Chapter 9 Inference in First-Order Logic

CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University

Outline

Reducing first-order inference to propositional inference Universal instantiation
Existential instantiation

Unification

Resolution

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

$$
\frac{\forall v \alpha}{\operatorname{SUBST}(\{v / g\}, \alpha)}
$$

for any variable v and ground term g.
E.g., $\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Longrightarrow \operatorname{Evil}(x)$ yields

King (John) \wedge Greedy (John) \Longrightarrow Evil(John) King (Richard) \wedge Greedy (Richard) \Longrightarrow Evil(Richard)
King $($ Father $(J o h n)) \wedge$ Greedy $($ Father $(J o h n)) \Longrightarrow \operatorname{Evil(Father(John))~}$

Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$
\frac{\exists v \alpha}{\operatorname{SUBST}(\{v / k\}, \alpha)}
$$

E.g., $\exists x \operatorname{Crown}(x) \wedge \operatorname{OnHead}(x$, John $)$ yields

$$
\operatorname{Crown}\left(C_{1}\right) \wedge \operatorname{OnHead}\left(C_{1}, \text { John }\right)
$$

provided C_{1} is a new constant symbol, called a Skolem constant.
Another example: from $\exists x d\left(x^{y}\right) / d y=x^{y}$ we obtain

$$
d\left(e^{y}\right) / d y=e^{y}
$$

provided e is a new constant symbol.

Instantiation

- Universal instantiation can be applied several times to add new sentences: the new KB is logically equivalent to the old.
- Existential instantiation can be applied once to replace the existential sentence: the new $K B$ is not equivalent to the old, but is satisfiable iff the old $K B$ was satisfiable.

Reduction to propositional inference

Suppose the KB contains just the following:
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Longrightarrow \operatorname{Evil}(x)$
King(John)
Greedy (John)
Brother(Richard, John)
Instantiating the universal sentence in all possible ways, we have
King (John) \wedge Greedy (John) \Longrightarrow Evil(John)
King $($ Richard $) \wedge$ Greedy (Richard) \Longrightarrow Evil(Richard)
King(John)
Greedy (John)
Brother(Richard, John)
The new KB is propositionalized: the proposition symbols are King(John), Greedy(John), Evil(John), King(Richard) etc.

Reduction (cont'd.)

- Claim: a ground sentence is entailed by new KB iff entailed by original KB.
- Claim: every FOL KB can be propositionalized so as to preserve entailment.
- Idea: propositionalize KB and query, apply resolution, return result.

Problems with propositionalization

- Propositionalization seems to generate lots of irrelevant sentences.
E.g., from
$\forall x \operatorname{King}(x) \wedge \operatorname{Greed} y(x) \Longrightarrow \operatorname{Evil}(x)$
King(John)
$\forall y G r e e d y(y)$
Brother(Richard, John)
it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy (Richard) that are irrelevant.

With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations.

With function symbols, it gets much worse!

Problems with propositionalization (cont'd)

- With function symbols, there are infinitely many ground terms, e.g., Father(Father(Father(John))).
- Theorem: Herbrand (1930).

If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositional $K B$.

- Idea: For $n=0$ to ∞ do create a propositional KB by instantiating with depth- n terms see if α is entailed by this KB.
- Problem: works if α is entailed, loops if α is not entailed.
- Theorem: Entailment in FOL is semidecidable.

Turing (1936), Church (1936)

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match King(John) and Greedy (y).
$\theta=\{x /$ John, $y / J o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(John, $x)$	Knows(John, Jane)	$\{x /$ Jane $\}$
Knows(John, $x)$	Knows $(y$, SteveJobs)	$\{x /$ SteveJobs, $y /$ John $\}$
Knows(John, $x)$	Knows $(y$, Mother $(y))$	$\{y /$ John, $x /$ Mother (John $)\}$
Knows(John, $x)$	Knows $(x$, SteveJobs)	fail

Standardizing variables apart

- Standardizing apart eliminates overlap of variables.
- Rename all variables so that variables bound by different quantifiers have unique names.
- For example
$\forall x$ Apple $(x) \Longrightarrow$ Fruit (x)
$\forall x$ Spider $(x) \Longrightarrow$ Arachnid (x)
is the same as
$\forall x$ Apple $(x) \Longrightarrow$ Fruit (x)
$\forall y \operatorname{Spider}(y) \Longrightarrow$ Arachnid (y)

Resolution

Full first-order version:

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\left(\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}
$$

$$
\text { where } \operatorname{Unify}\left(\ell_{i}, \neg m_{j}\right)=\theta
$$

For example,
\neg Rich $(x) \vee$ Unhappy (x)
Rich(Ken)
Unhappy (Ken)
with $\theta=\{x /$ Ken $\}$.

