CS4811 Neural Network Learning Algorithms

From: Stuart Russell and Peter Norvig
Artificial Intelligence a Modern Approach
Prentice Hall Series in Artificial Intelligence, 2003, 2010.

Single perceptron learning

The following is a gradient descent learning algorithm for perceptrons, assuming a differentiable
activation function g. For threshold perceptrons, the factor ¢’(in) is omitted from the weight
update. NEURAL-NET-HYPOTHESIS returns a hypothesis that computes the network output for
any given example.

function PERCEPTRON-LEARNING(examples, network)
returns a perceptron hypothesis

inputs:
examples, a set of examples, each with input x = z1, ..., x, and output y
network, a perceptron with weights 1W;, 7 = 0, ... n and activation function g
repeat
for each ¢ in examples do
in «— Yi_o Wj xjle] // Compute the weighted sum.
err < yle] — g(in) // Compute the error.
W; — W; +cx Err x ¢'(in) x x;e] // Adjust the weights.
until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(network)

Note that x4, . . ., z,, are the real inputs and z is the bias input which is always 1. We’ll take ¢’ (in)
to be 1 for simplicity.

The stopping criterion can be a combination of the following:

e Convergence: The algorithms stops when every example is classified correctly.

e Number of iterations: The algorithm stops when a preset iteration limit is reached. This puts
a time limit in case the network does not converge.

e Inadequate progress; The algorithm stops when the maximum weight change is less than
a preset ¢ value. The procedure can find a minimum squared error solution even when the
minimum error is not zero.

The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks.

function BACK-PROP-LEARNING(examples, network)
returns a neural network

inputs:
examples, a set of examples, each with input vector X and output vector y.
network, a multilayer network with L layers, weights IV} ;, activation function g
local variables: A, a vector of errors, indexed by network node

for each weight w; ; in network do
wj ; < a small random number
repeat
for each example (x,y) in examples do
/* Propagate the inputs forward to compute the outputs. */

for each node 7 in the input layer do /I Simply copy the input values.
a; < T;
for | =2to Ldo // Feed the values forward.

for each node j in layer [do
iy = 32 Wi j
aj — g(in;)
for each node 5 in the output layer do // Compute the error at the output.
Alj] = g'(ing) x (y; — a;)
/* Propagate the deltas backward from output layer to input layer */
for(=L—-1to1ldo
for each node 7 in layer [do
Ali] += g'(ing) 35 wi; Alj] // “Blame” a node as much as its weight.
/* Update every weight in network using deltas. */
for each weight w; ; in network do
Wi — wij + o x a; X A[j] /I Adjust the weights.
until some stopping criterion is satisfied

return network

