. The Sussman anomaly shows
that “divide-and-conquer” is not always optimal.
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The flat tire domain

Init(At(Flat,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(REMOVE(spare,trunk),
***Precond: At(spare,trunk)
***Effect: ¬At(spare,trunk) ∧ At(spare,ground)
Action(REMOVE(flat,axle),
***Precond: At(flat,axle)
***Effect: ¬At(flat,axle) ∧ At(flat,ground)
Action(PUTON(spare,axle),
***Precond: At(spare,ground) ∧ ¬ at(flat,axle)
***Effect: ¬At(spare,ground) ∧ At(spare,axle)
Action(LEAVEOVERNIGHT
***Precond:
***Effect: ¬At(spare,ground) ∧ ¬ At(spare,axle)
***Effect: ¬At(spare,trunk) ∧ ¬ At(flat,ground)
***Effect: ¬At(flat,axle)
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The flat tire plan

START

REMOVE(spare,trunk)

at(spare,ground)

~at(flat,axle)
at(spare,axle)

at(flat,axle)

at(spare,trunk)

at(spare,trunk)

FINISHPUTON(spare,axle)
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The flat tire plan (cont’d)

START

REMOVE(spare,trunk)

LEAVEOVERNIGHT
~at(flat,axle)
~at(flat,ground)
~at(spare,axle)
~at(spare,ground)
~at(spare,trunk)

at(spare,ground)

~at(flat,axle)
at(spare,axle)

at(flat,axle)

at(spare,trunk)

at(spare,trunk)

FINISHPUTON(spare,axle)
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The flat tire plan (cont’d)

START

REMOVE(spare,trunk)

at(spare,ground)

~at(flat,axle)
at(spare,axle)

at(flat,axle)

at(spare,trunk)

REMOVE(flat,axle)at(flat,axle)

at(spare,trunk)

FINISHPUTON(spare,axle)
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Sussman anomaly

B A
C

C
B
A

PUTONTABLE(x)

Clear(x)   On(x,z)

~On(x,z)

Clear(z)   On(x,Table)

PUTON(x,y)

Clear(x)   On(x,z)   Clear(y)

~On(x,z)   ~Clear(y)

Clear(z)   On(x,y)

+ several inequality constraints
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Sussman anomaly (cont’d)

FINISH

FINISH

B A
C

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

C
B
A
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Sussman anomaly (cont’d)

FINISH

FINISH

B A
C

C

C
A

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

C
B
A

If we try the first goal ( on(A,B) ) first, 
we can’t proceed without undoing work

B A

B
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Sussman anomaly (cont’d)

FINISH

FINISH

B A
C

B

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

C
B
A

If we try the second goal ( on (B,C) ) first,
we can’t proceed without undoing work.

A
C
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Sussman anomaly (cont’d)

FINISH

FINISH

B A
C

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

Clear(B)   On(B,z)   Clear(C)

PUTON(B,C)

C
B
A
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Sussman anomaly (cont’d)

FINISH

FINISH

B A
C

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

Clear(A)   On(A,z)   Clear(B)

Clear(B)   On(B,z)   Clear(C)

PUTON(A,B)

PUTON(B,C)

C
B
A

PUTON(A,B)
threatens 
Clear(B)

Order after
PUTON(B,C)
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Sussman anomaly (cont’d)

FINISH

FINISH

B A
C

PUTON(B,C)
threatens
Clear(C)

order after

PUTON(A,B)

On(A,B) On(B,C)

On(C,A)    On(A,Table)    Clear(B)    On(B,Table)   Clear(C)

Clear(A)   On(A,z)   Clear(B)

On(C,z)   Clear(C)

Clear(B)   On(B,z)   Clear(C)

PUTONTABLE(C)

PUTON(A,B)

PUTON(B,C)

C
B
A
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