
Section 18.3 Learning Decision Trees

CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University



Outline

Attribute-based representations

Decision tree learning as a search problem

A greedy algorithm



Decision trees

I A decision tree allows a classification of an object by testing
its values for certain properties.

I An example is the 20 questions game.
A player asks questions to an answerer and tries to guess the
object that the answerer chose at the beginning of the game.

I The objective of decision tree learning is to learn a tree of
questions which determines class membership at the leaf of
each branch.

I There was an online example at the following address:
http://myacquire.com/aiinc/whalewatcher/



Possible decision tree



Possible decision tree (cont’d)



What might the original data look like?



The search problem

This is an attribute-based representation where examples are
described by attribute values (Boolean, discrete, continuous, etc.)

Classification of examples is positive (T) or negative (F).

Given a table of observable properties, search for a decision tree
that

I correctly represents the data
(for now, assume that the data is noise-free)

I is as small as possible

What does the search tree look like?



Predicate as a decision tree



The training set



Possible decision tree



Smaller decision tree



Building the decision tree - getting started (1)



Getting started (2)



Getting started (3)



How to compute the probability of error (1)



How to compute the probability of error (2)



Assume it’s A



Assume it’s B



Assume it’s C



Assume it’s D



Assume it’s E



Probability of error for each



Choice of second predicate



Choice of third predicate





The decision tree learning algorithm

function Decision-Tree-Learning (examples, attributes, parent-examples )
returns a tree

if examples is empty then
return Plurality-Value(parent-examples)

else if all examples have the same classification then
return the classification

else if attributes is empty then
return Plurality-Value(examples)

else
A← argmaxa∈attributes Importance(a, examples)
tree ← a new decision tree with root test A
for each value vk of A do

exs ← { e : e ∈ examples and e.A = vk}
subtree ← Decision-Tree-Learning (exs, attributes-A, examples)
add a branch to tree with label (A = vk) and subtree subtree

return tree



Notes on the algorithm

I Notice that the “probability of error” calculations boil down
to summing up the “minority numbers” and dividing by the
total number of examples in that category. This is due to
fraction cancellations. Probability of error is:

minority 1 + minority 2 + . . .

total number of examples in this category

I After an attribute is selected take only the examples that have
the attribute as labelled on the branch.



What happens if there is noise in the training set?

Consider a very small but inconsistent data set:

A classification
T T
F F
F T



Issues in learning decision trees

I If data for some attribute is missing and is hard to obtain, it
might be possible to extrapolate or use unknown.

I If some attributes have continuous values, groupings might be
used.

I If the data set is too large, one might use bagging to select a
sample from the training set. Or, one can use boosting to
assign a weight showing importance to each instance. Or, one
can divide the sample set into subsets and train on one, and
test on others.



How large is the hypothesis space?

How many decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows.

= 22
n



Using “probability of error”

I The “probability of error” is based on a measure of the
quantity of information that is contained in the truth value of
an observable attribute.

I It shows how predictable the classification is after getting
information about an attribute.

I The lower the probability of error, the higher the predictability.

I The attribute with the minimal probability of error yields the
maximum predictability. That is what we chose A at the root
of the decision tree.



Using information theory

I Entropy gives information about unpredictability.

I The scale is to use 1 bit to answer a Boolean question with
prior < 0.5, 0.5 >. This is least predictability (highest
unpredictability).

I Information answers questions: the more clueless we are about
the answer initially, the more information is contained in the
answer. i.e., we have a gain after getting an answer about
attribute A.

I We select the attribute with the highest gain.

I Let p be the number of positive examples, and n the number
of negative examples. Entropy(p, n) is defined as

−plog2p − nlog2n



Information gain

I Gain(A) is the expected reduction on entropy after getting an
answer on attribute A.

I Let pi be the number of positive examples when the answer to
A is i , and ni be the number of negative examples when the
answer to A is i .

I Assuming two possible answers, Gain(A) is defined as

entropy(p, n)−p1 + n1

p + n
entropy(p1, n1)−p2 + n2

p + n
entropy(p2, n2)



Example

I Assuming two possible answers, Gain(A) is defined as

entropy(p, n)−p1 + n1

p + n
entropy(p1, n1)−p2 + n2

p + n
entropy(p2, n2)

I Initially there are 6 positive and 7 negative examples.
Entropy(6,7) = 0.9957

I There are 6 positive and 2 negative examples for A being true
and 0 positive and 5 negative example for A being false.
Therefore the gain is

0.9957− 8

13
× entropy(6, 2)− 5

13
× entropy(5, 0) =

0.9957− 8

13
× 0.8113− 5

13
× 0 = 0.4965



Example(cont’d)

The gain values are:
A: 0.4992
B: 0.0414
C: 0.1307
D: 0.0349
E: 0.0069



Summary

I Decision tree learning is a supervised learning paradigm.

I The hypothesis is a decision tree.

I The greedy algorithm uses information gain to decide which
attribute should be placed at each node of the tree.

I Due to the greedy approach, the decision tree might not be
optimal but the algorithm is fast.

I If the data set is complete and not noisy, then the learned
decision tree will be accurate.



Sources for the slides

I AIMA textbook (3rd edition)

I AIMA slides:
http://aima.cs.berkeley.edu/

I Jean-Claude Latombe’s CS121 slides
http://robotics.stanford.edu/ latombe/cs121

(Accessed prior to 2009)

I Wikipedia article for Twenty Questions
http://en.wikipedia.org/wiki/Twenty Questions

(Accessed in March 2012)


	Attribute-based representations
	Decision tree learning as a search problem
	A greedy algorithm

