
CS4811 Neural Network Learning Algorithms
From: Stuart Russell and Peter Norvig
Artificial Intelligence a Modern Approach
Prentice Hall Series in Artificial Intelligence, 2003, 2010.

Single perceptron learning

The following is a gradient descent learning algorithm for perceptrons, assuming a differentiable
activation function g. For threshold perceptrons, the factor g′(in) is omitted from the weight
update. NEURAL-NET-HYPOTHESIS returns a hypothesis that computes the network output for
any given example.

function PERCEPTRON-LEARNING(examples, network)
returns a perceptron hypothesis

inputs:
examples, a set of examples, each with input x = x1, . . . , xn and output y
network, a perceptron with weights Wj , j = 0, . . . n and activation function g

repeat
for each e in examples do

in← ∑n
j=0Wj xj[e] // Compute the weighted sum.

err ← y[e]− g(in) // Compute the error.
Wj ← Wj + c× Err × g′(in)× xj[e] // Adjust the weights.

until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(network)

Note that x1, . . . , xn are the real inputs and x0 is the bias input which is always 1. We’ll take g′(in)
to be 1 for simplicity.

The stopping criterion can be a combination of the following:

• Convergence: The algorithms stops when every example is classified correctly.

• Number of iterations: The algorithm stops when a preset iteration limit is reached. This puts
a time limit in case the network does not converge.

• Inadequate progress; The algorithm stops when the maximum weight change is less than
a preset ε value. The procedure can find a minimum squared error solution even when the
minimum error is not zero.

1



The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks.

function BACK-PROP-LEARNING(examples, network)
returns a neural network

inputs:
examples, a set of examples, each with input vector x and output vector y.
network, a multilayer network with L layers, weights Wj,i, activation function g

local variables:∆, a vector of errors, indexed by network node

for each weight wi,j in network do
wi,j ← a small random number

repeat
for each example (x,y) in examples do

/* Propagate the inputs forward to compute the outputs. */
for each node i in the input layer do // Simply copy the input values.

ai ← xi

for l = 2 to L do // Feed the values forward.
for each node j in layer l do

inj ←
∑

iwi,j ai

aj ← g(inj)
for each node j in the output layer do // Compute the error at the output.

∆[j]← g′(inj)× (yj − aj)
/* Propagate the deltas backward from output layer to input layer */
for l = L− 1 to 1 do

for each node i in layer l do
∆[i]← g′(ini)

∑
j wi,j ∆[j] // “Blame” a node as much as its weight.

/* Update every weight in network using deltas. */
for each weight wi,j in network do

wi,j ← wi,j + α× ai ×∆[j] // Adjust the weights.
until some stopping criterion is satisfied

return network

2


