
Chapter 9 Inference in First-Order Logic

CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University



Outline

Reducing first-order inference to propositional inference
Universal instantiation
Existential instantiation

Unification

Resolution



Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed
by it:

∀v α

Subst({v/g}, α)

for any variable v and ground term g .

E.g., ∀xKing(x) ∧ Greedy(x) =⇒ Evil(x) yields

King(John) ∧ Greedy(John) =⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) =⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) =⇒ Evil(Father(John))
...



Existential instantiation (EI)

For any sentence α, variable v , and constant symbol k
that does not appear elsewhere in the knowledge base:

∃v α

Subst({v/k}, α)

E.g., ∃xCrown(x) ∧ OnHead(x , John) yields

Crown(C1) ∧ OnHead(C1, John)

provided C1 is a new constant symbol, called a Skolem constant.

Another example: from ∃xd(xy )/dy = xy we obtain

d(ey )/dy = ey

provided e is a new constant symbol.



Instantiation

I Universal instantiation can be applied several times to add
new sentences:
the new KB is logically equivalent to the old.

I Existential instantiation can be applied once to replace the
existential sentence:
the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable.



Reduction to propositional inference

Suppose the KB contains just the following:
∀x King(x) ∧ Greedy(x) =⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard , John)

Instantiating the universal sentence in all possible ways, we have
King(John) ∧ Greedy(John) =⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) =⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard , John)

The new KB is propositionalized: the proposition symbols are
King(John), Greedy(John), Evil(John),King(Richard) etc.



Reduction (cont’d.)

I Claim: a ground sentence is entailed by new KB iff entailed by
original KB.

I Claim: every FOL KB can be propositionalized so as to
preserve entailment.

I Idea: propositionalize KB and query, apply resolution, return
result.



Problems with propositionalization

I Propositionalization seems to generate lots of irrelevant
sentences.
E.g., from
∀xKing(x) ∧ Greedy(x) =⇒ Evil(x)
King(John)
∀yGreedy(y)
Brother(Richard , John)

it seems obvious that Evil(John), but propositionalization
produces lots of facts such as Greedy(Richard) that are
irrelevant.

With p k-ary predicates and n constants, there are p · nk

instantiations.

With function symbols, it gets much worse!



Problems with propositionalization (cont’d)

I With function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John))).

I Theorem: Herbrand (1930).
If a sentence α is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB.

I Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB.

I Problem: works if α is entailed, loops if α is not entailed.

I Theorem: Entailment in FOL is semidecidable.
Turing (1936), Church (1936)



Unification

We can get the inference immediately if we can find
a substitution θ such that King(x) and Greedy(x) match
King(John) and Greedy(y).

θ = {x/John, y/John} works

Unify(α, β) = θ if αθ = βθ

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y ,SteveJobs) {x/SteveJobs, y/John}
Knows(John, x) Knows(y ,Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x ,SteveJobs) fail



Standardizing variables apart

I Standardizing apart eliminates overlap of variables.

I Rename all variables so that variables bound by different
quantifiers have unique names.

I For example
∀x Apple(x) =⇒ Fruit(x)
∀x Spider(x) =⇒ Arachnid(x)

is the same as
∀x Apple(x) =⇒ Fruit(x)
∀y Spider(y) =⇒ Arachnid(y)



Resolution

Full first-order version:

`1 ∨ · · · ∨ `k , m1 ∨ · · · ∨mn

(`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn)θ

where Unify(`i ,¬mj) = θ.

For example,
¬Rich(x) ∨ Unhappy(x)
Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}.



Resolution refutation

I The general technique is to add the negation of the sentence
to be proven to the KB and see if this leads to a contradiction.

I Idea: if the KB becomes inconsistent with the addition of the
negated sentence, then the original sentence must be true.

I This is called resolution refutation.

I The procedure is complete for FOL.



