Informed Search and Exploration

Chapter 4

- Best-first search
- A* search
- Heuristics
- IDA* search
- Hill-climbing
- Simulated annealing

Review: Tree search

function Tree-Search (problem, fringe) returns a solution, or failure

```
fringe \(\leftarrow \operatorname{Insert}(\) Make-Node(Initial-State [problem]),fringe)
loop do
    if Емрту?(fringe) then return failure
    node \(\leftarrow\) REMOVE-FIRST(fringe)
    if Goal-Test[problem] applied to State[node] succeeds
        then return Solution(node)
    fringe \(\leftarrow\) InSERT-ALL(EXPAND(node, problem), fringe)
```

A strategy is defined by picking the order of node expansion

Best-first search

- Idea: use an evaluation function for each node - estimate of "desirability"
- \Rightarrow Expand most desirable unexpanded node
- Implementation:
fringe is a queue sorted in decreasing order of desirability
- Special cases:
- greedy search
- A* search

Romania with step costs in km

Greedy search

- Evaluation function $h(n)$ (heuristic) = estimate of cost from n to the closest goal
- E.g., $h_{\text {SLD }}(n)=$ straight-line distance from n to Bucharest
- Greedy search expands the node that appears to be closest to goal

Greedy search example

Arad

After expanding Arad

After expanding Sibiu

After expanding Fagaras

Properties of greedy search

- Complete No - can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow Complete in finite space with repeated-state checking
- Time $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
- Space $O\left(b^{m}\right)$ —keeps all nodes in memory
- Optimal No
- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n)=g(n)+h(n)$
- $g(n)=$ cost so far to reach n
- $h(n)=$ estimated cost to goal from n
- $f(n)=$ estimated total cost of path through n to goal
- A* search uses an admissible heuristic i.e., $h(n) \leq h^{*}(n)$ where $h^{*}(n)$ is the true cost from n. (Also require $h(n) \geq 0$, so $h(G)=0$ for any goal G.) E.g., $h_{\text {SLD }}(n)$ never overestimates the actual road distance.

A* search example

$366=0+366$

After expanding Arad

After expanding Sibiu

After expanding Rimnicu Vilcea

After expanding Fagaras

After expanding Pitesti

Optimality of A^{*} (standard proof)

Theorem: A* search is optimal
Suppose some suboptimal goal G_{2} has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_{1}.

Optimality of A^{*} (standard proof)

Since $f\left(G_{2}\right)>f(n), \mathbf{A}^{*}$ will never select G_{2} for expansion

Optimality of A* (more intuitive)

- Lemma: A* expands nodes in order of increasing f value
- Gradually adds " f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f=f_{i}$, where $f_{i}<f_{i+1}$
- Note: with uniform-cost search (A* search with $h(n)=0)$ the bands are "circular"; with a more accurate heuristic, the bands will stretch toward the goal and become more narrowly focused around the optimal path

F-contours

Properties of \mathbf{A}^{*}

- Complete Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time Exponential in (relative error in $h \times$ length of solution)
- Space Keeps all nodes in memory
- Optimal Yes—cannot expand f_{i+1} until f_{i} is finished
- A* expands all nodes with $f(n)<C^{*}$
- A^{*} expands some nodes with $f(n)=C^{*}$
- A^{*} expands no nodes with $f(n)>C^{*}$

Proof of lemma: Consistency

A heuristic is consistent if

$$
h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

If h is consistent, we have

$$
\begin{aligned}
f\left(n^{\prime}\right) & =g\left(n^{\prime}\right)+h\left(n^{\prime}\right) \\
& =g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \\
& \geq g(n)+h(n) \\
& =f(n)
\end{aligned}
$$

l.e., $f(n)$ is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

Start State

Goal State
$h_{1}(S)=? ?$
$h_{2}(S)=? ?$

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1} and is better for search

Typical search costs:

$$
\begin{array}{ll}
d=14 & \text { IDS }=3,473,941 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=539 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=113 \text { nodes } \\
d=24 & \text { IDS } \approx 54,000,000,000 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=39,135 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=1,641 \text { nodes }
\end{array}
$$

Relaxed problems

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem
- If the rules of the 8 -puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution
- Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems (cont'd)

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O\left(n^{2}\right)$ and is a lower bound on the shortest (open) tour

Iterative Deepening A* (IDA*)

- Idea: perform iterations of DFS. The cutoff is defined based on the f-cost rather than the depth of a node.
- Each iteration expands all nodes inside the contour for the current f-cost, peeping over the contour to find out where the contour lies.