Resolution refutation

- The general technique is to add the negation of the sentence to be proven to the KB and see if this leads to a contradiction.
- Idea: if the KB becomes inconsistent with the addition of the negated sentence, then the original sentence must be true.
- This is called resolution refutation.
- The procedure is complete for FOL.

Resolution refutation algorithm

function Resolution-Refutation ($K B, \alpha$) returns true if $\mathrm{KB} \models \alpha$
inputs:
$K B$, a knowledge base in CNF
α, a sentence in CNF

repeat

find two sentences s_{1}, s_{2} to resolve
if not found then return false
$s_{3} \leftarrow \operatorname{Resolve}\left(s_{1}, s_{2}\right)$
if s_{3} is the null clause
then return true else $K B \leftarrow \cup s_{3}$

Conversion to CNF

1. Eliminate biconditionals and implications.
2. Reduce the scope of \neg : move \neg inwards.
3. Standardize variables apart: each quantifier should use a different variable name.
4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables.
5. Drop all universal quantifiers: It's allright to do so now.
6. Distribute \wedge over \vee.
7. Make each conjuct a separate clause.
8. Standardize the variables apart again.

Example 1

- All people who are graduating are happy.

All happy people smile. JohnDoe is graduating.

Is JohnDoe smiling?

- First convert to predicate logic
$\forall x$ graduating $(x) \Longrightarrow$ happy (x)
$\forall x$ happy $(x) \Longrightarrow$ smiling (x)
graduating(JohnDoe)
smiling(JohnDoe) negate this: \neg smiling(JohnDoe)
- Then convert to canonical form.

Example 1 (cont'd)

1. $\forall x$ graduating $(x) \Longrightarrow$ happy (x)
2. $\forall x$ happy $(x) \Longrightarrow \operatorname{smiling}(x)$
3. graduating(JohnDoe)
4. \neg smiling (JohnDoe)

Step 1. Eliminate \Longrightarrow

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall x \neg$ happy $(x) \vee \operatorname{smiling}(x)$
3. graduating(JohnDoe)
4. \neg smiling (JohnDoe)

Example 1 (cont'd)

1. $\forall x \neg \operatorname{graduating}(x) \vee$ happy (x)
2. $\forall x \neg$ happy $(x) \vee \operatorname{smiling}(x)$
3. graduating(JohnDoe)
4. \neg smiling (JohnDoe)

Step 2. Move \neg inwards. (not needed)
Step 3. Standardize variables apart.

1. $\forall x \neg \operatorname{graduating}(x) \vee$ happy (x)
2. $\forall y \neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. graduating(JohnDoe)
4. \neg smiling (JohnDoe)

Example 1 (cont'd)

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall y \neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. graduating(JohnDoe)
4. \neg smiling (JohnDoe)

Step 4. Skolemize. (not needed)
Step 5. Drop all \forall.

1. \neg graduating $(x) \vee$ happy (x)
2. \neg happy $(y) \vee$ smiling (y)
3. graduating(JohnDoe)
4. \neg smiling (JohnDoe)

Example 1 (cont'd)

1. \neg graduating $(x) \vee$ happy (x)
2. \neg happy $(y) \vee \operatorname{smiling}(y)$
3. graduating(JohnDoe)
4. \neg smiling (JohnDoe)

Step 6. Distribute \wedge over \vee. (not needed)
Step 7. Make each conjuct a separate clause. (not needed)
Step 8. Standardize the variables apart again. (not needed)
Ready for resolution!

Example 1 (cont'd)

1. \neg graduating $(x) \vee$ happy (x)
2. \neg happy $(y) \vee \operatorname{smiling}(y)$
3. graduating(JohnDoe)
4. \neg smiling (JohnDoe)

Resolve 4 and 2 using $\theta=\{y / J o h n D o e ~\}:$
5. ᄀhappy (JohnDoe)

Resolve 5 and 1 using $\theta=\{x /$ JohnDoe $\}$:
6. \neg graduating (JohnDoe)

Resolve 6 and 3 :
7. \perp

Example 2: Proving an existentially quantified sentence

- All people who are graduating are happy.

All happy people smile.
Someone is graduating.
Is someone smiling?

- First convert to predicate logic
$\forall x$ graduating $(x) \Longrightarrow$ happy (x)
$\forall x$ happy $(x) \Longrightarrow$ smiling (x)
$\exists x$ graduating (x)
$\exists x$ smiling $(x) \quad$ negate this: $\neg \exists x \operatorname{smiling}(x)$
- Then convert to canonical form.

