Solving Problems by Searching
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I Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT (percept)
returns an action
inputs. percept a percept
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «— UPDATE-STATE (state,percept)

If seq is empty then do
goal +— FORMULATE-GOAL (state)
problem «— FORMULATE-PROBLEM (state,goal)
seq < SEARCH (problem)

action < FIRST (seq)

seq <+ REST (seq)

return action |



I Problem-solving agents (cont’d)

#® Restricted form of general agent

# This is offline problem solving; solution executed
“eyes closed”

#® Online problem solving involves acting without
complete knowledge

® Assumes: static, observable, discrete, deterministic

—



I Example: Romania

# On holiday in Romania; currently in Arad
# Flight leaves tomorrow from Bucharest

# Formulate goal:
be In Bucharest

#» Formulate problem:
states: various cities
actions: drive between cities

# Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras,

Bucharest



Example: Romania
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I Problem types

® Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a
seguence

® Non-observable = conformant problem
Agent may have no idea where it is; solution (if any) Is a
sequence

®» Nondeterministic and/or partially observable —
contingency problem
percepts provide new information about current state
solution is a tree or policy
often interleave search, execution

® Unknown state space — exploration problem (“online”)

—



Example: vacuum world
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I Example: vacuum world

#® Single-state, start in #5.
Solution??

® |Right, Suck]



I Example: vacuum world

o Conformant, startin {1,2,3,4,5,6,7,8}.
e.d., Right goesto {2,4,6,8}.
Solution??

® |Right, Suck, Le ft, Suck]



I Example: vacuum world

# Contingency, start in #5 or #7
Murphy’s Law: if a carpet can get dirty it will
Local sensing: dirt, location only.
Solution??

® |Right,if dirt then Suck]



I Single-state problem formulation

® A problem is defined by four items:

»# Iinitial state e.g., “at Arad”

» successor function S(x) = set of action—state pairs
e.g., S(Arad) = {< Arad — Zerind, Zerind >, ...}
# (goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)
» path cost (additive)
e.g., sum of distances, number of actions executed,

etc.
c(x,a,y) is the step cost, assumed to be > 0

® A solution Is a sequence of actions

leading from the initial state to a goal state |



I Selecting a state space

® Real world is absurdly complex
= state space must be abstracted for problem solving

°

(Abstract) state = set of real states

°

(Abstract) action = complex combination of real actions
e.g., “Arad — Zerind” represents a complex set

of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad” must
get to some real state “in Zerind”

® (Abstract) solution =
set of real paths that are solutions in the real world

® Each abstract action should be “easier” than the original

problem!



I Example: vacuum world state space graph
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I Example: vacuum world state space graph

# states: integer dirt and robot locations (ignore dirt
amounts)

actions: Left, Right, Suck, NoOp
goal test: no dirt

o o

# path cost: 1 per action (0 for NoOp)



I Example: The 8-puzzle
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I Example: The 8-puzzle

# states: integer locations of tiles (ignore intermediate
positions)

# actions: move blank left, right, up, down (ignore
unjamming etc.)

#® (goal test: = goal state (given)
# path cost: 1 per move
# Note: optimal solution of n-Puzzle family is NP-hard

—



I Example: robotic assembly




I Example: robotic assembly

# states: real-valued coordinates of
robot joint angles
parts of the object to be assembled

°

actions: continuous motions of robot joints

°

goal test: complete assembly with no robot included!
#® path cost: time to execute

—



I Tree search.algorithms

Basic idea: offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)



I Tree search.algorithms

function TREE-SEARCH (problem, strategy)
returns a solution, or failure

initialize the search tree using the initial state of problem
loop do
If there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
If the node contains a goal state
then return the corresponding solution
else expand the node and add the resulting
nodes to the search tree
end

—



I Tree search example
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I Implementation: states vs. nodes

PARENT-NODE

ACTION = right
DEPTH = 6
PATH-COST = 6

s Il 4 Node




I Implementation: states vs. nodes

#® A state is a (representation of) a physical
configuration

# A node Is a data structure constituting part of a
search tree includes parent, children, depth, path
cost g(z)

# States do not have parents, children, depth, or path
cost!

# The EXPAND function creates new nodes, filling in
the various fields and using the SUCCESSORFN of the
problem to create the corresponding states.

—



I Implementation: general tree search

function TREE-SEARCH (problem, fringe)
returns a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE [problem]),fringe)
loop do
If EMPTY ?2(fringe) then return failure
node <+ REMOVE-FIRST(fringe)
If GOAL-TEST[problem] applied to STATE[node] succeeds
then return SoLuTION(node)
fringe «— INSERT-ALL(ExXPAND(node, problem), fringe)

—



I Implementation: general tree search

function EXPAND (node, problem)
returns a set of nodes

successors < the empty set
for each < action, result> in
SUCCESSOR-FN [problem(STATE[n0ode]) do

S «— a new NODE
STATE[S] «+ result
PARENT-NODE[S] <+ node
ACTIONJ[S] «+ action

PATH-CoOsST[S] «+ PATH-CosT[node] + STEP-CosT(node,action,s)

DEPTH[S] «+ DEPTH[node] +1

add s to successors
return successors



I Search strategies

#® A strategy Is defined by picking the order of node

expansion
# Strategies are evaluated along the following

dimensions:

s completeness—does it always find a solution if
one exists?

