Solving Problems by Searching

Chapter 3

I Outline

Problem-solving agents
Problem types

Problem formulation
Example problems

© o o o ©

Basic search algorithms

I Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT (percept)
returns an action
inputs. percept a percept
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «— UPDATE-STATE (state,percept)

If seq is empty then do
goal +— FORMULATE-GOAL (state)
problem «— FORMULATE-PROBLEM (state,goal)
seq < SEARCH (problem)

action < FIRST (seq)

seq <+ REST (seq)

return action |

I Problem-solving agents (cont’d)

#® Restricted form of general agent

This is offline problem solving; solution executed
“eyes closed”

#® Online problem solving involves acting without
complete knowledge

® Assumes: static, observable, discrete, deterministic

—

I Example: Romania

On holiday in Romania; currently in Arad
Flight leaves tomorrow from Bucharest

Formulate goal:
be In Bucharest

#» Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras,

Bucharest

Example: Romania

] Oradea
Neamt
]
87
d las
Arad
o 92
Sibiu 99 Fagaras
118 L VVadlui
80
Timisoara - Rimnicu Vilcea
142
s 211
111 7 Lugo Pitesti
]
70
' a5 8 Hirsova
] Mehadia 101 Ur ziceni
75 138 7 86
Buchar est
Dobreta [] 120
= 90
Craiova] Giurgiu Eforie

I Problem types

® Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a
seguence

® Non-observable = conformant problem
Agent may have no idea where it is; solution (if any) Is a
sequence

®» Nondeterministic and/or partially observable —
contingency problem
percepts provide new information about current state
solution is a tree or policy
often interleave search, execution

® Unknown state space — exploration problem (“online”)

—

Example: vacuum world

°Q0 °Q0
Q\ (o)

I Example: vacuum world

#® Single-state, start in #5.
Solution??

® |Right, Suck]

I Example: vacuum world

o Conformant, startin {1,2,3,4,5,6,7,8}.
e.d., Right goesto {2,4,6,8}.
Solution??

® |Right, Suck, Le ft, Suck]

I Example: vacuum world

Contingency, start in #5 or #7
Murphy’s Law: if a carpet can get dirty it will
Local sensing: dirt, location only.
Solution??

® |Right,if dirt then Suck]

I Single-state problem formulation

® A problem is defined by four items:

»# Iinitial state e.g., “at Arad”

» successor function S(x) = set of action—state pairs
e.g., S(Arad) = {< Arad — Zerind, Zerind >, ...}
(goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)
» path cost (additive)
e.g., sum of distances, number of actions executed,

etc.
c(x,a,y) is the step cost, assumed to be > 0

® A solution Is a sequence of actions

leading from the initial state to a goal state |

I Selecting a state space

® Real world is absurdly complex
= state space must be abstracted for problem solving

°

(Abstract) state = set of real states

°

(Abstract) action = complex combination of real actions
e.g., “Arad — Zerind” represents a complex set

of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad” must
get to some real state “in Zerind”

® (Abstract) solution =
set of real paths that are solutions in the real world

® Each abstract action should be “easier” than the original

problem!

I Example: vacuum world state space graph

S S
= 2 (EF 1=
ng& 'SD CIS -
T 1T D

I Example: vacuum world state space graph

states: integer dirt and robot locations (ignore dirt
amounts)

actions: Left, Right, Suck, NoOp
goal test: no dirt

o o

path cost: 1 per action (0 for NoOp)

I Example: The 8-puzzle

/ 2 4 1 2

S 6 3 4 5

8 3 1 6 7 8
Start State Goal State

I Example: The 8-puzzle

states: integer locations of tiles (ignore intermediate
positions)

actions: move blank left, right, up, down (ignore
unjamming etc.)

