
Section 19.1 Version Spaces

CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University

Outline

Version spaces

Inductive learning

Supervised learning

Example with playing cards

I Consider a deck of cards where a subset of these cards are
“good cards.” The concept we are trying to learn is the set of
good cards.

I Someone shows cards one by one, and tells whether it is a
good card or not.

I We maintain the description of the concept as version space.
Everytime we see an example, we narrow down the version
space to more accurately represent the concept.

The main components of the version space algorithm

I Initialize using two ends of the hypothesis space:
the most general hypothesis and
the most specific hypotheses

I When a positive example is seen, minimally generalize the
most specific hypothesis.

I When a negative example is seen, minimally specialize the
most general hypothesis.

I Stop when the most specific hypothesis and the most general
hypothesis are the same.
At this point, the algorithm has converged, and the target
concept has been found.

I This is essentially a bidirectional search in the hypothesis
space.

Progress of the version space algorithm

Simplified representation for the card problem

For simplicity, we represent a concept by rs, where r is the rank
and s is the suit.

r : a, n, f , 1, . . . , 10, j , q, k
s : a, b, r ,♣,♠,♦,♥

For example,
n♠ represents the cards that have a number rank, and spade suit.
aa represents all the cards: any rank, any suit.

Starting hypotheses in the card domain

I The most general hypothesis is:
“Any card is a rewarded card.”
This will cover all the positive examples, but will not be able
to eliminate any negative examples

I The most specific hypothesis possible is the list of rewarded
cards
“The rewarded cards are: 4♣, 7♣, 2♠”
This will correctly sort all the examples in the training set.
However, it is overly specific, and will not be able to sort any
new examples.

Extension of a hypothesis

The extension of an hypothesis h is
the set of objects that verifies h.

For instance,
the extension of f♠ is: {j♠, q♠, k♠}, and
the extension of aa is the set of all cards.

More general/specific relation

Let h1 and h2 be two hypotheses in H.

Hypothesis h1 is more general than h2 iff the extension of h1 is a
proper superset of the extension of h2.

For instance,
aa is more general than f♦,
f♥ is more general than q♥,
fr and nr are not comparable.

The inverse of the “more general” relation is the “more specific”
relation.

The “more general” relation defines a partial ordering on the
hypotheses in H.

A subset of the partial order for cards

G-Boundary and S-Boundary

Let V be a version space.

I A hypothesis in V is most general iff no hypothesis in V is
more general.

I G-boundary G of V : Set of most general hypotheses in V .

I A hypothesis in V is most specific iff no hypothesis in V is
more general.

I S-boundary S of V : Set of most specific hypotheses in V .

Example: The starting hypothesis space

4♣ is a positive example

7♣ is the next positive example

7♣ is the next positive example (cont’d)

7♣ is the next positive example (cont’d)

5♥ is a negative example

5♥ is a negative example (cont’d)

After 3 examples – 2 positive (4♣, 7♣), 1 negative (5♥)

G and S , and all hypotheses in between form the version space.

I If a hypothesis between G and S disagrees with an example x ,
then a hypothesis G or S would also disagree with x , hence
would have to be removed.

I If there were a hypothesis not in this set which agreed with all
examples, then it would have to be either no more specific
than any member of G but then it would be in G or no more
general than some member of S but then it would be in S .

At this stage

At this stage

2♠ is the next positive example

j♠ is the next negative example

The result

The version space algorithm

function Version-Space-Learning (examples)
returns a version space

V ← the set of all hypotheses
for each example e in examples do

if V is not empty then
V ← Version-Space-Update(V ,e)

return V

function Version-Space-Update (V , e)
returns an updated version space

V ← { h ∈ V : h is consistent with e }

Another example

I Objects defines by their attributes:
object (size, color, shape)

I sizes = {large, small}
I colors = {red, white, blue}
I shapes = {sphere, brick, cube}

I If the target concept is a “red ball,” then size should not
matter, color should be red, and shape should be sphere.