s time complexity—number of nodes
generated/expanded

s Space complexity—maximum number of nodes
INn memory

s optimality—does it always find a least-cost

solution? |



I Search strategies

# Time and space complexity are measured in terms
of

s b—maximum branching factor of the search tree
s d —depth of the least-cost solution

s m —maximum depth of the state space
(may be ~o)

—



I Uninformed search strategies

Uninformed strategies use only the information available
In the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
lterative deepening search

© o o o o 0

Iterative broadening search (not in the textbook)

—



I Breadth-first search

# Expand shallowest unexpanded node

# Implementation: fringe is a FIFO queue, i.e., new
successors go at end



I Progress of breadth-first search
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I Properties.of breadth-first search

# Complete: Yes (if b is finite)

® Time:b+b>+0°+.. .+ b2+ b(0% - 1) =00, i.e.,
number of nodes generated is exponential in d

® Space: O(b**1!) (keeps every node in memory)

# Optimal: Yes (if cost = 1 per step); not optimal in
general

Space Is the big problem; can easily generate nodes at

10MB/sec

so 24hrs = 860GB.



I Uniform-cost search

#® Expand least-cost unexpanded node
# |[mplementation: fringe = queue ordered by path cost
# Equivalent to breadth-first if step costs all equal

—



I Properties of uniform-cost search

# Complete: Yes, if step cost > ¢

#® Time: # of nodes with ¢ < cost of optimal solution,
O(b1+LC*/eJ>
where C* Is the cost of the optimal solution

#® Space: # of nodes with ¢ < cost of optimal solution,
O(b1+LC*/eJ>

# Optimal: Yes—nodes expanded in increasing order
of g(n)

—



I Depth-first search

#® Expand deepest unexpanded node

# |[mplementation: fringe = LIFO gueue,
l.e., put successors at front



I Progress. of depth-first search
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I Properties.of depth-first search

# Complete: No: fails in infinite-depth spaces, spaces
with loops
Modify to avoid repeated states along path
= complete in finite spaces

® Time: O(b™): terrible if m iIs much larger than d
but if solutions are dense, may be much faster than
breadth-first

#® Space: O(bm), I.e., linear space!
# Optimal: No

—



I Depth-limited search

# = depth-first search with depth limit {,
l.e., hodes at depth [ have no successors

# A recursive implementation is shown on the next
page



I Depth-limited search

function DEPTH-LIMITED-SEARCH (problem, limit)
returns a solution, or failure/cutoff

return RECURSIVE-DLS(MAKE-NODE( INITIAL-STATE[problem]),
problem,limit)

function RECURSIVE-DL S (node, problem, limit)
returns a solution, or failure/cutoff
cutoff-occured? «— false

If GOAL-TEST[problem](STATE[node]) then return SoLuTION(node)
elseif DEPTH[node]=limit then return cutoff

else for each successor in ExPAND(node, problem) do
result +— RECURSIVE-DL S(successor, problem, limit)
elseif result +# failure then return result

If cutoff-occurred? then return cutoff else return failure

If result = cutoff then cutoff-occurred? « true



I Properties of depth-limited search

® Complete: No (similar to DFS)

o Time: O(b), where [ is the depth-limit

® Space: O(bl), I.e., linear space (similar to DFS)
# Optimal: No

—



I Iterative deepening search

# Do iterations of depth-limited search starting with a
limit of O . If you fail to find a goal with a particular
depth limit, increment it and continue with the
iterations.

#® Combines the linear space complexity of DFS with
the completeness property of BFS.

—



I Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem)
returns a solution, or failure
Inputs: problem, a problem

for depth <+ 0 to oo do
result < DEPTH-LIMITED-SEARCH(problem, depth)
If result = cutoff then return result



I Iterative deepening search
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I Properties of iterative deepening search

Complete: Yes
Time: db* + (d — D) + ... +b% = O(b%)
Space: O(bd)

Optimal: Yes, if step cost =1
Can be modified to explore uniform-cost tree

© o o o

Numerical comparison of the number of nodes generated
for b = 10 and d = 5, solution at far right:

N(IDS) = 50+ 400 + 3,000 + 20,000 + 100, 000
— 123,450

N(BFS) = 10+ 100 + 1,000 + 10,000 + 100, 000 + 999, 990 |
= 1,111,100



I Iterative broadening search

# |terative deepening is iterations of DFS with a depth
cutoff. Iterative broadening is iterations of DFS with
a breadth cutoff.

# |terate c from 2 to b, where b Is the maximum
branching factor. At every iteration, take only ¢
children of every node expanded, simply discard the
remaining children.

# Algorithm??
#® Properties??

—



I Summary.of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, ifl > d Yes
Time pitl  plFLOT/e b™ b’ be
Space pa+1 pltLC /el bm bl bd
Optimal? Yes* Yes* No No Yes

—



I Repeated states

Failure to detect repeated states can turn a linear
problem into an exponential one!
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I Graph search

function GRAPH-SEARCH (problem, fringe)
returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE [problem]),fringe)
loop do
If EMPTY ?(fringe) then return failure
node «— REMOVE-FIRST(fringe)
If GOAL-TEST[problem] applied to STATE[node] succeeds
then return SoLuTION(node)
If STATE[node] is not in closed then
add STATE[node] to closed
fringe < INSERT-ALL(EXPAND(Node, problem), fringe)

B



I Summary

# Problem formulation usually requires abstracting
away real-world detalils to define a state space that
can feasibly be explored

# Variety of uninformed search strategies

# |terative deepening search uses only linear space
and not much more time than other uninformed
algorithms

—
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