Example 2 (cont'd)

1. $\forall x \operatorname{graduating}(x) \Longrightarrow$ happy (x)
2. $\forall x$ happy $(x) \Longrightarrow$ smiling (x)
3. $\exists x$ graduating (x)
4. $\neg \exists x$ smiling (x)

Step 1. Eliminate \Longrightarrow

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall x \neg$ happy $(x) \vee \operatorname{smiling}(x)$
3. $\exists x$ graduating (x)
4. $\neg \exists x \operatorname{smiling}(x)$

Example 2 (cont'd)

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall x \neg \operatorname{happy}(x) \vee \operatorname{smiling}(x)$
3. $\exists x$ graduating (x)
4. $\neg \exists x$ smiling (x)

Step 2. Move \neg inwards.

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall x \neg$ happy $(x) \vee$ smiling (x)
3. $\exists x$ graduating (x)
4. $\forall x \neg \operatorname{smiling}(x)$

Example 2 (cont'd)

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall x \neg \operatorname{happy}(x) \vee \operatorname{smiling}(x)$
3. $\exists x$ graduating (x)
4. $\forall x \neg \operatorname{smiling}(x)$

Step 3. Standardize variables apart.

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall y \neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. $\exists z$ graduating (z)
4. $\forall w \neg$ smiling (w)

Example 2 (cont'd)

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall y \neg$ happy $(y) \vee \operatorname{smiling}(y)$
3. $\exists z$ graduating (z)
4. $\forall w \neg$ smiling (w)

Step 4. Skolemize.

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall y \neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. graduating (NoName1)
4. $\forall w \neg \operatorname{smiling}(w)$

Example 2 (cont'd)

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall y \neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. graduating (NoName1)
4. $\forall w \neg$ smiling (w)

Step 5. Drop all \forall.

1. \neg graduating $(x) \vee$ happy (x)
2. $\neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. graduating(NoName1)
4. \neg smiling (w)

Example 2 (cont'd)

1. \neg graduating $(x) \vee$ happy (x)
2. \neg happy $(y) \vee \operatorname{smiling}(y)$
3. graduating(NoName1)
4. \neg smiling (w)

Step 6. Distribute \wedge over \vee. (not needed)
Step 7. Make each conjuct a separate clause. (not needed)
Step 8. Standardize the variables apart again. (not needed)
Ready for resolution!

Example 2 (cont'd)

1. \neg graduating $(x) \vee$ happy (x)
2. $\neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. graduating(NoName1)
4. \neg smiling (w)

Resolve 4 and 2 using $\theta=\{y / w\}$:
5. \neg happy (w)

Resolve 5 and 1 using $\theta=\{x / w\}$:
6. \neg graduating (w)

Resolve 6 and 3 using $\theta=\{w /$ NoName 1$\}$:
7. \perp

Example 3: Proving a universally quantified sentence

- All people who are graduating are happy.

All happy people smile.
Everybody is graduating.
Is everybody smiling?

- First convert to predicate logic
$\forall x$ graduating $(x) \Longrightarrow$ happy (x)
$\forall x$ happy $(x) \Longrightarrow$ smiling (x)
$\forall x$ graduating (x)
$\forall x$ smiling $(x) \quad$ negate this: $\neg \forall x$ smiling (x)
- Then convert to canonical form.

Example 3 (cont'd)

1. $\forall x \operatorname{graduating}(x) \Longrightarrow$ happy (x)
2. $\forall x$ happy $(x) \Longrightarrow$ smiling (x)
3. $\forall x$ graduating (x)
4. $\neg \forall x$ smiling (x)

Step 1. Eliminate \Longrightarrow

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall x \neg$ happy $(x) \vee$ smiling (x)
3. $\forall x$ graduating (x)
4. $\neg \forall x$ smiling (x)

Example 3 (cont'd)

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall x \neg \operatorname{happy}(x) \vee \operatorname{smiling}(x)$
3. $\forall x$ graduating (x)
4. $\neg \forall x$ smiling (x)

Step 2. Move \neg inwards.

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall x \neg$ happy $(x) \vee$ smiling (x)
3. $\forall x$ graduating (x)
4. $\exists x \neg \operatorname{smiling}(x)$

Example 3 (cont'd)

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall x \neg \operatorname{happy}(x) \vee \operatorname{smiling}(x)$
3. $\forall x$ graduating (x)
4. $\exists x \neg$ smiling (x)

Step 3. Standardize variables apart.