I If the target concept is “ball,” then size or color should not
matter, shape should be sphere.

A portion of the concept space

More methods for generalization

I Replacing constants with variables. For example,
color(ball,red) generalizes to color(X,red).

I Dropping conditions from a conjunctive expression. E.g.,
shape(X, round) ∧ size(X, small) ∧ color(X, red)
generalizes to shape(X, round) ∧ color(X, red).

I Adding a disjunct to an expression. For example,
shape(X, round) ∧ size(X, small) ∧ color (X, red)
generalizes to
shape(X, round) ∧ size(X, small) ∧
(color(X, red) ∨ (color(X, blue)).

I Replacing a property with its parent in a class hierarchy. If we
know that primary-color is a superclass of red, then
color(X, red) generalizes to
color(X, primary-color).

Learning the concept of a “red ball”

G: { obj (X, Y, Z)}
S: {}

positive: obj (small, red, sphere)
G: { obj (X, Y, Z)}
S: { obj (small, red, sphere) }

negative: obj (small, blue, sphere)
G: { obj (large, Y, Z), obj (X, red, Z),
obj (X, white, Z) obj (X,Y, brick), obj (X, Y, cube)}

S: { obj (small, red, sphere) }

delete from G every hypothesis that is neither more general than
nor equal to a hypothesis in S.
G: { obj (X, red, Z) }
S: { obj (small, red, sphere) }

Learning the concept of a “red ball” (cont’d)

G: { obj (X, red, Z) }
S: { obj (small, red, sphere) }

positive: obj (large, red, sphere)
G: { obj (X, red, Z) }
S: { obj (X, red, sphere) }

negative: obj (large, red, cube)
G: { obj (small, red, Z), obj (X, red, sphere), obj
(X, red, brick) }
S: { obj (X, red, sphere) }

delete from G every hypothesis that is neither more general than
nor equal to a hypothesis in S.
G: { obj (X, red, sphere) }
S: { obj (X, red, sphere) }
Converged to a single concept.

Comments on version space learning

I It is a bi-directional search. One direction is specific to general
and is driven by positive instances. The other direction is
general to specific and is driven by negative instances.

I It is an incremental learning algorithm. The examples do not
have to be given all at once (as opposed to learning decision
trees.) The version space is meaningful even before it
converges.

I The order of examples matters for the speed of convergence.

I As is, it cannot tolerate noise (misclassified examples), the
version space might collapse.
Can address by maintaining several G and S sets,

Inductive learning

I Inductive learning is the process of learning a generalization
from a set of examples (training set).

I Concept learning is a typical inductive learning problem: given
examples of some concept, such as cat, soybean disease, or
good stock investment, we attempt to infer a definition that
will allow the learner to correctly recognize future instances of
that concept.

I The concept is a description of a set where everything inside
the set is a positive examples, and everything outside the set
is a negative example.

Supervised learning

I Inductive concept learning is called supervised learning
because we assume that there is a “teacher” who classified
the training data: the learner is told whether an instance is a
positive or negative example.

I This definition might seem counter intuitive. If the teacher
knows the concept, why doesnt s/he tell us directly and save
us all the work?

I Answer: The teacher only knows the classification, the learner
has to find out what the classification is.

I Imagine an online store: there is a lot of data concerning
whether a customer returns to the store. The information is
there in terms of attributes and whether they come back or
not. However, it is up to the learning system to characterize
the concept, e.g.,
If a customer bought more than 4 books, s/he will return.
If a customer spent more than $50, s/he will return.

Summary

I Neural networks, decision trees, and version spaces are
examples of supervised learning.

I The hypothesis space defines what will be learned.

Sources for the slides

I AIMA textbook (3rd edition)

I AIMA slides:
http://aima.cs.berkeley.edu/

I Luger’s AI book (5th edition)

I Jean-Claude Latombe’s CS121 slides
http://robotics.stanford.edu/ latombe/cs121

(Accessed prior to 2009)

	Version spaces
	Inductive learning
	Supervised learning