#® (goal test: = goal state (given)
path cost: 1 per move
Note: optimal solution of n-Puzzle family is NP-hard

—

I Example: robotic assembly

I Example: robotic assembly

states: real-valued coordinates of
robot joint angles
parts of the object to be assembled

°

actions: continuous motions of robot joints

°

goal test: complete assembly with no robot included!
#® path cost: time to execute

—

I Tree search.algorithms

Basic idea: offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

I Tree search.algorithms

function TREE-SEARCH (problem, strategy)
returns a solution, or failure

initialize the search tree using the initial state of problem
loop do
If there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
If the node contains a goal state
then return the corresponding solution
else expand the node and add the resulting
nodes to the search tree
end

—

I Tree search example

() Theinitial state Arad

o expand%
CSibiu > Czerind >

(c) After expanding Sibiu

Timisoara

I Implementation: states vs. nodes

PARENT-NODE

ACTION = right
DEPTH = 6
PATH-COST = 6

s Il 4 Node

I Implementation: states vs. nodes

#® A state is a (representation of) a physical
configuration

A node Is a data structure constituting part of a
search tree includes parent, children, depth, path
cost g(z)

States do not have parents, children, depth, or path
cost!

The EXPAND function creates new nodes, filling in
the various fields and using the SUCCESSORFN of the
problem to create the corresponding states.

—

I Implementation: general tree search

function TREE-SEARCH (problem, fringe)
returns a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE [problem]),fringe)
loop do
If EMPTY ?2(fringe) then return failure
node <+ REMOVE-FIRST(fringe)
If GOAL-TEST[problem] applied to STATE[node] succeeds
then return SoLuTION(node)
fringe «— INSERT-ALL(ExXPAND(node, problem), fringe)

—

I Implementation: general tree search

function EXPAND (node, problem)
returns a set of nodes

successors < the empty set
for each < action, result> in
SUCCESSOR-FN [problem(STATE[n0ode]) do

S «— a new NODE
STATE[S] «+ result
PARENT-NODE[S] <+ node
ACTIONJ[S] «+ action

PATH-CoOsST[S] «+ PATH-CosT[node] + STEP-CosT(node,action,s)

DEPTH[S] «+ DEPTH[node] +1

add s to successors
return successors

I Search strategies

#® A strategy Is defined by picking the order of node

expansion
Strategies are evaluated along the following

dimensions:

s completeness—does it always find a solution if
one exists?

s time complexity—number of nodes
generated/expanded

s Space complexity—maximum number of nodes
INn memory

s optimality—does it always find a least-cost

solution? |

I Search strategies

Time and space complexity are measured in terms
of

s b—maximum branching factor of the search tree
s d —depth of the least-cost solution

s m —maximum depth of the state space
(may be ~o)

—

I Uninformed search strategies

Uninformed strategies use only the information available
In the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
lterative deepening search

© o o o o 0

Iterative broadening search (not in the textbook)

—

I Breadth-first search

Expand shallowest unexpanded node

Implementation: fringe is a FIFO queue, i.e., new
successors go at end

I Progress of breadth-first search

. n/'\o
DB © DO
® ® DO ® B ©

I Properties.of breadth-first search

Complete: Yes (if b is finite)

® Time:b+b>+0°+.. .+ b2+ b(0% - 1) =00, i.e.,
number of nodes generated is exponential in d

® Space: O(b**1!) (keeps every node in memory)

Optimal: Yes (if cost = 1 per step); not optimal in
general

Space Is the big problem; can easily generate nodes at

10MB/sec

so 24hrs = 860GB.

I Uniform-cost search

#® Expand least-cost unexpanded node
|[mplementation: fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal

—

I Properties of uniform-cost search

Complete: Yes, if step cost > ¢

#® Time: # of nodes with ¢ < cost of optimal solution,
O(b1+LC*/eJ>
where C* Is the cost of the optimal solution

#® Space: # of nodes with ¢ < cost of optimal solution,
O(b1+LC*/eJ>

Optimal: Yes—nodes expanded in increasing order
of g(n)

—

I Depth-first search

#® Expand deepest unexpanded node

|[mplementation: fringe = LIFO gueue,
l.e., put successors at front

I Progress. of depth-first search

D E
D E

&
O
@ v
. ®
®

I Properties.of depth-first search

Complete: No: fails in infinite-depth spaces, spaces
with loops
Modify to avoid repeated states along path
= complete in finite spaces

® Time: O(b™): terrible if m iIs much larger than d
but if solutions are dense, may be much faster than
breadth-first

#® Space: O(bm), I.e., linear space!
Optimal: No

—

I Depth-limited search

= depth-first search with depth limit {,
l.e., hodes at depth [have no successors

A recursive implementation is shown on the next
page

I Depth-limited search

function DEPTH-LIMITED-SEARCH (problem, limit)
returns a solution, or failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),
problem,limit)

function RECURSIVE-DL S (node, problem, limit)
returns a solution, or failure/cutoff
cutoff-occured? «— false