Resolution refutation algorithm

function Resolution-Refutation (KB, α)
returns true if KB |= α

inputs:
KB, a knowledge base in CNF
α, a sentence in CNF

repeat
find two sentences s1, s2 to resolve
if not found then return false
s3 ← Resolve(s1, s2)
if s3 is the null clause

then return true
else KB ← ∪s3



Conversion to CNF

1. Eliminate biconditionals and implications.

2. Reduce the scope of ¬: move ¬ inwards.

3. Standardize variables apart: each quantifier should use a
different variable name.

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of
the enclosing universally quantified variables.

5. Drop all universal quantifiers: It’s allright to do so now.

6. Distribute ∧ over ∨.

7. Make each conjuct a separate clause.

8. Standardize the variables apart again.



Example 1

I All people who are graduating are happy.
All happy people smile.
JohnDoe is graduating.

Is JohnDoe smiling?

I First convert to predicate logic
∀x graduating(x) =⇒ happy(x)
∀x happy(x) =⇒ smiling(x)
graduating(JohnDoe)

smiling(JohnDoe) negate this: ¬smiling(JohnDoe)

I Then convert to canonical form.



Example 1 (cont’d)

1. ∀x graduating(x) =⇒ happy(x)
2. ∀x happy(x) =⇒ smiling(x)
3. graduating(JohnDoe)

4. ¬smiling(JohnDoe)

Step 1. Eliminate =⇒

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀x ¬happy(x) ∨ smiling(x)
3. graduating(JohnDoe)
4. ¬smiling(JohnDoe)



Example 1 (cont’d)

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀x ¬happy(x) ∨ smiling(x)
3. graduating(JohnDoe)
4. ¬smiling(JohnDoe)

Step 2. Move ¬ inwards. (not needed)

Step 3. Standardize variables apart.

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀y ¬happy(y) ∨ smiling(y)
3. graduating(JohnDoe)
4. ¬smiling(JohnDoe)



Example 1 (cont’d)

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀y ¬happy(y) ∨ smiling(y)
3. graduating(JohnDoe)
4. ¬smiling(JohnDoe)

Step 4. Skolemize. (not needed)

Step 5. Drop all ∀.

1. ¬graduating(x) ∨ happy(x)
2. ¬happy(y) ∨ smiling(y)
3. graduating(JohnDoe)
4. ¬smiling(JohnDoe)



Example 1 (cont’d)

1. ¬graduating(x) ∨ happy(x)
2. ¬happy(y) ∨ smiling(y)
3. graduating(JohnDoe)
4. ¬smiling(JohnDoe)

Step 6. Distribute ∧ over ∨. (not needed)

Step 7. Make each conjuct a separate clause. (not needed)

Step 8. Standardize the variables apart again. (not needed)

Ready for resolution!



Example 1 (cont’d)

1. ¬graduating(x) ∨ happy(x)
2. ¬happy(y) ∨ smiling(y)
3. graduating(JohnDoe)
4. ¬smiling(JohnDoe)

Resolve 4 and 2 using θ = {y/JohnDoe}:
5. ¬happy(JohnDoe)

Resolve 5 and 1 using θ = {x/JohnDoe}:
6. ¬graduating(JohnDoe)

Resolve 6 and 3:
7. ⊥



Example 2: Proving an existentially quantified sentence

I All people who are graduating are happy.
All happy people smile.
Someone is graduating.

Is someone smiling?

I First convert to predicate logic
∀x graduating(x) =⇒ happy(x)
∀x happy(x) =⇒ smiling(x)
∃x graduating(x)

∃x smiling(x) negate this: ¬∃x smiling(x)

I Then convert to canonical form.



Example 2 (cont’d)

1. ∀x graduating(x) =⇒ happy(x)
2. ∀x happy(x) =⇒ smiling(x)
3. ∃x graduating(x)
4. ¬∃x smiling(x)

Step 1. Eliminate =⇒

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀x ¬happy(x) ∨ smiling(x)
3. ∃x graduating(x)
4. ¬∃x smiling(x)



Example 2 (cont’d)

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀x ¬happy(x) ∨ smiling(x)
3. ∃x graduating(x)
4. ¬∃x smiling(x)

Step 2. Move ¬ inwards.