Iterative Deepening A* (IDA*)

function IDA* (problem)
returns a solution sequence
inputs: problem, a problem
local variables:
f-limit, the current f-Cost limit root, a node
root \leftarrow Make-Node(Initial-State[problem])
f-limit $\leftarrow f$-Cost(root)
loop do
solution, f-limit \leftarrow DFS-Contour(root, f-limit)
if solution is non-null then return solution
if f-limit $=\infty$ then return failure

Iterative Deepening A* (IDA*)

function DFS-Contour (node, f-limit)
returns a solution sequence and a new f-Cost limit
inputs: node, a node
f-limit, the current f-Cost limit
local variables:
next-f, the f-Cost limit for the next contour, initally ∞
if f-Cost[node] $>f$-limit then return null, f-Cost[node]
if Goal-Test[problem](State%5Bnode%5D) then return node, f-limit
for each node s in Successors(node) do
solution, new-f \leftarrow DFS-Contour(s, f-limit)
if solution is non-null then return solution, f-limit
$n e x t-f \leftarrow \operatorname{Min}(n e x t-f, n e w-f)$
return null, next-f

Properties of IDA*

- Complete Yes, similar to A*.
- Time Depends strongly on the number of different values that the heuristic value can take on. 8-puzzle: few values, good performance TSP: the heuristic value is different for every state. Each contour only includes one more state than the previous contour. If A^{*} expands N nodes, IDA* expands $1+2+\ldots+N=O\left(N^{2}\right)$ nodes.
- Space It is DFS, it only requires space proportional to the longest path it explores. If δ is the smallest operator cost, and f^{*} is the optimal solution cost, then IDA* will require $b f^{*} / \delta$ nodes.
- Optimal Yes, similar to A^{*}

Iterative improvement algorithms

- In many optimization problems, the path is irrelevant; the goal state itself is the solution
- Then state space = set of "complete" configurations; find optimal configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable
- In such cases, can use iterative improvement algorithms; keep a single "current" state, try to improve it
- Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Example: n-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Hill-climbing (or gradient ascent/descent)

function Hill-Climbing (problem) returns a state that is a local maximum
inputs: problem, a problem
local variables:
current, a node neighbor, a node

```
current \leftarrow MAKE-NODE(InITIAL-STATE[problem])
loop do
    neighbor }\leftarrow\mathrm{ a highest-valued successor of current
    if VALUE[neighbor] \leq VALUE[current] then return STATE[current]
    current \leftarrow ~ neighbor
```


Hill-climbing (cont'd)

- "Like climbing Everest in thick fog with amnesia"
- Problem: depending on initial state, can get stuck on local maxima

- In continuous spaces, problems w/ choosing step size, slow convergence

Simulated annealing

function Simulated-Annealing (problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling the probability of downward steps
current \leftarrow Make-Node(Initial-State[problem])
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ schedule[$t]$
if $T=0$ then return current
next \leftarrow a randomly selected successor of current
$\Delta E \leftarrow$ Value[next] - Value[current]
if $\Delta E>0$ then current \leftarrow next
else current \leftarrow next only with probability $e^{\Delta E / T}$

Properties of simulated annealing

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency
- At fixed "temperature" T, state occupation probability reaches Boltzman distribution $p(x)=\alpha e^{\frac{E(x)}{k T}}$
- T decreased slowly enough \Longrightarrow always reach best state
- Is this necessarily an interesting guarantee??
- Devised by Metropolis et al., 1953, for physical process modelling
- Widely used in VLSI layout, airline scheduling, etc.