If GOAL-TEST[problem](STATE[node]) then return SoLuTION(node)
elseif DEPTH[node]=limit then return cutoff

else for each successor in ExPAND(node, problem) do
result +— RECURSIVE-DL S(successor, problem, limit)
elseif result +# failure then return result

If cutoff-occurred? then return cutoff else return failure

If result = cutoff then cutoff-occurred? « true

I Properties of depth-limited search

® Complete: No (similar to DFS)

o Time: O(b), where [is the depth-limit

® Space: O(bl), I.e., linear space (similar to DFS)
Optimal: No

—

I Iterative deepening search

Do iterations of depth-limited search starting with a
limit of O . If you fail to find a goal with a particular
depth limit, increment it and continue with the
iterations.

#® Combines the linear space complexity of DFS with
the completeness property of BFS.

—

I Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem)
returns a solution, or failure
Inputs: problem, a problem

for depth <+ 0 to oo do
result < DEPTH-LIMITED-SEARCH(problem, depth)
If result = cutoff then return result

I Iterative deepening search

e B D
T

Jp
D D

I Properties of iterative deepening search

Complete: Yes
Time: db* + (d — D) + ... +b% = O(b%)
Space: O(bd)

Optimal: Yes, if step cost =1
Can be modified to explore uniform-cost tree

© o o o

Numerical comparison of the number of nodes generated
for b = 10 and d = 5, solution at far right:

N(IDS) = 50+ 400 + 3,000 + 20,000 + 100, 000
— 123,450

N(BFS) = 10+ 100 + 1,000 + 10,000 + 100, 000 + 999, 990 |
= 1,111,100

I Iterative broadening search

|terative deepening is iterations of DFS with a depth
cutoff. Iterative broadening is iterations of DFS with
a breadth cutoff.

|terate c from 2 to b, where b Is the maximum
branching factor. At every iteration, take only ¢
children of every node expanded, simply discard the
remaining children.

Algorithm??
#® Properties??

—

I Summary.of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, ifl > d Yes
Time pitl plFLOT/e b™ b’ be
Space pa+1 pltLC /el bm bl bd
Optimal? Yes* Yes* No No Yes

—

I Repeated states

Failure to detect repeated states can turn a linear
problem into an exponential one!

(@ (b) (©)

I Graph search

function GRAPH-SEARCH (problem, fringe)
returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE [problem]),fringe)
loop do
If EMPTY ?(fringe) then return failure
node «— REMOVE-FIRST(fringe)
If GOAL-TEST[problem] applied to STATE[node] succeeds
then return SoLuTION(node)
If STATE[node] is not in closed then
add STATE[node] to closed
fringe < INSERT-ALL(EXPAND(Node, problem), fringe)

B

I Summary

Problem formulation usually requires abstracting
away real-world detalils to define a state space that
can feasibly be explored

Variety of uninformed search strategies

|terative deepening search uses only linear space
and not much more time than other uninformed
algorithms

—

	Outline
	Problem-solving agents
	Problem-solving agents (cont'd)
	Example: Romania
	Example: Romania
	Problem types
	Example: vacuum world
	Example: vacuum world
	Example: vacuum world
	Example: vacuum world
	Single-state problem formulation
	Selecting a state space
	Example: vacuum world state space graph
	Example: vacuum world state space graph
	Example: The 8-puzzle
	Example: The 8-puzzle
	Example: robotic assembly
	Example: robotic assembly
	Tree search algorithms
	Tree search algorithms
	Tree search example
	Implementation: states vs.~nodes
	Implementation: states vs.~nodes
	Implementation: general tree search
	Implementation: general tree search
	Search strategies
	Search strategies
	Uninformed search strategies
	Breadth-first search
	Progress of breadth-first search
	Properties of breadth-first search
	Uniform-cost search
	Properties of uniform-cost search
	Depth-first search
	Progress of depth-first search
	Properties of depth-first search
	Depth-limited search
	Depth-limited search
	Properties of depth-limited search
	Iterative deepening search
	Iterative deepening search
	Iterative deepening search
	Properties of iterative deepening search
	Iterative broadening search
	Summary of algorithms
	Repeated states
	Graph search
	Summary