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀x ¬happy(x) ∨ smiling(x)
3. ∃x graduating(x)
4. ∀x ¬smiling(x)



Example 2 (cont’d)

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀x ¬happy(x) ∨ smiling(x)
3. ∃x graduating(x)
4. ∀x ¬smiling(x)

Step 3. Standardize variables apart.

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀y ¬happy(y) ∨ smiling(y)
3. ∃z graduating(z)
4. ∀w ¬smiling(w)



Example 2 (cont’d)

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀y ¬happy(y) ∨ smiling(y)
3. ∃z graduating(z)
4. ∀w ¬smiling(w)

Step 4. Skolemize.

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀y ¬happy(y) ∨ smiling(y)
3. graduating(NoName1)
4. ∀w ¬smiling(w)



Example 2 (cont’d)

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀y ¬happy(y) ∨ smiling(y)
3. graduating(NoName1)
4. ∀w ¬smiling(w)

Step 5. Drop all ∀.

1. ¬graduating(x) ∨ happy(x)
2. ¬happy(y) ∨ smiling(y)
3. graduating(NoName1)
4. ¬smiling(w)



Example 2 (cont’d)

1. ¬graduating(x) ∨ happy(x)
2. ¬happy(y) ∨ smiling(y)
3. graduating(NoName1)
4. ¬smiling(w)

Step 6. Distribute ∧ over ∨. (not needed)

Step 7. Make each conjuct a separate clause. (not needed)

Step 8. Standardize the variables apart again. (not needed)

Ready for resolution!



Example 2 (cont’d)

1. ¬graduating(x) ∨ happy(x)
2. ¬happy(y) ∨ smiling(y)
3. graduating(NoName1)
4. ¬smiling(w)

Resolve 4 and 2 using θ = {y/w}:
5. ¬happy(w)

Resolve 5 and 1 using θ = {x/w}:
6. ¬graduating(w)

Resolve 6 and 3 using θ = {w/NoName1}:
7. ⊥



Example 3: Proving a universally quantified sentence

I All people who are graduating are happy.
All happy people smile.
Everybody is graduating.

Is everybody smiling?

I First convert to predicate logic
∀x graduating(x) =⇒ happy(x)
∀x happy(x) =⇒ smiling(x)
∀x graduating(x)

∀x smiling(x) negate this: ¬∀x smiling(x)

I Then convert to canonical form.



Example 3 (cont’d)

1. ∀x graduating(x) =⇒ happy(x)
2. ∀x happy(x) =⇒ smiling(x)
3. ∀x graduating(x)
4. ¬∀x smiling(x)

Step 1. Eliminate =⇒

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀x ¬happy(x) ∨ smiling(x)
3. ∀x graduating(x)
4. ¬∀x smiling(x)



Example 3 (cont’d)

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀x ¬happy(x) ∨ smiling(x)
3. ∀x graduating(x)
4. ¬∀x smiling(x)

Step 2. Move ¬ inwards.

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀x ¬happy(x) ∨ smiling(x)
3. ∀x graduating(x)
4. ∃x ¬smiling(x)



Example 3 (cont’d)

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀x ¬happy(x) ∨ smiling(x)
3. ∀x graduating(x)
4. ∃x ¬smiling(x)

Step 3. Standardize variables apart.

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀y ¬happy(y) ∨ smiling(y)
3. ∀z graduating(z)
4. ∃w ¬smiling(w)



Example 3 (cont’d)

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀y ¬happy(y) ∨ smiling(y)
3. ∀z graduating(z)
4. ∃w ¬smiling(w)

Step 4. Skolemize.

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀y ¬happy(y) ∨ smiling(y)
3. ∀z graduating(z)
4. ¬smiling(NoName1)



Example 3 (cont’d)

1. ∀x ¬graduating(x) ∨ happy(x)
2. ∀y ¬happy(y) ∨ smiling(y)
3. ∀z graduating(z)
4. ¬smiling(NoName1)

Step 5. Drop all ∀.

