CS4811 Neural Network Learning Algorithms

From: Stuart Russell and Peter Norvig Artificial Intelligence a Modern Approach Prentice Hall Series in Artificial Intelligence, 2003, 2010.

Single perceptron learning

The following is a gradient descent learning algorithm for perceptrons, assuming a differentiable activation function g. For threshold perceptrons, the factor g'(in) is omitted from the weight update. NEURAL-NET-HYPOTHESIS returns a hypothesis that computes the network output for any given example.

function PERCEPTRON-LEARNING(*examples, network*) **returns** a perceptron hypothesis

inputs:

examples, a set of examples, each with input $\mathbf{x} = x_1, \ldots, x_n$ and output y *network*, a perceptron with weights W_j , $j = 0, \ldots n$ and activation function g

repeat

for each e in examples do

 $in \leftarrow \sum_{j=0}^{n} W_j x_j[e]$ $err \leftarrow y[e] - g(in)$ $W_j \leftarrow W_j + c \times Err \times g'(in) \times x_j[e]$

// Compute the weighted sum.
// Compute the error.
// Adjust the weights.

until some stopping criterion is satisfied **return** NEURAL-NET-HYPOTHESIS(*network*)

Note that x_1, \ldots, x_n are the real inputs and x_0 is the bias input which is always 1. We'll take g'(in) to be 1 for simplicity.

The stopping criterion can be a combination of the following:

- Convergence: The algorithms stops when every example is classified correctly.
- Number of iterations: The algorithm stops when a preset iteration limit is reached. This puts a time limit in case the network does not converge.
- Inadequate progress; The algorithm stops when the maximum weight change is less than a preset ϵ value. The procedure can find a minimum squared error solution even when the minimum error is not zero.

The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks.

```
function BACK-PROP-LEARNING(examples, network) returns a neural network
```

inputs:

examples, a set of examples, each with input vector \mathbf{x} and output vector \mathbf{y} . *network,* a multilayer network with L layers, weights $W_{j,i}$, activation function g **local variables:** Δ , a vector of errors, indexed by network node

for each weight $w_{i,j}$ in *network* do $w_{i,j} \leftarrow a \text{ small random number}$ repeat for each example (x,y) in *examples* do /* Propagate the inputs forward to compute the outputs. */ for each node *i* in the input layer do // Simply copy the input values. $a_i \leftarrow x_i$ for l = 2 to L do // Feed the values forward. for each node j in layer l do $in_j \leftarrow \sum_i w_{i,j} a_i$ $a_j \leftarrow g(in_j)$ for each node *j* in the output layer do // Compute the error at the output. $\Delta[j] \leftarrow g'(in_j) \times (y_j - a_j)$ /* Propagate the deltas backward from output layer to input layer */ for l = L - 1 to 1 do for each node *i* in layer *l* do $\Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j]$ // "Blame" a node as much as its weight. /* Update every weight in network using deltas. */ for each weight $w_{i,j}$ in *network* do $w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]$ // Adjust the weights. until some stopping criterion is satisfied

return network