Informed Search and Exploration

Chapter 4

Outline

- Best-first search
- A* search
- Heuristics
- IDA* search
- Hill-climbing
- Simulated annealing

Review: Tree search

```
function Tree-Search (problem, fringe) returns a solution, or failure
```

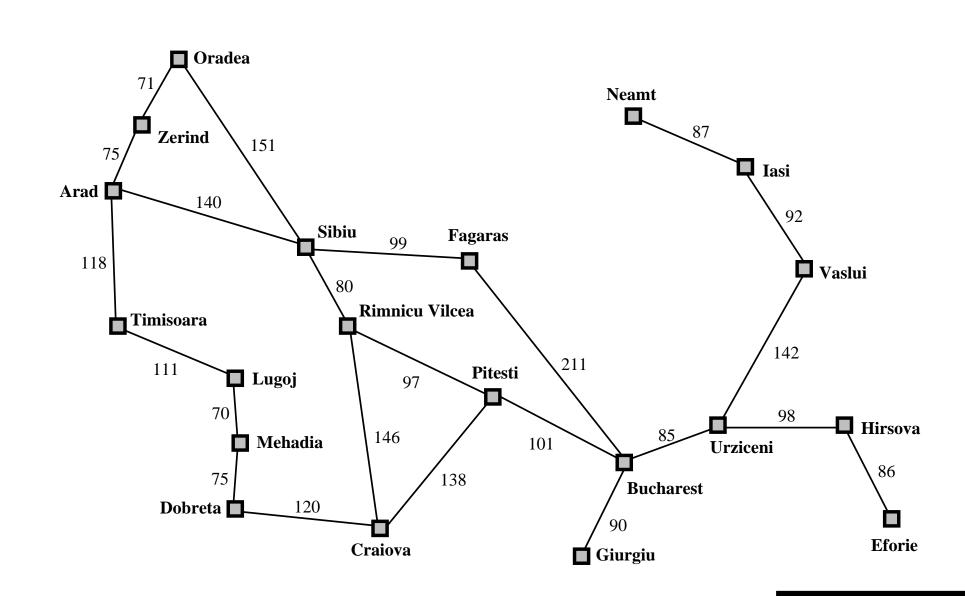
```
fringe ← Insert(Make-Node(Initial-State [problem]),fringe)
loop do
  if Empty?(fringe) then return failure
  node ← Remove-First(fringe)
  if Goal-Test[problem] applied to State[node] succeeds
    then return Solution(node)
  fringe ← Insert-All(Expand(node, problem), fringe)
```

A strategy is defined by picking the order of node expansion

Best-first search

- Idea: use an evaluation function for each node
 estimate of "desirability"
- Expand most desirable unexpanded node
- Implementation: fringe is a queue sorted in decreasing order of desirability
- Special cases:
 - greedy search
 - A* search

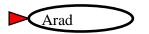
Romania with step costs in km



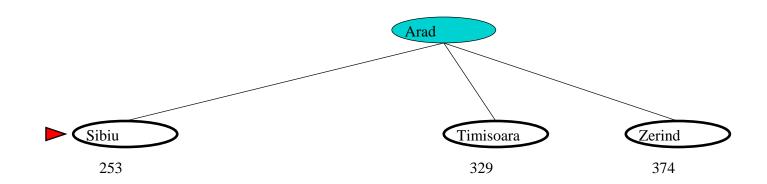
Greedy search

- Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal
- E.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest
- Greedy search expands the node that appears to be closest to goal