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall y \neg h a p p y(y) \vee \operatorname{smiling}(y)$
3. $\forall z$ graduating (z)
4. $\exists w \neg$ smiling (w)

Example 3 (cont'd)

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall y \neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. $\forall z$ graduating (z)
4. $\exists w \neg$ smiling (w)

Step 4. Skolemize.

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall y \neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. $\forall z$ graduating (z)
4. \neg smiling (NoName1)

Example 3 (cont'd)

1. $\forall x \neg$ graduating $(x) \vee$ happy (x)
2. $\forall y \neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. $\forall z$ graduating (z)
4. \neg smiling (NoName1)

Step 5. Drop all \forall.

1. \neg graduating $(x) \vee$ happy (x)
2. $\neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. graduating (z)
4. \neg smiling (NoName1)

Example 3 (cont'd)

1. \neg graduating $(x) \vee$ happy (x)
2. $\neg \operatorname{happy}(y) \vee \operatorname{smiling}(y)$
3. graduating (z)
4. \neg smiling (NoName1)

Step 6. Distribute \wedge over \vee. (not needed)
Step 7. Make each conjuct a separate clause. (not needed)
Step 8. Standardize the variables apart again. (not needed)
Ready for resolution!

Example 3 (cont'd)

1. \neg graduating $(x) \vee$ happy (x)
2. \neg happy $(y) \vee \operatorname{smiling}(y)$
3. graduating (z)
4. \neg smiling (NoName1)

Resolve 4 and 2 using $\theta=\{y /$ NoName 1$\}$:
5. ᄀhappy (NoName1)

Resolve 5 and 1 using $\theta=\{x /$ NoName1 $\}$:
6. \neg graduating (NoName1)

Resolve 6 and 3 using $\theta=\{z /$ NoName1 $\}$:
7. \perp

More on Skolemization

If an existentially quantified variable is in the scope of universally quantified variables, then the existentially quantified variable must be a function of those other variables. We introduce a new, unique function called Skolem function.

For example, $\forall x \exists y(\operatorname{loves}(x, y))$ may be replaced with any of the following:

```
\forallx(loves(x,NoName(x))
\forallx(loves(x,LovedOne(x))
\forall (loves(x, k1(x))
```

NoName, LovedOne, $k 1$ are Skolem functions. They should not appear in any other sentence in the KB. They should also not have any other parameter than x.

More on conversion to CNF

Everyone who loves all animals is loved by someone.
$\forall x[\forall y \operatorname{Animal}(y) \Longrightarrow \operatorname{Loves}(x, y)] \Longrightarrow[\exists y \operatorname{Loves}(y, x)]$

1. Eliminate biconditionals and implications. $\forall x[\neg \forall y \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$
2. Move \neg inwards. $(\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x \neg p)$ $\forall x[\exists y \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \operatorname{Loves}(y, x)]$ $\forall x[\exists y \neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$ $\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$

More on conversion to CNF (cont'd)

3. Standardize variables apart.
$\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]$
4. Skolemize.
$\forall x[\operatorname{Animal}(f(x)) \wedge \neg \operatorname{Loves}(x, f(x))] \vee[\operatorname{Loves}(g(x), x)]$
5. Drop all universal quantifiers.
$[$ Animal $(f(x)) \wedge \neg \operatorname{Loves}(x, f(x))] \vee \operatorname{Loves}(g(x), x)$
6. Distribute \wedge over \vee.
$[$ Animal $(f(x)) \vee \operatorname{Loves}(g(x), x)] \wedge[\neg \operatorname{Loves}(x, f(x))$
$\vee \operatorname{Loves}(g(x), x)]$
7. Make each conjuct a separate clause.
$[$ Animal $(f(x)) \vee \operatorname{Loves}(g(x), x)$]
$[\neg \operatorname{Loves}(x, f(x)) \vee \operatorname{Loves}(g(x), x)]$

Resolution example

The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
Prove that Col. West is a criminal.

Resolution example (cont'd)

- ... it is a crime for an American to sell weapons to hostile nations
American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Longrightarrow$ Criminal(x)
- Nono ... has some missiles, i.e.,
$\exists x \operatorname{Owns}($ Nono,$x) \wedge \operatorname{Missile}(x)$:
Owns(Nono, M_{1}) and $\operatorname{Missile}\left(M_{1}\right)$
- ... all of its missiles were sold to it by Colonel West $\forall x \operatorname{Missile}(x) \wedge$ Owns(Nono, $x) \Longrightarrow$ Sells(West, x, Nono)
- Missiles are weapons:
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
- An enemy of America counts as "hostile":

Enemy (x, America) \Longrightarrow Hostile (x)

- West, who is American ...

American(West)

- The country Nono, an enemy of America ...