1. ¬graduating(x) ∨ happy(x)
2. ¬happy(y) ∨ smiling(y)
3. graduating(z)
4. ¬smiling(NoName1)



Example 3 (cont’d)

1. ¬graduating(x) ∨ happy(x)
2. ¬happy(y) ∨ smiling(y)
3. graduating(z)
4. ¬smiling(NoName1)

Step 6. Distribute ∧ over ∨. (not needed)

Step 7. Make each conjuct a separate clause. (not needed)

Step 8. Standardize the variables apart again. (not needed)

Ready for resolution!



Example 3 (cont’d)

1. ¬graduating(x) ∨ happy(x)
2. ¬happy(y) ∨ smiling(y)
3. graduating(z)
4. ¬smiling(NoName1)

Resolve 4 and 2 using θ = {y/NoName1}:
5. ¬happy(NoName1)

Resolve 5 and 1 using θ = {x/NoName1}:
6. ¬graduating(NoName1)

Resolve 6 and 3 using θ = {z/NoName1}:
7. ⊥



More on Skolemization

If an existentially quantified variable is in the scope of universally
quantified variables, then the existentially quantified variable must
be a function of those other variables. We introduce a new, unique
function called Skolem function.

For example, ∀x ∃y (loves(x , y)) may be replaced with any of the
following:
∀x (loves(x ,NoName(x))
∀x (loves(x , LovedOne(x))
∀x (loves(x , k1(x))

NoName, LovedOne, k1 are Skolem functions. They should not
appear in any other sentence in the KB. They should also not have
any other parameter than x .



More on conversion to CNF

Everyone who loves all animals is loved by someone.
∀x [∀y Animal(y) =⇒ Loves(x , y)] =⇒ [∃y Loves(y , x)]

1. Eliminate biconditionals and implications.
∀x [¬∀y ¬Animal(y) ∨ Loves(x , y)] ∨ [∃y Loves(y , x)]

2. Move ¬ inwards. (¬∀x p ≡ ∃x ¬p,¬∃x p ≡ ∀x¬p)
∀x [∃y ¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y Loves(y , x)]
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x , y)] ∨ [∃y Loves(y , x)]
∀x [∃y Animal(y) ∧ ¬Loves(x , y)] ∨ [∃y Loves(y , x)]



More on conversion to CNF (cont’d)

3. Standardize variables apart.
∀x [∃y Animal(y) ∧ ¬Loves(x , y)] ∨ [∃z Loves(z , x)]

4. Skolemize.
∀x [Animal(f (x)) ∧ ¬Loves(x , f (x))] ∨ [Loves(g(x), x)]

5. Drop all universal quantifiers.
[Animal(f (x)) ∧ ¬Loves(x , f (x))] ∨ Loves(g(x), x)

6. Distribute ∧ over ∨.
[Animal(f (x)) ∨ Loves(g(x), x)] ∧ [¬Loves(x , f (x))
∨Loves(g(x), x)]

7. Make each conjuct a separate clause.
[Animal(f (x)) ∨ Loves(g(x), x)]
[¬Loves(x , f (x)) ∨ Loves(g(x), x)]



Resolution example

The law says that it is a crime for an American to sell weapons to
hostile nations. The country Nono, an enemy of America, has
some missiles, and all of its missiles were sold to it by Colonel
West, who is American.
Prove that Col. West is a criminal.



Resolution example (cont’d)
I . . . it is a crime for an American to sell weapons to hostile

nations
American(x) ∧Weapon(y) ∧ Sells(x , y , z) ∧ Hostile(z) =⇒
Criminal(x)

I Nono . . . has some missiles, i.e.,
∃ x Owns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

I . . . all of its missiles were sold to it by Colonel West
∀xMissile(x) ∧ Owns(Nono, x) =⇒ Sells(West, x ,Nono)

I Missiles are weapons:
Missile(x)⇒Weapon(x)

I An enemy of America counts as “hostile”:
Enemy(x ,America) =⇒ Hostile(x)

I West, who is American . . .
American(West)

I The country Nono, an enemy of America . . .
Enemy(Nono,America)