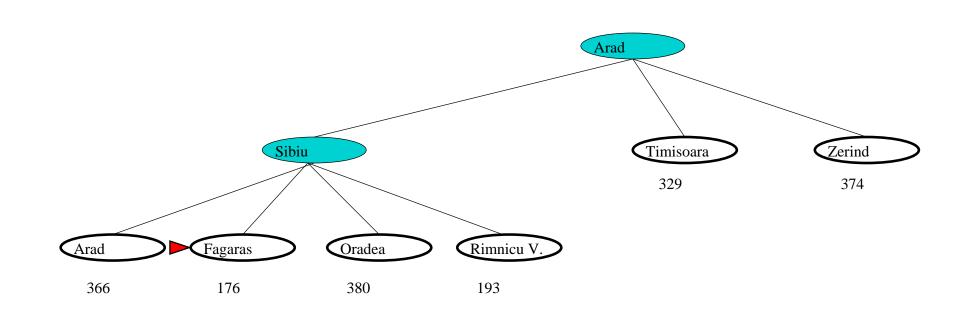
Greedy search example



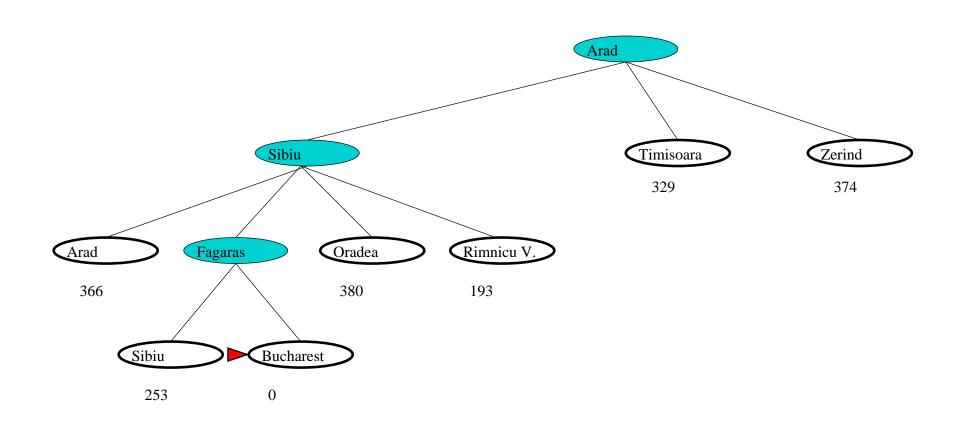
After expanding Arad



After expanding Sibiu



After expanding Fagaras



Properties of greedy search

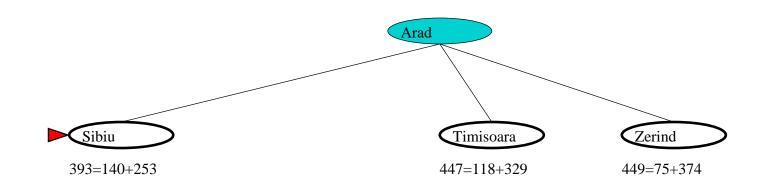
- Complete No can get stuck in loops, e.g., lasi → Neamt → lasi → Neamt → Complete in finite space with repeated-state checking
- Time $O(b^m)$, but a good heuristic can give dramatic improvement
- Space $O(b^m)$ —keeps all nodes in memory
- Optimal No

A* search

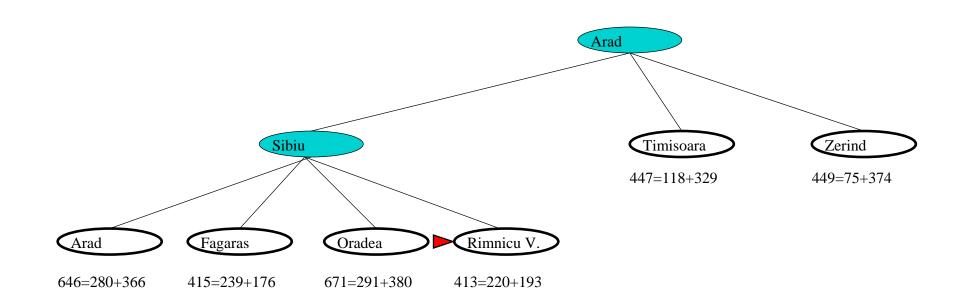
- Idea: avoid expanding paths that are already expensive
- **Evaluation function** f(n) = g(n) + h(n)
 - $g(n) = \cos t$ so far to reach n
 - h(n) = estimated cost to goal from n
 - f(n) = estimated total cost of path through n to goal
- A* search uses an *admissible* heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.) E.g., $h_{\mathrm{SLD}}(n)$ never overestimates the actual road distance.