Enemy(Nono, America)

Resolution example (cont'd)

The unification algorithm

function Unify (x, y, θ)
returns a substitution to make x and y identical
inputs: x, a variable, constant, list, or compound expression
y, a variable, constant, list, or compound expression
θ, the substitution built up so far (optional, defaults to empty)
if $\theta=$ failure then return failure
else if $x=y$ then return θ
else if Variable? (x) then return $\operatorname{Unify}-\operatorname{Var}(x, y, \theta)$
else if $\operatorname{Variable}$? (y) then return $\operatorname{Unify} \operatorname{Var}(y, x, \theta)$ else if Compound? (x) and Compound? (y) then
then return Unify(x.Args, y.Args, Unify(x.Op, y.Op, θ))
else if List ? (x) and List? (y) then
then return $\operatorname{Unify}(x$.Rest, y.Rest, $\operatorname{Unify}(x$.First, y.First, $\theta)$)
else return failure

The unification algorithm (cont'd)

function Unify-VAR (var, x, θ)
returns a substitution
if $\{$ var $/ v a l\} \in \theta$ then return $\operatorname{Unify}(v a l, x, \theta)$ else if $\{x / v a l\} \in \theta$ then return $\operatorname{Unify}(v a r, v a l, \theta)$ else if Occur-Check? (var, x) then return failure else return add $\{\operatorname{var} / x\}$ to θ

Most general unifiers

- The unification algorithm computes a most general unifier, $m g u$, which means that it places the fewest possible restrictions on the variables
- For $p(x, y)$ and $p(j o e, z)$, $\{x / j o e, y / z\}$ and $\{x / j o e, z / y\}$ are both mgu's, but $\{x / j o e, y / j o e, z / j o e\}$ is not an mgu.
- Least commitment approach: The basic idea is to keep it as general as possible, and commit to a substitution only if you have to.

Unification algorithm examples

- $p($ ruth,$x)$ and $p($ ruth, tia)
$\theta=\{x /$ tia $\}$
result $=p($ ruth, tia)
- $p($ ruth,$x)$ and $p(y$, friend $(y))$
$\theta=\{y /$ ruth,$x /$ friend (ruth $)\}$
result $=p($ ruth, friend $($ ruth $))$
- parents(x, father(x), mother(bill)) and parents(bill, father(bill), y)
$\theta=\{x /$ bill, $y /$ mother (bill) $\}$
result $=$ parents(bill, father (bill), mother(bill)
- mother (x) and mother (mother (x)) fails due to Occurs-Check?.

Assumptions of first order logic

- Propositional calculus: no variables or functions
- Predicate calculus: allows quantified variables as parameters of predicates or functions
- Quantification can only be done over variables that represent terms
- John likes at least one dish Jane likes. $\exists x$ food $(x) \wedge$ likes $(j a n e, x) \wedge$ likes $(j o h n, x)$
- John likes every dish Jane likes.
$\forall x($ food $(x) \wedge \operatorname{likes}(j a n e, x)) \Longrightarrow$ likes $(j o h n, x)$
- John "does" everything Jane does $\forall P P($ jane $) \Longrightarrow P($ john $) \quad$ This is not first order.
- Higher order logics that allow predicates to be variables are needed to describe mathematical properties such as "every proposition implies itself" and "there are decidable propositions"

Assumptions of first order logic (cont'd)

- "Unknowns" are not explicitly represented unknown if not in the knowledge base
- Closed world assumption: Assume true (or false) if not in the knowledge base
- Other logics to deal with unknowns or uncertainty
- Probability theory (degree of belief)
- Fuzzy logic (degree of truth)
- Dempster-Shafer theory (uncertainty and ignorance)

Summary

- Logic consists of
- a language
- the syntax tells how to build the sentences
legal sentences are called well-formed formulas (wff's)
- the semantics tells what the sentences mean
- an inference procedure which tells us which sentences are valid inferences from other sentences

Summary (cont'd)

- The desired properties for inference procedures are:
- sound (correct)
- complete
- efficient
- Universal instantiation and existential instantiation can be used to obtain a propositional KB and inferences can be made using propositional logic. This approach is slow.
- The generalized resolution inference rule provides a complete proof system for first-order logic.
- The KB has to be in conjunctive normal form (CNF). Any set of statements can be converted into CNF.
- Resolution refutation is complete, i.e., if a sentence can be entailed, it will be proven.
- Forward chaining and backward chaining are still options.

Sources for the slides

- AIMA textbook (3 ${ }^{\text {rd }}$ edition)
- AIMA slides (http://aima.cs.berkeley.edu/)