Resolution example (cont’d)



The unification algorithm

function Unify (x , y , θ)
returns a substitution to make x and y identical

inputs: x , a variable, constant, list, or compound expression
y , a variable, constant, list, or compound expression
θ, the substitution built up so far (optional, defaults to empty)

if θ = failure then return failure
else if x = y then return θ
else if Variable?(x) then return Unify-Var(x , y , θ)
else if Variable?(y) then return Unify-Var(y , x , θ)
else if Compound?(x) and Compound?(y) then

then return Unify(x .Args, y .Args, Unify(x .Op, y .Op, θ))
else if List?(x) and List?(y) then

then return Unify(x .Rest, y .Rest, Unify(x .First, y .First, θ))
else return failure



The unification algorithm (cont’d)

function Unify-Var (var , x , θ)
returns a substitution

if {var/val} ∈ θ then return Unify(val , x , θ)
else if {x/val} ∈ θ then return Unify(var , val , θ)
else if Occur-Check?(var , x) then return failure
else return add {var/x} to θ



Most general unifiers

I The unification algorithm computes a most general unifier,
mgu, which means that it places the fewest possible
restrictions on the variables

I For p(x , y) and p(joe, z),
{x/joe, y/z} and {x/joe, z/y} are both mgu’s, but
{x/joe, y/joe, z/joe} is not an mgu.

I Least commitment approach: The basic idea is to keep it
as general as possible, and commit to a substitution only if
you have to.



Unification algorithm examples

I p(ruth, x) and p(ruth, tia)
θ = {x/tia}
result = p(ruth, tia)

I p(ruth, x) and p(y , friend(y))
θ = {y/ruth, x/friend(ruth)}
result = p(ruth, friend(ruth))

I parents(x , father(x),mother(bill)) and
parents(bill , father(bill), y)
θ = {x/bill , y/mother(bill)}
result = parents(bill , father(bill),mother(bill)

I mother(x) and mother(mother(x))
fails due to Occurs-Check?.



Assumptions of first order logic

I Propositional calculus: no variables or functions

I Predicate calculus: allows quantified variables as parameters
of predicates or functions

I Quantification can only be done over variables that represent
terms

I John likes at least one dish Jane likes.
∃x food(x) ∧ likes(jane, x) ∧ likes(john, x)

I John likes every dish Jane likes.
∀x (food(x) ∧ likes(jane, x)) =⇒ likes(john, x)

I John “does” everything Jane does
∀P P(jane) =⇒ P(john) This is not first order.

I Higher order logics that allow predicates to be variables are
needed to describe mathematical properties such as
“every proposition implies itself” and
“there are decidable propositions”



Assumptions of first order logic (cont’d)

I “Unknowns” are not explicitly represented
unknown if not in the knowledge base

I Closed world assumption: Assume true (or false) if not in the
knowledge base

I Other logics to deal with unknowns or uncertainty
I Probability theory (degree of belief)
I Fuzzy logic (degree of truth)
I Dempster-Shafer theory (uncertainty and ignorance)



Summary

I Logic consists of
I a language

I the syntax tells how to build the sentences
legal sentences are called well-formed formulas (wff’s)

I the semantics tells what the sentences mean

I an inference procedure
which tells us which sentences are valid inferences from other
sentences



Summary (cont’d)

I The desired properties for inference procedures are:
I sound (correct)
I complete
I efficient

I Universal instantiation and existential instantiation can be
used to obtain a propositional KB and inferences can be made
using propositional logic. This approach is slow.

I The generalized resolution inference rule provides a complete
proof system for first-order logic.

I The KB has to be in conjunctive normal form (CNF). Any set
of statements can be converted into CNF.

I Resolution refutation is complete, i.e., if a sentence can be
entailed, it will be proven.

I Forward chaining and backward chaining are still options.



Sources for the slides

I AIMA textbook (3rd edition)

I AIMA slides (http://aima.cs.berkeley.edu/)


	Reducing first-order inference to propositional inference
	Universal instantiation
	Existential instantiation

	Unification
	Resolution