A* search example

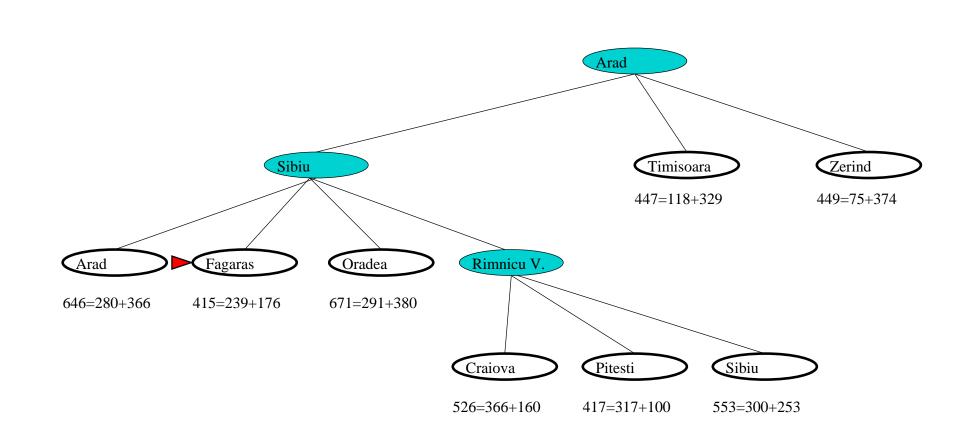
After expanding Arad



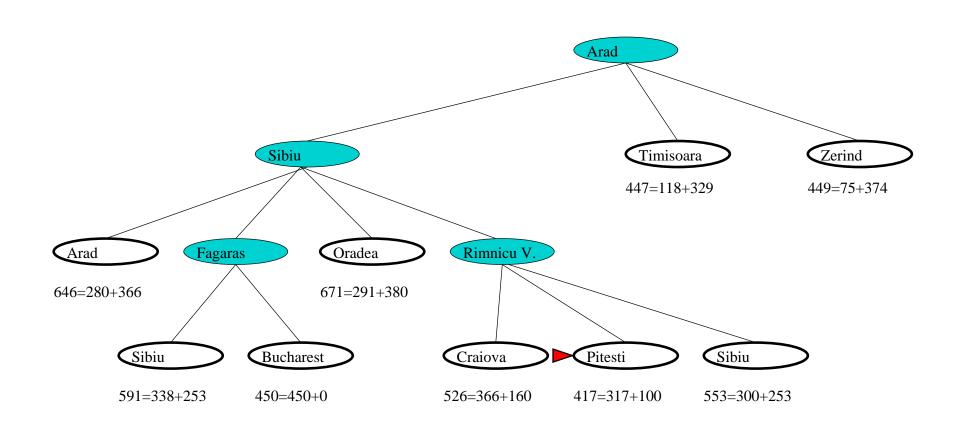
After expanding Sibiu



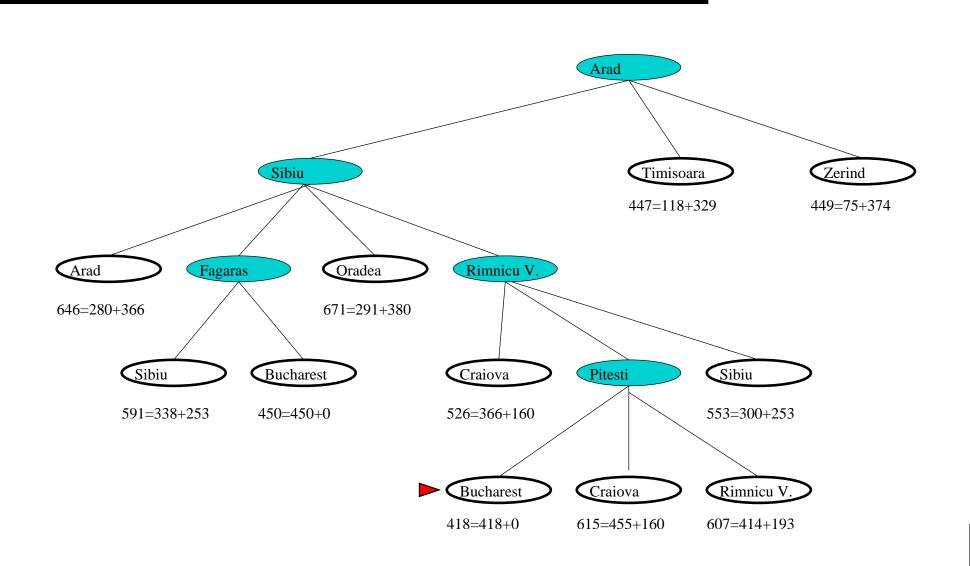
After expanding Rimnicu Vilcea



After expanding Fagaras



After expanding Pitesti

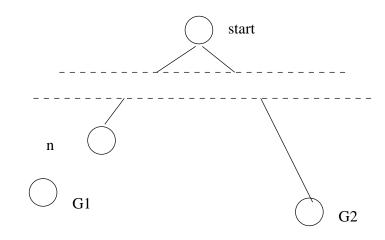


Optimality of A* (standard proof)

Theorem: A* search is optimal

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

