Informed Search and Exploration

Chapter 4

I Outline

Best-first search
A* search
Heuristics

IDA* search
Hill-climbing

© o o o o 0

Simulated annealing

I Review: Tree search

function TREE-SEARCH (problem, fringe)
returns a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE [problem]),fringe)
loop do
if EMPTY ?2(fringe) then return failure
node + REMOVE-FIRST(fringe)
If GOAL-TEST[problem] applied to STATE[node] succeeds
then return SoLuTION(node)
fringe < INSERT-ALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion

—

I Best-first search

® |dea: use an evaluation function for each node
— estimate of “desirability”

= Expand most desirable unexpanded node

|Implementation:

fringe Is a queue sorted in decreasing order of
desirability

#® Special cases:
» (greedy search
s A* search

B

Romania with step costs in km

] Oradea
Neamt
]
87
d las
Arad
o 92
Sibiu 99 Fagaras
118 L VVadlui
80
Timisoara - Rimnicu Vilcea
142
o 211
111 1 Lugo Pitesti
]
70 98 .
. 85 Hirsova
] Mehadia 101 Ur ziceni
75 138 r 86
Buchar est
Dobreta [] 120
- 90
Craiova -] Giurgiu Eforie

I Greedy search

Evaluation function h(n) (heuristic) = estimate of
cost from n to the closest goal

#® E.g., hsip(n) = straight-line distance from n to
Bucharest

#® Greedy search expands the node that appears to be
closest to goal

—

I Greedy search example

I After expanding Arad

B> Gbiu D Ceind >

253 329 374

I After expanding Sibiu

Timisoara Qeind

329 374

CRimnicu V.
366 176 380 193

I After expanding Fagaras

Timisoara Qeind

329 374

Arad CRimnicu V.2
366 380 193

Gibu O PCBucharest D

253 0

I Properties of greedy search

Complete No — can get stuck in loops, e.g.,
lasi — Neamt — lasi —+ Neamt —
Complete in finite space with repeated-state
checking

Time O(b™), but a good heuristic can give dramatic
Improvement

#® Space O(b™)—keeps all nodes in memory
Optimal No

—

I A* search

|dea: avoid expanding paths that are already
expensive

Evaluation function f(n) = g(n) + h(n)

s ¢g(n) = cost so far to reach n
s h(n) = estimated cost to goal from n

s f(n) = estimated total cost of path through » to
goal

A* search uses an admissible heuristic
l.e., h(n) < h*(n) where h*(n) Is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G.)
E.g., hs.p(n) never overestimates the actu

al road
distance. |

I A* search example

>CAmd

366=0+366

I After expanding Arad

< Timisoera Qeind >

393=140+253 447=118+329 449=75+374

—

After expanding Sibiu

Timisoara Qeind

447=118+329 449=75+374

Qrad D CGagams > Qradea DOBCRimnicu V.

646=280+366 415=239+176 671=291+380 413=220+193

After expanding Rimnicu Vilcea

Timisoara Qeind

447=118+329 449=75+374

Arad
646=280+366 415=239+176 671=291+380

Craiova_ > Citesti_ > Gbiu___ D

526=366+160 417=317+100 553=300+253

After expanding Fagaras

Timisoara Qeind

447=118+329 449=75+374

Arad
646=280+366 671=291+380

Gou D CBucharest D CCreiova__DOBChitesti > CGbiu___>

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

After expanding Pitesti

Timisoara CZeiind

447=118+329 449=75+374

Arad
646=280+366 671=291+380

Gobiu > Bucharest_D Craiova__D <>

591=338+253 450=450+0 526=366+160 553=300+253

> Guehares > Craiva > Rimnicu VO

418=418+0 615=455+160 607=414+193

I Optimality of A* (standard proof)

Theorem: A* search is optimal

Suppose some suboptimal goal G, has been generated
and is in the queue. Let n be an unexpanded node on a
shortest path to an optimal goal (.

—

I Optimality. of A* (standard proof)

f(G2) = g(Ga) since h(G2) =0
g9(Gh) since GGy is suboptimal

AVARRY,

f(n) since h is admissible

Since f(G2) > f(n), A* will never select GG, for expansion |

I Optimality of A* (more intuitive)

|Lemma: A* expands nodes in order of increasing f
value

Gradually adds “f-contours” of nodes
(cf. breadth-first adds layers)
Contour 7 has all nodes with f = f;, where f; < f;11

Note: with uniform-cost search (A* search with
h(n)=0) the bands are “circular”;
with a more accurate heuristic, the bands will stretch
toward the goal and become more narrowly focused

around the optimal path

I F-contours

I Properties of A*

Complete Yes, unless there are infinitely many
nodes with f < f(G)

Time Exponential in
(relative error in h x length of solution)

Space Keeps all nodes in memory
Optimal Yes—cannot expand f; 1 until f; is finished

s A* expands all nodes with f(n) < C*
s A* expands some nodes with f(n) = C*

s A* expands no nodes with f(n) > C*

I Proof of lemma: Consistency

A heuristic I1s consistent if @
h(n) < c(n,a,n’) + h(n')
If ~ IS consistent, we have c(n, a, ”’& h(n)
f(n')y = g(n')+h(n)
= g(n) +c(n,a,n’) + h(n) her @
> g(n) + h(n)
= f(n)

l.e., f(n) IS nhondecreasing along any path.

I Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles

ho(n) = total Manhattan distance

(.e., no. of squares from desired location of each tile)

7 2 4 1 2
5 6 3 4 5
8 3 1 6 4 8
Start State Goadl State
hl(S) = 77
hQ(S) = 77

I Dominance

If ho(n) > hi(n) for all n (both admissible)
then ho dominates h; and iIs better for search

Typical search costs:
d=14 IDS = 3,473,941 nodes

A*(h1) = 539 nodes
A*(h2) = 113 nodes

d=24 IDS = 54,000,000,000 nodes
A*(h1) = 39,135 nodes
A*(he) = 1,641 nodes

I Relaxed problems

® Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

o |[f the rules of the 8-puzzle are relaxed so that a tile
can move anywhere, then hy(n) gives the shortest
solution

|If the rules are relaxed so that a tile can move to any
adjacent square, then hy(n) gives the shortest
solution

Key point: the optimal solution cost of a relaxed
problem is no greater than the optimal solution cost

of the real problem

I Relaxed problems (cont’d)

Well-known example: travelling salesperson problem
(TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

—

I Iterative Deepening A* (IDA*)

|dea: perform iterations of DFS. The cutoff is defined
based on the f-cost rather than the depth of a node.

Each iteration expands all nodes inside the contour
for the current f-cost, peeping over the contour to
find out where the contour lies.

—

I Iterative Deepening A* (IDA*)

function IDA* (problem)
returns a solution sequence

Inputs: problem, a problem
local variables:
f-limit, the current f-CosT limit
root, a node

root <— MAKE-NODE(INITIAL-STATE[problem])
f-limit < f-CosT(root)
loop do
solution, f-limit <~ DFS-CONTOUR(root, f-limit)
if solution is non-null then return solution
If f-limit = oo then return failure

—

I Iterative Deepening A* (IDA*)

function DFS-CONTOUR (node, f-limit)
returns a solution sequence and a new f-CosrT limit

inputs: node, a node
f-limit, the current f-CosT limit
local variables:
next-f, the f-CosT limit for the next contour, initally co

If f-Cost[node] > f-limit then return null, f-CosTt[node]
If GOAL-TEST[problem](STAaTE[n0de]) then return node, f-limit
for each node s in SuCCESSORS(nhode) do

solution, new-f «+ DFS-CONTOURC(S, f-limit)

If solution is non-null then return solution, f-limit

next-f + MIN(next-f, new-f)

return null, next-f |

I Properties of IDA*

Complete Yes, similar to A*.

Time Depends strongly on the number of different
values that the heuristic value can take on.
8-puzzle: few values, good performance
TSP: the heuristic value is different for every state.
Each contour only includes one more state than the
previous contour. If A* expands N nodes, IDA*

expands 1 +2 + ...+ N = O(N?) nodes.

Space It is DFS, it only requires space proportional
to the longest path it explores. If § Is the smallest
operator cost, and f* is the optimal solution cost,

then IDA* will require bf* /6 nodes.
Optimal Yes, similar to A* |

I Iterative improvement algorithms

|n many optimization problems, the path is
Irrelevant; the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP or, find
configuration satisfying constraints, e.g., timetable

[n such cases, can use iterative improvement
algorithms; keep a single “current” state, try to
Improve it

Constant space, suitable for online as well as offline

search

I Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

I Example: n-queens

Put n queens on an n x n board with no two queens on
the same row, column, or diagonal

Move a queen to reduce number of conflicts

I Hill-climbing (or gradient ascent/descent)

function HILL-CLIMBING (problem)
returns a state that is a local maximum

Inputs. problem, a problem
local variables:

current, a node

neighbor, a node

current < MAKE-NODE(INITIAL-STATE[problem])
loop do
neighbor < a highest-valued successor of current
If VALUE[neighbor] < VALUE[current] then return STATE[current]

current < neighbor

I Hill-climbing (cont’d)

“Like climbing Everest in thick fog with amnesia”

Problem: depending on initial state, can get stuck on
local maxima

objective function _
_— global maximum

shoulder

N\

local maximum
“flat” local maximum

» State space
current
state

|n continuous spaces, problems w/ choosing step |
size, slow convergence

I Simulated.annealing

function SIMULATED-ANNEALING (problem, schedule)
returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling the probability of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t < 1tooo do
T < schedule[t]
If 7" = 0 then return current
next < a randomly selected successor of current
AE < VALUE[next] - VALUE[current]

iIf AE > 0 then current <— next
else current < next only with probability eAZ/T |

I Properties of simulated annealing

|dea: escape local maxima by allowing some “bad”
moves but gradually decrease their size and
frequency

At fixed “temperature” T', state occupation probability

reaches Boltzman distribution p(x) = ae™*7

#® 7T decreased slowly enough — always reach best
state

|s this necessarily an interesting guarantee??

o Devised by Metropolis et al., 1953, for physical
process modelling

Widely used in VLSI layout, airline scheduling, etc. |

	Outline
	Review: Tree search
	Best-first search
	Romania with step costs in km
	Greedy search
	Greedy search example
	After expanding Arad
	After expanding Sibiu
	After expanding Fagaras
	Properties of greedy search
	A* search
	A* search example
	After expanding Arad
	After expanding Sibiu
	After expanding Rimnicu Vilcea
	After expanding Fagaras
	After expanding Pitesti
	Optimality of A* (standard proof)
	Optimality of A* (standard proof)
	Optimality of A* (more intuitive)
	F-contours
	Properties of A*
	Proof of lemma: Consistency
	Admissible heuristics
	Dominance
	Relaxed problems
	Relaxed problems (cont'd)
	Iterative Deepening A* (IDA*)
	Iterative Deepening A* (IDA*)
	Iterative Deepening A* (IDA*)
	Properties of IDA*
	Iterative improvement algorithms
	Example: Travelling Salesperson Problem
	Example: n-queens
	Hill-climbing (or gradient ascent/descent)
	Hill-climbing (cont'd)
	Simulated annealing
	Properties of simulated annealing