Optimality of A* (standard proof)



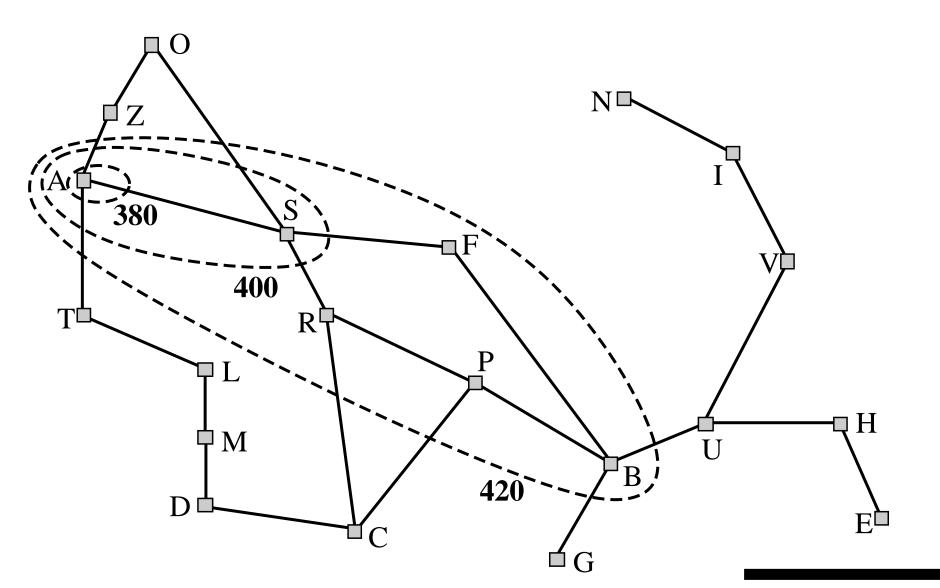
$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Optimality of A* (more intuitive)

- Lemma: A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$
- Note: with uniform-cost search (A* search with h(n)=0) the bands are "circular"; with a more accurate heuristic, the bands will stretch toward the goal and become more narrowly focused around the optimal path

F-contours



Properties of A*

- Complete Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time Exponential in (relative error in $h \times length$ of solution)
- Space Keeps all nodes in memory
- Optimal Yes—cannot expand f_{i+1} until f_i is finished
 - A* expands all nodes with $f(n) < C^*$
 - A* expands some nodes with $f(n) = C^*$
 - A* expands no nodes with $f(n) > C^*$

Proof of lemma: Consistency

A heuristic is *consistent* if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

I.e., f(n) is nondecreasing along any path.



h(n'

h(n)

c(n, a, n')

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total *Manhattan* distance

(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Start State

	1	2
3	4	5
6	7	8

Goal State

$$h_1(S) = ??$$

$$h_2(S) = ??$$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes
$$A^*(h_1) = 539 \text{ nodes}$$

$$A^*(h_2) = 113 \text{ nodes}$$

$$d=24 \text{ IDS} \approx 54,000,000,000 \text{ nodes}$$

$$A^*(h_1) = 39,135 \text{ nodes}$$

$$A^*(h_2) = 1,641 \text{ nodes}$$

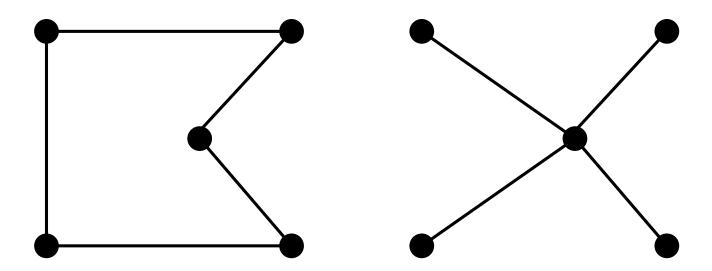
Relaxed problems

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem
- If the rules of the 8-puzzle are relaxed so that a tile can move *anywhere*, then $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution
- Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems (cont'd)

Well-known example: *travelling salesperson problem* (TSP)

Find the shortest tour visiting all cities exactly once



Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Iterative Deepening A* (IDA*)

- Idea: perform iterations of DFS. The cutoff is defined based on the f-cost rather than the depth of a node.
- Each iteration expands all nodes inside the contour for the current f-cost, peeping over the contour to find out where the contour lies.

Iterative Deepening A* (IDA*)

```
function IDA* (problem)
returns a solution sequence
  inputs: problem, a problem
  local variables:
    f-limit, the current f-Cost limit
    root, a node
  root \leftarrow Make-Node(Initial-State[problem])
  f-limit \leftarrow f-Cost(root)
  loop do
    solution, f-limit \leftarrow DFS-Contour(root, f-limit)
    if solution is non-null then return solution
    if f-limit = \infty then return failure
```

Iterative Deepening A* (IDA*)

node, a node

f-limit, the current *f*-Cost limit

inputs:

function DFS-Contour (node, f-limit) returns a solution sequence and a new f-Cost limit

```
local variables: next-f, the f-Cost limit for the next contour, initally \infty

if f-Cost[node] > f-limit then return null, f-Cost[node]

if Goal-Test[problem](State[node]) then return node, f-limit for each node s in Successors(node) do solution, new-f \leftarrow DFS-Contour(s, f-limit)

if solution is non-null then return solution, f-limit next-f \leftarrow Min(next-f, new-f)

return null, next-f
```

Properties of IDA*

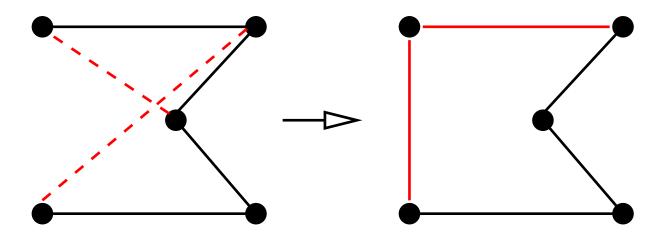
- Complete Yes, similar to A*.
- Time Depends strongly on the number of different values that the heuristic value can take on. 8-puzzle: few values, good performance TSP: the heuristic value is different for every state. Each contour only includes one more state than the previous contour. If A* expands N nodes, IDA* expands $1 + 2 + ... + N = O(N^2)$ nodes.
- Space It is DFS, it only requires space proportional to the longest path it explores. If δ is the smallest operator cost, and f^* is the optimal solution cost, then IDA* will require bf^*/δ nodes.
- Optimal Yes, similar to A*

Iterative improvement algorithms

- In many optimization problems, the path is irrelevant; the goal state itself is the solution
- Then state space = set of "complete" configurations; find optimal configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable
- In such cases, can use iterative improvement algorithms; keep a single "current" state, try to improve it
- Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

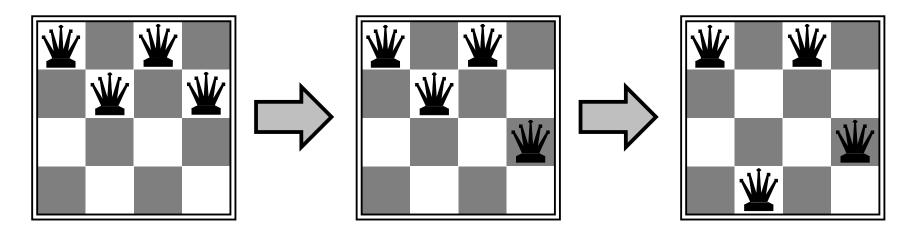
Start with any complete tour, perform pairwise exchanges



Example: n-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts



Hill-climbing (or gradient ascent/descent)

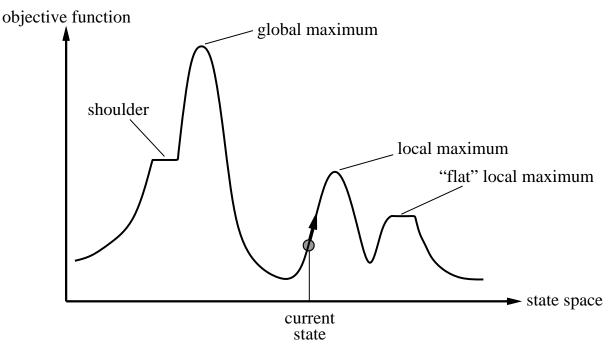
function HILL-CLIMBING (problem) returns a state that is a local maximum

```
inputs: problem, a problem
local variables:
   current, a node
   neighbor, a node
```

```
current ← Make-Node(Initial-State[problem])
loop do
  neighbor ← a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
  current ← neighbor
```

Hill-climbing (cont'd)

- "Like climbing Everest in thick fog with amnesia"
- Problem: depending on initial state, can get stuck on local maxima



In continuous spaces, problems w/ choosing step size, slow convergence

Simulated annealing

```
function Simulated-Annealing (problem, schedule)
returns a solution state
  inputs: problem, a problem
    schedule, a mapping from time to "temperature"
  local variables: current, a node
    next, a node
    T, a "temperature" controlling the probability of downward steps
  current ← Make-Node(Initial-State[problem])
  for t \leftarrow 1 to \infty do
    T \leftarrow schedule[t]
    if T=0 then return current
    next ← a randomly selected successor of current
    \Delta E \leftarrow \text{Value}[\textit{next}] - \text{Value}[\textit{current}]
    if \Delta E > 0 then current \leftarrow next
    else \mathit{current} \leftarrow \mathit{next} only with probability e^{\Delta E/T}
```

Properties of simulated annealing

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency
- At fixed "temperature" T, state occupation probability reaches Boltzman distribution $p(x) = \alpha e^{\frac{E(x)}{kT}}$
- ullet T decreased slowly enough \Longrightarrow always reach best state
- Is this necessarily an interesting guarantee??
- Devised by Metropolis et al., 1953, for physical process modelling
- Widely used in VLSI layout, airline scheduling, etc.